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Abstract

These past few years, we have been experimenting in Nuprl with versions of Brouwer’s
Bar Induction principle. Until recently we had no formal proof that these rules are valid
Nuprl reasoning principles. Thanks to our formalization of Nuprl’s metatheory in Coq, we
can now rigorously check whether these principles are consistent with Nuprl. In this paper
we present a proof, using our Coq framework, of the validity of Brouwer’s Bar Induction
principle on sequences of natural numbers. To prove this result we added all Coq functions
from natural numbers to natural numbers to Nuprl’s computation system.

Introduction. Nuprl [9, 3] is a dependent type theory à la Martin-Löf based on an untyped
functional programming language. Nuprl has a rich type theory including identity (or equality)
types, a hierarchy of universes, W types, quotient types [10], set types, union and (dependent)
intersection types [14], image types [15], PER types [4], simulation types [17], and partial
types [11]. Type checking is undecidable but in practice this is mitigated by type inference
and checking heuristics implemented as tactics. Nuprl types are defined as partial equivalence
relations (PERs) on closed terms [2, 1, 11]. We have implemented Nuprl’s PER semantics in
Coq and verified a large number of its inference rules [5, 6].

Bar Induction. These past few years we have been experimenting with versions of Brouwer’s Bar
Induction principle [8, 18]. In [7], we showed how to build parametrized families of W types
using a general form of Bar Induction. We present here our first attempt at proving that this
rule is valid w.r.t. Nuprl PER semantics. The rule we have proved is:

H ⊢ ↓(X 0 norm(c, 0))
BY [BarInduction]

(dec) H , n : N, s : NNn ⊢ B n s ∨ ¬B n s

(bar) H , s : NN ⊢ ↓∃n : N. B n norm(s, n)
(imp) H , n : N, s : NNn ,m : B n s ⊢ X n s

(ind) H , n : N, s : NNn , x : (∀m : N. X (n+ 1) ext(s, n,m)) ⊢ X n s

where
norm(s, n) = λx.if x<0 then ⊥ else if x<n then s(x) else ⊥

ext(s, n,m) = λx.if x =Z n then m else s(x)
↓T = {Unit | T}

The normalized sequence norm(s, n) returns s(x) for inputs x between 0 and n, and otherwise
returns ⊥. Our first attempt to verify this rule did not use norm and, to use [BarInduction],
required one to, in addition to the above subgoals, prove that X is a well-formed function of
type n:N → N

Nn → Type. This is undesirable and can be avoided using norm.
As mentioned in [7], we can define a bar recursion operator and using this squashed bar

induction rule (using the squashing operator ↓), we can prove that bar recursion is a realizer
for bar induction.
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We have proved that this rule is true in our impredicative metatheory (in Prop) following
Dummett’s “standard” classical proof [12, pp.55]. Our Coq implementation is available at
the following address: http://www.nuprl.org/html/Nuprl2Coq/. The [BarInduction] rule is
often called BID for Bar Induction on Decidable bars. As in Dummett’s proof we used the
law of excluded middle and the axiom of choice. Note that because the proof is classical, we
will not need to use the sequent (dec). His proof goes as follows: first we assume the falsity
of the conclusion using the law of excluded middle. Then, we contrapose (ind), and using the
axiom of choice we obtain a function F that, for all n ∈ N, s ∈ N

Nn , and proof of ¬X n s,
returns a number m such that ¬X (n+ 1) ext(s, n,m). Because ¬(X 0 norm(c, 0)), this gives
us a sequence α ∈ N

N such that for all n ∈ N, ¬X α(n) norm(α, α(n)). Finally, we get a
contradiction using (bar) and then (imp).

Coq sequences as Nuprl terms. How did we construct the sequence α? From F we can get a Coq
functions from numbers to numbers, but for our proof we need a Nuprl term that computes
numbers to numbers. Therefore, to remedy that we added all Coq functions from natural
numbers to natural numbers to Nuprl’s computation system (this was suggested to us by our
colleague Evan Moran). Adding all Coq function from numbers to numbers is similar to adding
free choice sequences, which is how Brouwer justified bar induction. In our metatheory, seq(f),
where f is a Coq function from numbers to numbers, is now a valid Nuprl expression. It
computes as follows: to reduce the application seq(f) t, we first reduce t down to a value. If
t computes to a natural number n, then we return the natural number f(n). Otherwise, the
computation gets stuck or diverges.

Current and Future work. Using our Coq framework, we have also recently proved Brouwer’s
continuity principle for numbers [16]. From BID and continuity we derived, in Nuprl, bar
induction on monotone bars [13]. We are now investigating a bar induction rule for sequences
of closed terms and not only natural numbers, which is the version we used to build parametrized
W types [7]. For that we are adding all Coq functions from numbers to closed terms to our
computation system, and we are investigating the implications of this modification.
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