
Asphalion: Trustworthy Shielding Against Byzantine Faults

IVANA VUKOTIC, SnT, University of Luxembourg

VINCENT RAHLI, University of Birmingham

PAULO ESTEVES-VERÍSSIMO, SnT, University of Luxembourg

Byzantine fault-tolerant state-machine replication (BFT-SMR) is a technique for hardening systems to tolerate

arbitrary faults. Although robust, BFT-SMR protocols are very costly in terms of the number of required

replicas (3f + 1 to tolerate f faults) and of exchanged messages. However, with “hybrid” architectures, where

“normal” components trust some “special” components to provide properties in a trustworthy manner, the

cost of using BFT can be dramatically reduced. Unfortunately, even though such hybridization techniques

decrease the message/time/space complexity of BFT protocols, they also increase their structural complexity.

Therefore, we introduce Asphalion, the first theorem prover-based framework for verifying implementations
of hybrid systems and protocols. It relies on three novel languages: (1) HyLoE: a Hybrid Logic of Events

to reason about hybrid fault models; (2) MoC: a Monadic Component language to implement systems as

collections of interacting hybrid components; and (3) LoCK: a sound Logic of events-based Calculus of

Knowledge to reason about both homogeneous and hybrid systems at a high-level of abstraction (thereby

allowing reusing proofs, and capturing the high-level logic of distributed systems). In addition, Asphalion

supports compositional reasoning, e.g., through mechanisms to lift properties about trusted-trustworthy
components, to the level of the distributed systems they are integrated in. As a case study, we have verified

crucial safety properties (e.g., agreement) of several implementations of hybrid protocols.

CCS Concepts: • Theory of computation→ Logic and verification.

Additional Key Words and Phrases: Formal verification, Distributed systems, Fault-tolerance, Byzantine faults,

Hybrid protocols, MinBFT, Compositional reasoning, Coq, Knowledge calculus, Monad, Step-indexing

ACM Reference Format:
Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo. 2019. Asphalion: Trustworthy Shielding Against

Byzantine Faults. In Proceedings of (OOPSLA’19). ACM, New York, NY, USA, 32 pages.

1 INTRODUCTION
Our society strongly depends on critical information infrastructures such as electrical grids, au-

tonomous vehicles, distributed public ledgers, etc. Unfortunately, proving that they operate correctly

is very hard to achieve due to their complexity. Moreover, given the increasing number of sophisti-

cated attacks on such systems (e.g. Stuxnet), ensuring their correct behavior becomes even more

necessary. Ideally, we should ensure their correctness, relying on a minimal trusted computing base,

and to the highest standards possible, e.g., using theorem provers. However, because state-of-the-art

verification tools (such as theorem provers) cannot yet tackle complex production infrastructures,

bugs and attacks are bound to happen in partially verified systems [Fonseca et al. 2017].

One standard technique to mitigate this problem is to use Byzantine fault-tolerant state machine

replication (BFT-SMR) [Bessani et al. 2014; Castro and Liskov 1999b; Lamport et al. 1982] in addition

to cheaper certification techniques. It enables correct functioning of a system even when some parts

of the system are not working correctly,
1
by masking the behavior of faulty replicas behind the

behavior of enough healthy replicas. Unfortunately, because these protocols are rather complex, usu-

ally come without a formal specification, and sometimes even without an implementation [Dragoi

1
Processes and messages in transit can be corrupted arbitrarily. However, we assume perfect cryptography, i.e., a process

cannot impersonate another process without the two processes being faulty.

OOPSLA’19, ,
2019.

1

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

et al. 2015], there is a non-negligible chance that they will later be found incorrect [Abraham et al.

2017a]. Adding on top of that the fact that many variants of these protocols are being developed

and adopted in critical sectors (e.g., in blockchain technology [Abraham et al. 2017b; Decker et al.

2016; Kokoris-Kogias et al. 2016; Luu et al. 2016; Pass and Shi 2017; Sousa et al. 2018]), it is clear

that ensuring the correctness of these protocols is extremely important.

Moreover, because traditional BFT-SMR is extremely expensive,
2
“hybrid” architectures [Correia

et al. 2005, 2004, 2002; Veríssimo 2006; Veríssimo and Casimiro 2002; Veríssimo et al. 2000] have been

getting increasing attention: they allow dramatically cutting the message/time/space complexity

mentioned above. For example, when applied to BFT-SMR, hybrid solutions only require 2f + 1
replicas instead of 3f + 1, to tolerate f faults. Such hybrid architectures allow the coexistence

and interaction of components with largely diverse behavior, e.g., synchronous vs. asynchronous,

or crash vs. Byzantine. In such models, “normal” components trust “special” components that

provide trustworthy properties. These trusted-trustworthy “special” components are made trustwor-

thy through careful design and by verifying their correctness. Therefore, by relying on stronger

assumptions (e.g., synchrony or crash), they can be unconditionally trusted to provide stronger

properties about the entire hybrid distributed system, than what would be possible otherwise.

This generic “hybridization” paradigm has been showing great promise for BFT-SMR. Many

“hybrid” solutions have been designed to reduce the message/time/space complexity of BFT proto-

cols [Behl et al. 2017; Chun et al. 2007; Correia et al. 2004, 2013; Distler et al. 2016; Kapitza et al. 2012;

Levin et al. 2009; Veronese et al. 2010, 2013], by relying on trusted-trustworthy components (e.g.,

message counters in MinBFT [Veronese et al. 2013]) that cannot be tampered with (they are trusted

in the sense that they can only fail by crashing, and otherwise always deliver correct results). An

increasing number of off-the-shelf hardware systems are now providing trusted environments [El-

defrawy et al. 2017; SecureBlue 2019; SGX 2019; TrustZone 2019], thereby enabling the further

development and large-scale use of hybrid protocols.

Anticipating the impact and widespread use of such systems, and to support the development

of correct hybrid systems, we present Asphalion,
3
the first theorem prover-based framework that

can guarantee the correctness of implementations of hybrid fault tolerant distributed systems

communicating via message passing. Asphalion is inspired by Velisarios [Rahli et al. 2018], a

framework for verifying the correctness of homogeneous BFT protocols (see Sec. 2 for a comparison).

As opposed to Velisarios, Asphalion allows reasoning about hybrid systems by modeling replicas

as collections of multiple components that can have different failure assumptions, e.g., some can

fail arbitrarily, while others can only crash on failure.
4
In addition, Asphalion allows modular

reasoning by lifting properties proved about sub-components of a local system to the level of that

local system (see Sec. 5.4). As part of Asphalion, we developed LoCK: a sound knowledge calculus

to reason about both homogeneous and hybrid systems, at a high level of abstraction. LoCK enables

lifting properties proved about (trusted) sub-components to the level of a distributed system (see

Sec. 6.7). As for any such abstract language, a benefit of using LoCK is also that it allows reusing

proofs of high-level properties for multiple implementations. As a case study, we verified, among

other things, critical safety properties (e.g., agreement) of several versions of the seminal MinBFT

hybrid protocol [Veronese et al. 2013],
5
and managed to simplify some of the original proofs of

those properties [Veronese 2010] (see Sec. 7). Verifying MinBFT-like protocols is important because:

2
Seminal BFT protocols such as [Castro 2001; Castro and Liskov 1999a,b] are expensive in terms of the messages exchanged,

and the required number of replicas, which in addition have to be diverse enough to enforce independence of failures.

3
Asphalion was one of king Menelaus’ squires, and is associated with trustworthiness.

4
We focus here on the different failure assumptions aspect (crash vs. Byzantine) and leave the different system assumptions

aspect (synchronous vs. asynchronous) for future work.

5
MinBFT [Veronese et al. 2013] is part of the Hyperledger Fabric umbrella [Hyperledger 2019].

2

Asphalion OOPSLA’19, ,

Fig. 1 Overview of Asphalion

(1) MinBFT is part of other protocols, such as [Distler et al. 2016; Kapitza et al. 2012]; (2) many

protocols such as [Behl et al. 2017; Kapitza et al. 2012; Veronese et al. 2010, 2013] rely on the same

kind of trusted components as MinBFT; and (3) to the best of our knowledge MinBFT’s trusted

components (called USIGs) have the smallest trusted computing base (TCB) compared to other

trusted components used in contemporary hybrid protocols.

Contributions. To summarize, our contributions are as follows: (1) We introduce Asphalion, a

generic and extensible Coq-based [Bertot and Casteran 2004; Coq 2019] framework for verifying

implementations of hybrid fault tolerant distributed systems communicating via message passing.

(2) As part of Asphalion, we developed a Hybrid Logic of Events (Sec. 4) to reason about programs

composed of multiple components that can have different failure assumptions (Sec. 5). (3) We

developed LoCK, a sound knowledge calculus to reason about hybrid systems at a high-level of

abstraction (Sec. 6). (4) We proved several reasoning patterns within LoCK, which we used to prove

properties of both homogeneous and hybrid systems. (5) We developed methods to lift properties of
(trusted) sub-components of a local system to the level of that local system (Sec. 5.4), and to further

lift those properties to the level of a distributed system (Sec. 6.7). (6) We implemented the normal

case operation of two versions of the seminal MinBFT protocol: one based on USIGs (as in the

original version) and one based on TrIncs [Levin et al. 2009] (Sec. 7.1). (7) We proved critical safety

properties, such as agreement, of these versions of MinBFT, and simplified some of the original

pen-and-paper proofs (Sec. 7.2). (8) We implemented a runtime environment to execute OCaml

code extracted from Coq, such that trusted components run inside Intel SGX enclaves (Sec. 8).

2 OVERVIEW
Before diving into the details of our framework in Sec. 4, 5, and 6, we provide here a high-level

overview of Asphalion (available at: https://github.com/vrahli/Asphalion/tree/v1.0). In addition, Sec. 3

illustrates how it can be used to verify the correctness of fault-tolerant distributed systems.

2.1 High-Level Architecture of Asphalion
Fig. 1 depicts Asphalion’s architecture, where the yellow parts must be provided by the user, while

the green parts are optional but convenient to use as we explain below. One starts by implementing
a distributed system Sys within MoC, our component-based programming language shallowly

embedded into Coq, where components interact through a monad.
6
A distributed system is a

collection of local sub-systems, which are themselves collections of trusted/non-trusted components.

Fig. 1 depicts a system composed of 4 local sub-systems, each composed of 3 non-trusted blue

components and a trusted one in orange. Then, one provides a specification Spec (e.g. agreement)

for Sys within our model of distributed systems HyLoE—a hybrid logic of events based on Lamport’s

happened before relation [Lamport 1978] (one of the two main models of distributed systems, along

with distributed snapshots [Chandy and Lamport 1985]). Finally, one proves that Sys satisfies Spec
within HyLoE by proving that Spec holds for all possible runs of Sys (see Sec. 4). This can be done:

6
See the file called model/ComponentSM.v in our implementation for a definition of MoC, as well as the two files called

model/ComponentSMExample1.v and model/ComponentSMExample2.v for examples.

3

https://github.com/vrahli/Asphalion/tree/v1.0
https://github.com/vrahli/Asphalion/tree/v1.0/model/ComponentSM.v
https://github.com/vrahli/Asphalion/tree/v1.0/model/ComponentSMExample1.v
https://github.com/vrahli/Asphalion/tree/v1.0/model/ComponentSMExample2.v

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

(1) using the general high-level distributed properties proved within our knowledge calculus LoCK

(as discussed in Sec. 2.2, knowledge calculi provide convenient abstraction layers to reason about

distributed systems without concern for low-level details), and (2) by directly proving the properties

specific to Sys using the automation provided by Asphalion in the form of Coq tactics.

One can then generate executable OCaml code from the distributed system Sys implemented

in MoC, using Coq’s extraction mechanism. In addition, Asphalion provides support to execute

trusted components (the orange C4 components in the case of Sys) within Intel SGX enclaves.
7

Note that MoC implementations are Coq programs that can be as abstract or concrete as one wants.

For example, one could choose to abstract away some data structures using parameters. However,

these data structures ultimately need to be instantiated in order to extract executable OCaml code.

2.2 High-Level Reasoning
Hybrid systems have a particular architecture, whereby generic components rely on (the trust part
of such systems) tamperproof components to correctly provide functionalities (the trustworthy part

of such systems) that are inherited by the rest of the system (such as counting messages in MinBFT).

LoCK, among other things, captures this inheritance mechanism at a high-level of abstraction (i.e.,

the knowledge exchanged between the nodes of a system) through general reasoning principles,

called lifting, which we discuss in Sec. 5.4 (local lifting) and Sec. 6.7 (distributed lifting).

Note that LoCK provides an optional, but convenient, abstract layer to reason about crash/Byzan-

tine/hybrid fault tolerant distributed systems without having to worry about low-level details.

Using such an abstract layer allows reusing results proved once and for all at the abstract knowledge

level, to derive properties of multiple concrete implementations: (1) by adequately instantiating the

parameters of the abstract model (LoCK’s parameters in our case—see Sec. 6.1); and (2) by proving

that the assumptions made within the abstract model are satisfied by the concrete implementations

(see Sec. 6.6 and Sec. 7.2 for examples of such assumptions). The high-level results we present here

(such as the lifting property presented in Sec. 6.7) can be instantiated for many implementations of

hybrid systems. We already used those results to prove the safety of the Micro system discussed in

Sec. 3, as well as two versions of MinBFT that rely on two different trusted components (see Sec. 7).

We chose to rely on a knowledge calculus because such calculi provide a convenient way to

reason about distributed systems at a high-level of abstraction, as it has been demonstrated in

the extensive literature on the subject. Many knowledge based systems have been developed to,

e.g.: analyze distributed systems [Dwork and Moses 1990; Fagin et al. 1997; Halpern 1987; Halpern

and Moses 1990; Panangaden and Taylor 1992]; reason about synchronous systems [Ben-Zvi 2011;

Ben-Zvi and Moses 2014; Castañeda et al. 2014, 2016; Dan et al. 2017; Goren and Moses 2018];

derive protocols [Halpern and Zuck 1992]; synthesize systems [Bickford et al. 2004]; and reason

about blockchain protocols [Halpern and Pass 2017]. However, as opposed to “standard” knowledge

theories that consider an external and logical notion of knowledge (that cannot necessarily be

computed), Asphalion relies on a syntactic and explicit representation of knowledge [Fagin et al.

2003], which is more pragmatic and computational, in the sense that pieces of knowledge are

concrete pieces of data stored locally and exchanged through messages (allowing processes to gain

knowledge [Chandy and Misra 1986; Halpern 1987]).

2.3 Rationale for Designing Asphalion
As it turns out, Asphalion is not an extension of Velisarios, but is inspired by and uses part of

it. Starting from the foundations of Velisarios (its logic of events), we designed an entirely new

7
We explain how to obtain running code such that trusted components are executed inside Intel SGX enclaves, in the file

called MinBFT/runtime w sgx/README.md in our implementation.

4

https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/runtime_w_sgx/README.md

Asphalion OOPSLA’19, ,

framework in order to handle hybrid systems, and reason about such systems in a principled way

(Sec. 8 describes our proof effort). Let us now elaborate on the four main reasons that led us to

design a new framework and not simply extend Velisarios.

(1) Velisarios does not provide full support for compositional programming and reasoning in the

sense that, there, a local system is a single component. To add axioms about trusted components to

it, we would first need the notion of interacting components, which is why we developed MoC

(see Sec. 5). In MoC distributed systems are implemented as collections of local systems, which are

themselves collections of components, some of them being marked as trusted. In addition, MoC

enables lifting properties of trusted components to the level of a local state machine, via deep

embeddings of fragments of MoC (see Sec. 5.4).

(2) Moreover, to capture the behavior of these trusted components, we had to modify Velisarios’s

logic of events, to allow non-trusted components to misbehave, while the trusted ones keep

following their specifications. We captured this by changing the semantics of events (i.e., the trigger
function described in Sec. 4.3) to also handle events where trusted components of compromised

nodes are called (see Sec. 4 for details on events and their semantics in Velisarios and Asphalion).

This led us to developing the HyLoE logic described in Sec. 4.
8

(3) Inspired by Velisarios’s knowledge library, we equipped Asphalion with LoCK, a sound

(hybrid) knowledge sequent calculus, which differs and goes well beyond Velisarios’s library. First

of all, as opposed to Velisarios’s knowledge library (where the knowledge operators are simply

definitions within its logic of events), LoCK provides a more principled theory of knowledge because

designing it forced us to identify the primitive constructs (as constructors of the language) and

principles (as derivation rules) of the theory. Moreover, LoCK enforces an abstraction barrier (being

deeply embedded in Coq), which does not exist in Velisarios’s library. Also, LoCK allows reasoning

at a high-level of abstraction about trusted and non-trusted knowledge, while Velisarios’s library

does not distinguish between trusted and non-trusted knowledge. Other advantages of LoCK that

we plan to explore in the future are that: such a sequent calculus opens the door to some automation;

and while its semantics is currently expressed in terms of HyLoE, other backends could be used.

(4) We developed, within LoCK, a general technique to lift properties of trusted components to

the global level of an entire distributed system. A great advantage of such high-level results is that

they are abstract and can be reused for several implementations. Moreover, the result we proved in

Sec. 6.7 captures a key aspect of the logic of hybrid systems.

2.4 Benefits and Limitations
As hinted at above, in addition to reasoning about hybrid systems,

9
using Asphalion one can

also reason about homogeneous BFT systems by not using trusted components, and about crash

fault tolerant systems by assuming that there are no Byzantine events (see Sec. 4.2). Moreover,

as explained in this paper, and as illustrated in Sec. 3 and 7, Asphalion supports verifying safety

properties of such systems, while providing support for liveness is left for future work. Asphalion’s

support comes in the form of three novel languages. (1) MoC, presented in Sec. 5, is a programming

language shallowly embedded in Coq. In order to automatically derive properties of components,

Asphalion allows defining deep embeddings of sub-languages (for which the desired properties hold)

that are interpreted to MoC expressions. We so far provide two such deep embeddings, which are

prototypical, and which we expect will be reusable for other protocols. In case additional features

that are not supported by these two embeddings are required, one can simply implement additional

deep embeddings following the two examples we provide. (2) HyLoE, presented in Sec. 4, is a logic

8
Note that Asphalion reuses only these logical foundations of Velisarios’s foundations, i.e., part of its logic of events.

9
To the best of our knowledge, Asphalion is the only framework that supports reasoning about hybrid systems.

5

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

of events shallowly embedded in Coq (i.e., one must use Coq’s logic to state and derive properties

from HyLoE’s axioms). Therefore, when specifying and proving properties of distributed systems

in Asphalion, one is constrained by: (a) the expressiveness of HyLoE’s operators, (b) HyLoE’s

axioms, and (c) Coq’s logic. Finally, (3) LoCK, presented in Sec. 6, is a knowledge calculus deeply

embedded in Coq, whose expressiveness is constrained by its inference rules. We leave studying

LoCK’s proof-theoretic strength for future work. LoCK is optional but recommended because: (a) it

allows stating system properties at a high-level of abstraction, without concern for how knowledge

is computed (it is more abstract and less verbose than HyLoE); and (b) it allows reusing those

properties to prove the correctness of multiple protocols.

2.5 Notation
Before illustrating how Asphalion works through a simple example in Sec. 3, let us finish here by

presenting some notation used throughout the paper. The type A→ B is the type of total functions,

of the form λx .b, from A to B. The type A ∗ B is the type of pairs of the form ⟨a, b⟩ of an a ∈ A and

a b ∈ B. We use the standard “let” notation to destruct pairs: let x, y = p in f . We write p.1 and
p.2 for the 1st and 2nd elements of the pair p. B is the Boolean type with constructors true and
false. We often assume an implicit coercion from B to P (the type of propositions). The option(A)
type is the usual option type with constructors None and Some(a), where a ∈ A. The list(A) type is
the usual list type, with constructors []—the empty list—and a :: l, where a ∈ A and l ∈ list(A).

3 RUNNING EXAMPLE
Let us now explain the workflow in Asphalion, by going

through the simple example depicted on the right, which we

refer to as Micro (a simplified version of MinBFT), and which

we use throughout the paper. We start by implementing Micro

within MoC. Next, we specify its agreement property within

HyLoE. Finally, we verify this property primarily using LoCK.

Micro’s implementation in MoC. Micro is composed of three nodes, i.e. three local sub-systems:

a primary called primary, and two backups called backup1 and backup2. More precisely, let the

Micro distributed system be a function that, for every node name a ∈ {primary, backup1, backup2},
returns a local sub-system (a’s code). Each local sub-system is composed of three components (state

machines), namely, a main component called main and two sub-components: a message log called

log; and a trusted message counter, called usig, similar to the one used in MinBFT (Sec. 7.1).

Each node’s main component is in charge of receiving messages; calling the log and usig sub-
components to handle messages appropriately as discussed below; and finally possibly sending

further messages. A message is either of the form: (1) request(r)—sent from clients to the primary;

or (2) commit(r, ui)—sent from the primary to the backups; or (3) accept(r, i)—sent from the

backups to themselves. The log components receive inputs of the form log(c) (to log commits) and

produce outputs of the form logged; while usig components receive inputs of the form createUI(r)
or verifyUI(r, ui) and produce outputs of the form createdUI(ui), goodUI, or badUI.
On every input request(r), the primary (its main component) first calls its trusted usig com-

ponent to assign a unique trusted sequence number i to the request r (i.e., the usig component

increments its local counter and signs r along with the new counter value i using a confidential key).
It then stores the signed request in its log. Finally, it broadcasts commit(r, ⟨i,ϑ ⟩) to both backups,

where ϑ is the usig-generated signature of the pair ⟨r, i⟩. The pair ⟨i,ϑ ⟩ is called a UI as it allows

Uniquely Identifying the request r in a reliable manner (thanks to the signature). Upon receipt of

such a message c = commit(r, ⟨i,ϑ ⟩) from the primary, each backup b (its main component) first

6

Asphalion OOPSLA’19, ,

checks whether c has a valid trusted sequence number i, i.e., the signature ϑ is correct and whether

i = j + 1, where j is the highest sequence number received so far by b from the primary. If c is valid,
then b stores it in its log, and sends a message to acknowledge the fact that c has been accepted.

λs,m.I
©­­«
match m with
| request() ⇒ handleRequest(a, s,m)
| commit(,) ⇒ handleCommit(a, s,m)
| accept(,) ⇒ handleAccept(a, s,m)

ª®®¬
Each main component maintains a state com-

posed of: (1) the service state (a number, such as

the balance of a bank account for example), which is

updated every time a request is executed; and (2) the

highest sequence number received from the primary (this is only used by backups). The initial state

of the main component of each node a is simply the pair ⟨0, 0⟩, and its update function is depicted

above on the right. Given a state s and an input message m, main pattern matches on m, and runs

the appropriate handler. Note the I() operator. Let us explain what it does. As discussed in Sec. 5.4,

the three handlers are expressed in a deep embedding of a simple language, which is more amenable

to automation than our general monadic programming language shallowly embedded in Coq (and

therefore rather unwieldy).
10 I() lifts processes from the deep embedding to the general shallow

embedding. This simple deep embedding provides three constructors, namely: RET() to create a

process out of a Coq term, BIND(,) to compose processes (sometimes written as BIND), and

CALL(,) to call sub-processes.

def handleCommit(a, s, c)
= if ¬validCommit(a, s, c) then RET(s, []) else

CALL(usig, verifyUI(c.val, c.ui)) BIND λo.
match o with
| goodUI⇒

let s′ = update(c, s) in
CALL(log, log(c)) BIND λ .

RET(s′, [accept(c.val, c.ui.counter)])
| ⇒ RET(s, [])

Let us now define handleCommit, which handles com-

mits sent by the primary to the backups—we elude some

details for readability. The other handlers and compo-

nents are defined in a similar fashion, and are therefore

omitted here (see MinBFT/MicroBFT.v for more details). A

commit message c contains a request value and a UI,

which we access using c.val and c.ui, respectively. The
validCommit function checks that: c was sent by the

primary, a is a backup, and a received the counter values less than the one in c.ui (this information

is stored in s). If c is invalid, handleCommit returns RET(s, []), meaning that main’s state remains

the same (i.e., s), and it does not output any message ([] is the empty list). If c is valid,main verifies

the validity of c.ui by calling its usig sub-component using CALL. If c.ui is valid, main updates its

state using update, which computes the highest counter between the one in c.ui (i.e., c.ui.counter)
and the one recorded so far in s. Finally, it logs the commit by calling its log sub-component, and

returns its updated state s′ and an accept message, which is meant to be sent to itself.

Micro’s specification using HyLoE. We then specifyMicro’s agreement property within HyLoE

(our hybrid logic of events shallowly embedded in Coq). It states that if the backups accept two

requests r1 and r2 , both with sequence number i, then r1 = r2 . The formula on the left formally

states this property (we omit some details for readability—see MinBFT/MicroBFTagreement.v for more

details), while the diagram on the right depicts a simple run of Micro:
Lemma micro agreement :

∀(eo : EO)(e1, e2 : Event(eo))(r1, r2 : Request)(i : N).
accept(r1, i) ∈ Micro { e1
→ accept(r2 , i) ∈ Micro { e2
→ r1 = r2

This property is stated directly in Coq (using Coq’s logical constructors), and involves HyLoE

constructs. The type EO is the type of event orderings, which are abstract representations of system

runs (e.g., as depicted on the right above), and which are discussed further in Sec. 4.3. Event(eo)

10
The monad of this general language takes care of threading the sub-components that a local system’s components are

allowed to use/call throughout the execution of that system.

7

https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/MicroBFT.v
https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/MicroBFTagreement.v

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

is the type of events happening within the event ordering eo.11 We simply write Event when the

corresponding event ordering is clear from the context. In micro agreement, the events e1 and e2
are therefore events happening within the event ordering eo, i.e., during the run of the system

captured by eo. Therefore, this property states that in each possible run ofMicro, if it outputs two
messages of the form accept(r1, i) and accept(r2, i) at e1 and e2, respectively, where i is the trusted
sequence number associated with both r1 and r2 , then it must be that r1 = r2 .

HyLoE is essentially the definition of event orderings, along with the axioms that govern them

(see Sec. 4). As discussed in Sec. 5.2, on top of that, Asphalion provides constructs to reason about

the behavior of processes at given events, thereby allowing one to reason about runs of MoC

systems. In particular, it provides three constructs to reason about: (1) the inputs of processes

at given events; (2) the states of processes before and after given events; and (3) the outputs of

processes at given events. For example, in micro agreement, accept(r1, i) ∈ Micro { e1 states
that accept(r1, i) belongs to Micro’s outputs at e1.
As explained in Sec. 4, one feature of HyLoE is that it allows reasoning about the behavior of

trusted components running at compromised nodes. Here, it allows reasoning about usig compo-

nents even if the main and log components have been compromised. In general, to prove a system

property, one has to prove that it holds for all event orderings, even those where events happen at

nodes where only the trusted components are running correctly. As it turns out, micro agreement

holds even for the runs where the primary, except for its usig component, has been compromised.

Micro’s verification using LoCK. One could prove Micro’s agreement property using only HyLoE,

i.e., using only its axioms and properties of the above mentioned constructs to reason about

systems’ inputs, states and outputs. Instead, we recommend to use LoCK for two main reasons.

(1) As mentioned above, one advantage of using LoCK is that it allows one to reuse the results
proved there for several protocols. (2) Moreover, LoCK is a convenient language to reason about

systems because it is more abstract and less verbose than HyLoE, as LoCK expressions do not

mention events and event orderings. Note that even though expressions do not mention events,

sequents do, and LoCK provides a highly convenient way to navigate through events, through what

we call guards (see Sec. 6.4). Let us provide an example. LoCK is a sequent calculus, where a sequent

is of form ⟨G⟩ H ⊢ σ , where G is a list of guards, H is a list of hypotheses, and σ is the conclusion.

In the following sequent (LoCK’s syntax and semantics are presented in See 6.2 and 6.3):

⟨y : e1≺e2 ⟩ x1 : K+(d1) @ e1, x2 : K+(d2) @ e2 ⊢ σ

the expressions K+(d1) (i.e., we know d1) and K+(d2) (i.e., we know d2) are event-free. The x1
hypothesis states that K+(d1) holds at some event e1, and similarly for x2, while the y guard states

that e1 happened before e2. Through guards, one can then conveniently relate the knowledge

available at different points in space/time in a system run (which is captured by the hypothesis list).

Now, back toMicro, we derived micro agreement (see Sec. 6.8 for further details) using Thm. 6.1,

a general abstract lemma proved within LoCK (i.e., using LoCK’s inference rules). As it turns out,

Thm. 6.1 captures part of the logic used by hybrid systems, and can be reused for several such systems

(we show two other examples in this paper: USIG- and TrInc-based versions of MinBFT). Essentially,

Thm. 6.1 allows one to derive that if two nodes know two pieces of information for which the same

trusted sequence number has been generated, then those pieces of information must be the same. It

relies on a number of protocol-dependent assumptions, described in Sec. 6.6, regarding, for example,

the way knowledge gets propagated, and theway trusted sequence numbers aremaintained. Because

we have proved LoCK’s soundness, i.e., its inference rules are valid w.r.t. its HyLoE semantics,

once we have proved a lemma within LoCK, we can immediately extract its HyLoE interpretation.

11
The event ordering depicted on the right above is composed of 5 events: one triggered by the receipt of a request by the

primary; two triggered by the receipt of commits by the backups; and two triggered by the receipt of accepts by the backups.

8

Asphalion OOPSLA’19, ,

Fig. 2 Examples of message sequence diagrams

(a) Correct (kind 1) (b) Byzantine (kind 2a) (c) Hybrid (kind 2b)

We use this to prove micro agreement, which is expressed in HyLoE, i.e., we instantiate Thm. 6.1

appropriately, and compute its HyLoE interpretation. It then remains to prove, within HyLoE, that

the corresponding instances of its protocol-dependent assumptions hold about Micro (see Sec. 5.3

for an example of such an HyLoE proof). One interesting fact about these properties is that they

are not proved by induction, as the inductive reasoning is all done within LoCK. For example, one

of those assumptions, called KLD in Sec. 6.6, is: ∀tλt.K+(t)→ (K−(t) ∨ L(t) ∨ OD(t)). Intuitively,
it states that if we know a trusted piece of information then either (1) we already knew about it; or

(2) we just learned about it; or (3) we came up with this piece of information (and disseminated

it). This is straightforwardly true about Micro because backups get to know about UIs by learning

about them from the primary. As it turns out, the protocol-dependent assumptions that Thm. 6.1

relies on, are all straightforward to prove, allowing us to straightforwardly derive micro agreement.

4 HYLOE: A HYBRID LOGIC OF EVENTS
We now present HyLoE, a new hybrid variant of the Logic of Events (LoE) that was originally

introduced in [Bickford 2009] to reason about crash fault tolerant protocols [Bickford et al. 2012;

Rahli et al. 2017; Schiper et al. 2014], and later used to reason about cyber-physical systems [Anand

and Knepper 2015]. LoE was then extended in [Rahli et al. 2018] to handle BFT systems. We now

extend LoE further to enable reasoning about hybrid fault models and hybrid protocols (which

contain components with different failure assumptions—some can be compromised, while others

can only crash on failure), and explain the main differences with previous versions. First, we start

by introducing basic concepts such as names, messages, etc., which we use to define HyLoE.

4.1 Basic HyLoE Concepts
To model the behavior of a distributed protocol one has to reason about its nodes (also called

processes, locations, or local sub-systems), and the messages they exchange. In order to make our

model as general as possible, these concepts are introduced as parameters of HyLoE, and have to

be instantiated for each implemented protocol. One of HyLoE’s parameters is a type Node of node
names, ranged over by a. Because nodes communicate via message passing, another parameter is

Msg, a type of messages ranged over by msg. The nodes of a system receive messages and produce

directed messages, which are pairs of a message and a list of destinations denoting the locations to

which the message has to be delivered. In Asphalion, nodes are collections of components, some

of which are trusted (i.e., they cannot be compromised—see Sec. 5). We assume that those trusted

components only receive inputs of some abstract type InputTrusted, ranged over by it.

4.2 Accounting for Trusted Components in HyLoE Through Hybrid Events
HyLoE is a logic of events to model hybrid fault tolerant distributed systems. One of the most

fundamental concepts to reason about distributed systems in LoE, is the concept of an event,
which can be seen as a point in space/time [Lamport 1978] at which something happened. In

EventML [Bickford et al. 2012; Rahli et al. 2017; Schiper et al. 2014] events are abstract objects that

only correspond to the handling of a message by a node that follows its specification (kind 1—see

9

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 3 HyLoE parameters

Types: Event (ranged over by e) AuthData (ranged over by auth) Keys (ranged over by ks)

Functions: ≺ ∈ Event→ Event→ P trigger ∈ Event→ TriggerInfo keys ∈ Event→ Keys
loc ∈ Event→ Node pred ∈ Event→ option(Event) nfo2auth ∈ TriggerInfo→ list(AuthData)

Axioms: (1) ≺ is transitive and well-founded (2) Equality on events is decidable

(3) ∀e1, e2 .pred(e1) = Some(e2) → loc(e1) = loc(e2) (4) ∀e1, e2 .pred(e1) = Some(e2) → e2 ≺ e1
(5) ∀e1, e2 .pred(e1) = None→ loc(e1) = loc(e2) → e1 , e2 → e1 ≺ e2
(6) ∀e1, e2 .pred(e1) = pred(e2) → loc(e1) = loc(e2) → e1 = e2
(7) ∀e, e1, e2 .e1 ≺ e2 → loc(e1) = loc(e2) → pred(e2) = Some(e) → e = e1 ∨ e1 ≺ e

Fig. 2a). As opposed to EventML, in Velisarios [Rahli et al. 2018], an event is either of kind 1, or

it corresponds to some arbitrary behavior, in which case no further information regarding this

event is available/provided (kind 2—see Fig. 2b). HyLoE further extends LoE by providing means

to reason about three kinds of events. As in EventML and Velisarios, Asphalion supports events

of kind 1 (see the constructor TImsg below). Furthermore, the kind 2 events of Velisarios, that are

happening at a compromised node, are now split into two categories: (1) those that did not call

a trusted component, and therefore for which no information is available (kind 2a—see Fig. 2b

and TIarbitrary below); and (2) those that called a trusted component (kind 2b—see Fig. 2c and

TItrust below). Correspondingly, we introduce the type (msg and it are introduced in Sec. 4.1):

nfo ∈ TriggerInfo ::= TImsg(msg) | TItrust(it) | TIarbitrary

4.3 Hybrid Event Orderings
To prove a property about a distributed system, one has to reason about all its possible execution
traces. Therefore, we need to provide a model of those traces. As in LoE, we model a run of a

distributed system essentially as a partial order on events. Such an abstract representation of a run

is called an event ordering (event orderings formalize the message sequence diagrams used by system

designers to describe the behavior of systems). Therefore, to prove a property P about a distributed

system, one has to prove that P is true for all event orderings that correspond to this system (among

other things, all possible assignments of TriggerInfos to events have to be considered).
12

Fig. 2 provides examples of message sequence diagrams. Fig. 2a, depicts an event ordering with

three locations l1, l2, l3, where all events are correct and are triggered by messages. Because here the

network is asynchronous, even though l1 sent a message to l2 at event e1 before it sent a message

to l2 at e3, l2 received the first message at e5 after it received the second message at e4. In this

figure, e6 is triggered by the receipt of a message sent by l2 at e5. Instead, in Fig.2b, e6 is a Byzantine
event for which no information is available and at which no trusted component was called; and in

Fig. 2c, e6 is a hybrid event at a Byzantine location and at which a trusted component was called.

Formally, an event ordering eo of type EO is a record (see Fig. 3) that consists of a set of abstract

events Event ordered by a well-founded and transitive causal ordering relation ≺ (see Axiom (1)).13

The function loc returns the location where each event e happens, and trigger explains why it

happened by associating an element of TriggerInfo with e. Events are totally ordered at a given

location: pred(e) returns e’s local direct predecessor, if it exists. As in Velisarios [Rahli et al. 2018,

Sec.3.3], our model relies on an abstract concept of keys (of type Keys) to implement and reason

about authenticated communication. Even though for the purpose of this paper the type AuthData,

12
Note that event orderings are used to model systems and prove properties about them, and cannot be accessed by the

systems themselves, i.e., faulty nodes identified in the model through TriggerInfo, are not identified by programs.

13
Our model is based on Lamport’s happened before relation [Lamport 1978], as opposed to the “global state” seman-

tics [Chandy and Lamport 1985].

10

Asphalion OOPSLA’19, ,

of authenticated pieces of data, is left abstract, let us mention that an authenticated piece of data

(e.g., an authenticated message) can be seen as the pair of a piece of data and an authentication

token (also an abstract entity, that can be instantiated for example with RSA signatures) that

has been generated using keys (that can be instantiated for example with RSA keys). Keys are

associated with nodes as follows: keys(e) returns the keys available at e. Finally, nfo2auth(nfo) lists
all the authenticated pieces of data included in nfo. Axioms (3) to (7) provide an axiomatization

of pred. For example, Axiom (4) says that if e2 is e1’s direct predecessor, then e2 happened before e1;
and Axiom (5) says that if e1 has no direct predecessor and e2 happened at the same location

as e1, then e2 happened after e1 if e2 is not e1 (e1 is the initial event at that location). Thanks to
these axioms, one can see an event ordering as a collection of local traces, where a local trace

is a collection of events happening at the same location and ordered in time (through pred), and
such that some events of different local traces are causally ordered (through ≺). Typically, some

runs/event orderings are not possible and therefore excluded through assumptions in specifications

(e.g., for fault-tolerant systems, we typically exclude event orderings with more than f faulty

nodes).

HyLoENotation. Even though some operators are parameterized by event orderings, we often omit

those for readability. We now define some useful notation. Let first?(e) be true iff pred(e) = None;
let e1 ⊂ e2 be pred(e2) = Some(e1); let pred=(e) be e′ if e′ ⊂ e, and e otherwise; let e1 ⪯ e2 be (e1 ≺
e2 ∨ e1 = e2); let e1 ⊏ e2 be e1 ≺ e2 ∧ loc(e1) = loc(e2); and let e1 ⊑ e2 be e1 ⪯ e2 ∧ loc(e1) = loc(e2).

5 MOC: COMPONENT-BASED PROGRAMMING
Asphalion enables reasoning about distributed systems, where local sub-systems are composed

of multiple components that can have different failure assumptions. Components are referred to

by their names. Let CompName be the set of component names, ranged over by cn. A component

name includes a tag (a Boolean) describing whether the component is trusted (trusted components

are constrained to only react to inputs of type InputTrusted—see Sec. 4.1). Moreover, a component’s

name specifies its behavior: we assume some functions S, I, and O from component names to

types, which enforce that a component named cn must have a state of type S(cn); take inputs of
type I(cn); and produce outputs of type O(cn). Sec. 5.1 introduces components and explains how

they interact through a monad. It then explains how to build local/distributed systems as collections

of components. Sec. 5.2 explains how to relate the execution of systems with event orderings.

Finally, Sec. 5.4 explains how to reason about systems compositionally by lifting properties of

sub-components of a local system to the level of that system.

5.1 Components as State Machines, and Local and Distributed Systems
Components. A component is a named state machine, which essentially consists of an update

function and the current state of the machine. To allow components calling each other, we define

state machines using a state monad [Moggi 1989]. Therefore, instead of traditionally defining

update functions as functions that take an input and a state and return an output and an updated

state, we combine those with a monad (see Mn(T)’s definition below), such that in addition update

functions take components as input and return possibly modified components. Consequently, state

machines can call other state machines through this state monad. Therefore, to avoid a circularity in

the definition of state machines, we use step indexing [Dreyer et al. 2011] to define them, requiring

that machines at level n can only use machines of lower levels. Let Componentn (ranged over

by comp) be the collection of components at level n, which we define recursively over n below. This

definition uses the monad mentioned above, which looks like this (where T is a type):

Mn(T) = list(Componentn) → (list(Componentn) ∗ T)

11

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 4 An execution of a local system

Going back to state machines, a machine at level n + 1 (of type Componentn+1—by definition there

are no level 0 machines) with name cn is either a state machine at level n, or a pair of: (1) an update

function of type Updn(cn) = S(cn) → I(cn) → Mn(S(cn) ∗ O(cn)); and (2) a state of type S(cn).14

Monad operators. The return and bind operators of our (state) monad are defined as usual:

ret(a) = λs.⟨s, a⟩ takes a a ∈ A and outputs aMn(A); andm >>= f = (λs.let s′, a = m(s) in f (a, s′))
takes a m ∈ Mn(A) and a f ∈ A→ Mn(B) and outputs aMn(B). We also introduce a call operator
to call other components from within a component at level n+ 1. It takes a component name cn and

an input i ∈ I(cn) and returns a monadic output of type Mn(O(cn)). It first looks for a component

with name cn within its sub-components subs, provided by the returned monad. If it finds one, say

comp, it then applies comp to the input i and to the subset subs1 of subs containing the components

of levels strictly lower than n (the only sub-components that comp can use because of its level).

This computation produces an output o and a list of updated sub-components subs2. Finally, call
returns the output o, as well as the list of sub-components subs, where subs1 is replaced by subs2.15

Local & Distributed Systems. A local system of type LocalSystem is a pair of a main component

at level n and a list of sub-components at lower levels. We enforce that main components send and

receive messages. A (distributed) system of type System is a function from node names to local

systems, i.e., of type Node→ LocalSystem (see, e.g., the Micro system presented in Sec. 3).

5.2 Relating MoC Systems and HyLoE Events
As mentioned above, to prove a property about a distributed system S, one has to prove that this

property holds for all “possible” event orderings. Therefore, given an event ordering eo, one has
to be able to compute the inputs, outputs, and states of S’s local sub-systems at all events in eo in
order to reason about S’s “trace” provided by eo. Inputs are provided by the trigger function. We

now explain how to compute outputs and states, and provide an example in Sec. 5.3 showing how

to combine these definitions to prove systems’ properties in a compositional manner.

Computing systems’ states. First, ls@−e runs the local system ls by applying its main component

to its sub-components and to the list of events locally preceding e and excluding e (similarly, ls@+e
computes ls’s state after e, by applying ls to the events locally preceding e, including e). It either
(1) returns a local system ls′ if all those events have been triggered by information of the form

TImsg(msg), i.e., non-Byzantine events; or (2) it returns a trusted component in case at least one

of those events was triggered by some information of the form TItrust(it) (in case the trusted

component
16
is called) or TIarbitrary (in case the trusted component is not called), in which case

some Byzantine event happened, and we cannot know what state the rest of the local system is in;

or (3) it is undefined if one of those events is a Byzantine event and ls does not include a trusted
component. For example, Fig. 4 shows the status of the components of a local system (composed

of 3 non-trusted blue components and a trusted orange one) after handling the events caused by:

(1) the receipt of a message; (2) some arbitrary behavior; and (3) a call to the trusted component D.

14
State machines also have the ability to halt on their own. However, we do not discuss this feature here for simplicity.

15
See [Vukotic et al. 2019, Appx.A] for an example of a local system and of how call works.

16
For simplicity, we currently only support systems with at most one trusted component per local sub-system—the typical

case in the literature on hybrid systems. This can easily be extended to systems with multiple trusted components if needed.

12

Asphalion OOPSLA’19, ,

As Fig. 4 illustrates, if one of those preceding events is Byzantine, ls@−e keeps running the trusted

component because it cannot be compromised. However, ls@−e loses track of the rest of the system
since a Byzantine event has occurred, and the non-trusted components could be in any state.

Computing components’ states. We can then access the state of a component named cn of a local

system ls using the operator ls⇂cn. Also, let comp⇂cn be comp if it has name cn, and undefined

otherwise. Therefore, ls@−e⇂cn returns the state of ls’s component called cn before the event e
(if it exists, i.e., if the component is trusted or no Byzantine event has occurred, otherwise the

component could be in any state); and similarly for ls@+e⇂cn. Finally, we can compute the state of

a component cn of a system S before a given event e simply by calling S(loc(e))@−e⇂cn, which we

write as S@−e⇂cn, and similarly for after the event.

Computing systems’ outputs. Let ls { e be the outputs produced by ls’s main component at e,
when all the events preceding e are non-Byzantine (these outputs are obtained by running the

system on ls@−e). In case one of those events is Byzantine, ls { e produces instead the outputs of

the trusted component, which we are keeping track of (as explained above). We write S { e for
S(loc(e)) { e; and d ∈ ls { e to mean that d occurs within the outputs computed by ls { e.

As illustrated in Sec. 5.3, Asphalion allows composing the specifications of components to derive

local and distributed system specifications, which are fully specified in terms of: (1) their states

using S@−e⇂cn and S@+e⇂cn; (2) their inputs using trigger; and (3) their outputs using S { e.

5.3 Example: a Compositional Proof of a Simple Micro Property
Let us provide an example. As defined in Sec. 3,Micro is a distributed system composed of three

local sub-systems, each of which is composed of three components called main, log, and usig. Let
us prove prove that if accept(r, i) ∈ Micro { e, i.e., if a backup accepts a request r with sequence

number i, then r is logged, i.e., it is inMicro@+e⇂log. First, (1) we prove that whenever log is called,

it logs the commit given as input. We prove this about the local system composed of log only (which
does not use any sub-components). Then, (2) from accept(r, i) ∈ Micro { e, we obtain that this

output, as well as Micro@+e, was produced by running Micro on Micro@−e. We then inspect the

code run by Micro, and we see that log, through the use of call, was requested to log a commit

containing r . Finally, (3) we compose this proof in step (2) with the one in step (1), and conclude by

showing thatMicro@+e⇂log is the new state computed in step (1).

5.4 Lifting Through “Deep” Restrictions
We now describe a compositional method to lift properties proved about (trusted) sub-components

of a local system to the level of that system. One advantage of MoC is its expressiveness and

flexibility: because MoC is shallowly embedded in Coq, one can make use of any Coq expression to

define a component’s update function, as long as it has the right type, i.e., Updn(cn). However, this
is sometimes a disadvantage because it entails that we cannot prove many general lemmas about

the behavior of components. For example, nothing prevents components from throwing away their

sub-components, even though components often simply use their sub-components, and return

them updated. This is useful information, which we want to derive easily. A standard technique to

prove such generic results about such “well-behaved” programs is to: (1) define a deep embedding

of these “well-behaved” programs; (2) define an “interpretation” function from the deep embedding

to the shallow one; and (3) prove that the generic properties hold for the deep embedding.

One can define as many deep embeddings as needed. We define here a simple one (which we

used to implement MinBFT) that contains only three operators: return/bind/call.
17

Namely, let

17
See [Vukotic et al. 2019, Appx.B] for another example of such a language that also allows spawning new sub-components.

13

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Proc(A) be the set of terms p of the following form (left), and let I ∈ Proc(A) → Mn(A) (for any
level n) be the following interpretation of this language (right):

RET(a) where a ∈ A
BIND(p1, p2) where p1 ∈ Proc(B) & p2 ∈ B→ Proc(A)
CALL(cn, i) where i ∈ I(cn) & O(cn) = A

I(RET(a)) = ret(a)
I(BIND(m, f)) = I(m) >>= λx .I(f (x))
I(CALL(cn, i)) = call(cn, i)

Then, given a component name cn, a level n (indicating what sub-components cn will be able to

use—it will only be able to use lower-level components), and a “deep” update function u ∈ S(cn) →
I(cn) → Proc(S(cn) ∗ O(cn)), we can build a “shallow” update function of type Updn(cn) using
λs, i.I(u s i). Thanks to this language, we can now prove the preservation lemma mentioned above,

i.e., that when a component is applied to sub-components subs1 then it produces sub-components

subs2 such that subs1 and subs2 only differ by their states (components cannot be thrown away or

spawned and the names and update functions remain the same).

Most importantly, this language allows us to reason compositionally about local and distributed

systems (see Sec. 5.1). For example, we proved the following general result,
18
which we in turn used

to prove that our MinBFT implementations satisfy the Mon property presented in Eq. 4 in Sec. 6.6:
19

Theorem 5.1 (Local Lifting). Given a local system ls, if (1) all its components are built as above
and have different names; and (2) cn is a trusted level 1 component in ls (i.e., it does not call other
components); then for all event e, there must exist a list of inputs l ∈ list(I(cn)) such that the state
ls@+e⇂cn is obtained by running cn on l, starting from the state ls@−e⇂cn.

Remark 1. Trusted components need not be at level 1, but this constraint in Thm. 5.1 is convenient to
obtain a simple lifting theorem. Otherwise, without this constraint, i.e., for higher-level components, this
theorem would be more complicated because it would have to also take into account the sub-components
such higher-level components rely on. More precisely, it would not be enough to run the sub-system ls′

composed of cn and its sub-components subs (the sub-components of ls that cn relies on) because the
execution of ls on an event e might involve other components than those in ls′. Those other components
might also call some of the sub-components in subs. In that case it might not be enough to call ls′ on a
list of inputs to get to ls@+e⇂cn, because in between each call, we might have to also update the states
of the sub-components subs. It is worth noting that all the “standard” trusted components used in the
literature [Chun et al. 2007; Levin et al. 2009; Veronese et al. 2013] are level 1 components. Therefore,
we leave developing local lifting lemmas for higher-level components for future work.

6 LOCK: A HYBRID KNOWLEDGE CALCULUS
In order for a distributed system to achieve some objective as a whole, its nodes typically need

to generate, disseminate, and gather some information. The way they exchange this information

forms the high-level logic of the system. Understanding and being able to reason about this logic is

one of the major difficulties when dealing with distributed systems. Moreover, the same high-level

logic is typically shared by many systems. Therefore, we introduce LoCK: a calculus to reason at a

high-level of abstraction about the knowledge exchanged between the nodes of a distributed system.

Although LoCK is inspired by Velisarios’s knowledge library, one advantage of LoCK is that it

exposes the primitive concepts necessary to reason about knowledge through sound inference

rules,
20
which further opens the door to automation.

21
Moreover, unlike in Velisarios, LoCK enables

18
See the lemma called M byz compose step trusted in the file called model/ComponentSM3.v in our implementation.

19
See ASSUMPTION monotonicity true in MinBFT/MinBFTass mon.v and MinBFT/TrIncass mon.v.

20
We proved the soundness of our inference rules using Coq—see the file called model/CalculusSM.v.

21
Automating proofs within LoCK is left for future work. We have started developing proof tactics that automatically apply

the adequate introduction and elimination rules, in the spirit of Coq’s destruct and intro tactics. In addition, we would like

to develop both simple “brute-force” proof search engines, and decision procedures for fragments of LoCK.

14

https://github.com/vrahli/Asphalion/tree/v1.0/model/ComponentSM3.v
https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/MinBFTass_mon.v
https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/TrIncass_mon.v
https://github.com/vrahli/Asphalion/tree/v1.0/model/CalculusSM.v

Asphalion OOPSLA’19, ,

Fig. 5 LoCK’s parameters

Types: Data (ranged over by d) Identifier (ranged over by i) Trust ⊆ Data (ranged over by t)

Functions: sys ∈ System trustHasId ∈ Trust→ Identifier→ P verify ∈ Event→ AuthData→ B
mem ∈ CompName genFor ∈ Data→ Trust→ P trusted2id ∈ S(trust) → Identifier
trust ∈ CompName know ∈ Data→ S(mem) → P lt ∈ Identifier→ Identifier→ P
owner ∈ Data→ Node auth2data ∈ AuthData→ list(Data) initId ∈ Identifier

Axioms: (1) lt is transitive and anti-reflexive (3) ∀t, d1, d2 .genFor(d1, t) → genFor(d2, t) → d1 = d2
(2) know(d,m) is decidable (4) ¬know(d,m) for all initial states m of sys’s components

(5) all initial identifiers of sys’s trusted components are equal to initId

Fig. 6 LoCK’s syntax

θ ∈ KType ::= KTi | KTn | KTd | KTt υ ∈ KVal ::= i | a | d
τ ∈ KExp ::= ⊤ | ⊥ | τ 1 → τ 2 | τ 1 ∧ τ 2 | τ 1 ∨ τ 2 | ∃ϕ | ∀ϕ | υ1 = υ2 | i1 < i2 | @(a)

| L(d) | D(d) | K+(d) | I+(i) | HI(t, i) | O(d, a) | G(d, t) | � | ⊂τ | ≺τ | ⊏τ
ϕ ∈ (θ ∈ KType) ∗ {υ ∈ KVal | oftype(υ , θ)} → KExp

reasoning about both trusted and non-trusted knowledge. First, Sec. 6.1 introduces the parameters

on which LoCK depends. Sec. 6.2 describes its syntax and Sec. 6.3 its semantics. Sec. 6.4 presents

LoCK’s derivation rules, and their semantics. Finally, Sec. 6.6 and 6.7 show how to derive within

LoCK general results about systems from typical assumptions. We among other things show how

to lift properties about trusted sub-components to the level of distributed systems.

6.1 LoCK’s Parameters
To be as general as possible, LoCK is parametrized by the types and functions described in Fig. 5.

Sec. 7.2 explains how we can instantiate those parameters to derive high-level properties of several

versions of MinBFT. LoCK can be instantiated for any kind of data (Data), trusted data
22
(Trust—a

subset of Data), and identifier (Identifier—a partially ordered set, whose ordering relation is lt).
Identifiers are used to identify trusted pieces of data through the trustHasId relation. In addition,

LoCK is parameterized over the following operators: (1) sys is the distributed system we want to

reason about; (2) mem is the name of sys’s component holding the knowledge, while trust is the
name of its trusted component (these could be straightforwardly generalized to lists of component

names if necessary); (3) each piece of data is tagged by a node (extracted using owner) meant to

be the one that generated the data; (4) verify(e, auth) is true iff the authenticated piece of data

auth can indeed be authenticated at e; (5) genFor captures the fact that trusted pieces of data are

meant to correspond to non-trusted pieces of data, e.g. in MinBFT, a UI essentially corresponds to

a non-trusted request (see Sec. 7.1); (6) know expresses what it means to hold some information;

(7) the trust component is in charge of recording the last trusted identifier it generated, which

is computed using trusted2id, with initial value initId; (8) auth2data extracts the list of pieces of
data contained within an authenticated piece of data. We assume that if some trusted knowledge t
is generated for two different pieces of data d1 and d2, then they must be equal. In addition, we

assume that know is decidable, and that sys’s nodes have no initial memory.

6.2 LoCK’s Syntax
As shown in Fig. 6, besides standard first-order logic operators (⊤, ⊥, ∧, ∨,→, ∃, ∀), LoCK also pro-

vides HyLoE-specific operators to state properties relating different points in space/time: ⊂, ≺, ⊏; to
talk about initial events:�; and to relate space/time coordinates:@. A quantifier of the form ∃ϕ or of

22
A piece of data is trusted if generated by a trusted component (e.g. UIs generated by USIGs in MinBFT—see Sec. 7.1).

15

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 7 LoCK’s semantics (predicate logic)

J⊤Ke = True
J⊥Ke = False

Jτ 1 ∧ τ 2Ke = Jτ 1Ke ∧ Jτ 2Ke
Jτ 1 ∨ τ 2Ke = Jτ 1Ke ∨ Jτ 2Ke
Jτ 1 → τ 2Ke = Jτ 1Ke → Jτ 2Ke

J∃ϕKe = ∃υ ∈ {υ ∈ KVal | oftype(υ , ϕ .1)}.ϕ .2(υ)
J∀ϕKe = ∀υ ∈ {υ ∈ KVal | oftype(υ , ϕ .1)}.ϕ .2(υ)

Fig. 8 LoCK’s semantics (logic of events)

J�Ke = first?(e) = true
J@(a)Ke = loc(e) = a

J⊂τ Ke =
{

Jτ Ke′ , if pred(e) = Some(e′)
False otherwise

J≺τ Ke = ∃e′ ≺ e.Jτ Ke′
J⊏τ Ke = ∃e′ ⊏ e.Jτ Ke′

Fig. 9 LoCK’s semantics (knowledge)

JL(d)Ke = learns(e, d)
JD(d)Ke = d ∈ sys { e
JK+(d)Ke = knows+(e, d)

JI+(i)Ke = ident+(e, i)
Jυ1 = υ2Ke = υ1 = υ2
Ji1 < i2Ke = lt(i1, i2)

JHI(t, i)Ke = trustHasId(t, i)
JO(d, a)Ke = owner(d) = a
JG(d, t)Ke = genFor(d, t)

the form ∀ϕ takes a dependent pair ϕ as argument: (1) a type θ and (2) a function from values of type

θ to expressions. The predicate oftype(υ, θ) is true iff (υ, θ) ∈ {(i, KTi), (d, KTd), (t, KTt), (a, KTn)}.
LoCK also provides general operators to capture properties about distributed knowledge. As

explained in Sec. 2.2, reasoning about distributed knowledge is a well studied topic. However,

as opposed to the papers listed there, we follow here a more computational approach, i.e. one

can always compute the knowledge at a given location. LoCK supports the standard knowledge

knows (K+) operator, which is at the core of several knowledge calculi such as the ones mentioned

above. LoCK also adopts learns (L) and owns (O) operators from Velisarios; and introduces a new

disseminate (D) operator. In addition, LoCK also includes the knows identifier (I+), has identifier
(HI), and generated for (G) operators to state properties about trusted knowledge, which were

not part of any of the systems mentioned above. In order to enable reasoning about any point in

space/time some of our operators come in two flavors, one annotated with a
−
(see below) and the

other with
+
. The ones annotated with

−
are used to state properties about the knowledge of a

system right before handling an event, and are defined below; while the ones annotated with
+
are

used to state properties once events have been handled, and are primitives of the language.

Notation. Let us now define some notation. Let ∃if stand for ∃⟨KTi, f ⟩, and ∃iλi1, . . . , in .τ for

∃iλi. . . . ∃iλin .τ ; and similarly for the other quantifiers. As usual, let ¬τ be τ → ⊥. In addition, let

⪯τ = ≺τ ∨ τ
⊑τ = ⊏τ ∨ τ
⊆τ = ⊂τ ∨ (τ ∧ �)

K−(τ) = ⊂K+(τ)
I−(i) = ⊂I+(i) ∨ (i = initId ∧ �)
i1 ≤ i2 = i1 < i2 ∨ i1 = i2

O(d) = ∃nλa .@(a) ∧ O(d, a)
OD(d) = O(d) ∧ D(d)

These abstractions are interpreted as follows: O(d) means that “we” own the data d, i.e., the node
at which this expression is interpreted owns the data; and OD(d) means that “we” disseminated

the data d, i.e., the node at which this expression is interpreted disseminated the data.

6.3 LoCK’s Semantics
Fig. 7, 8, and 9 describe LoCK’s semantics: Jτ Ke is a proposition expressing that τ is true at event e.
First-order logic and HyLoE operators are interpreted as expected. Let us now describe the semantics

of the other knowledge operators. First, L’s semantics is defined in terms of the learns predicate:

learns(e, d) = ∃auth.auth ∈ nfo2auth(trigger(e)) ∧ d ∈ auth2data(auth) ∧ verify(e, auth)

This states that a node learns d at some event e, if e was triggered by an input that contains the

data d. Moreover, in order to deal with Byzantine faults, we also require that to learn some data

16

Asphalion OOPSLA’19, ,

Fig. 10 Syntax of knowledge calculus rules

x ∈ HypName (a set of hypothesis names) y ∈ GuardName (a set of guard names)

σ ∈ KExpAt ::= τ @ e α ∈ EventRel ::= e1 ≡ e2 | e1⊂e2 | e1≺e2 | e1⪯e2 | e1⊏e2 | e1⊑e2
h ∈ Hyp ::= x : σ H ∈ Hyps ::= ⊘ | H , h
g ∈ Guard ::= y : α G ∈ Guards ::= ⊘ | G, g

seq ∈ Sequent ::= ⟨G⟩ H ⊢ σ R ∈ Rule ::=

Λ[e, t, i] seq1 · · · seqn
seq

one has to be able to verify its authenticity. Then, K+ is interpreted by the knows+ predicate:

knows+(e, d) = ∃m ∈ S(mem).sys@+e⇂mem = m ∧ know(d,m)

where knows+(e, d) states that a node knows d at some event e, if it holds d in its memory m (i.e.

know(d,m) is true), such that its memorym is the state of the componentmem right after e. Finally,
I+ is interpreted by the ident+ predicate:

ident+(e, i) = ∃m ∈ S(trust).sys@+e⇂trust = m ∧ trusted2id(m) = i

This states that the trusted component trust remembers the current trusted identifier i after e.

6.4 LoCK’s Rules
Syntax. Fig. 10 presents the syntax of rules. Expressions are annotated with events allowing

different expressions to be true at different points in space/time in a single sequent/rule. In a sequent

of the form ⟨G⟩ H ⊢ σ , the list of guards G is used to relate the different events mentioned in the

hypotheses H and the conclusion σ . Note that for convenience we use the same symbols for guards

and for the corresponding knowledge expressions (e1≺e2 is a guard, while ≺τ is an expression).
23

For convenience, hypotheses and guards are all named in a sequent, allowing rules to point to them

(expressions do not depend on names). We write H 1,H 2 for the list H 1 appended with the list H 2,

and similarly for guards. A rule R is essentially a pair of a list of sequents (R’s hypotheses) and a

sequent (R’s conclusion). In addition, the hypotheses of a rule can depend on a list of events e, a list
of trusted values t, and a list of trusted identifiers i, allowing rules to introduce new symbols. We

omit the Λ[] part in rules that do not introduce new symbols. We sometime write H [σ], for a list
of hypotheses H that contains an hypothesis of the form x : σ , and similarly for guards. We then

sometimes write H [σ ′] to denote the same list of hypotheses where x : σ is replaced by x : σ ′.

Semantics. Guards, hypotheses, and sequents are interpreted as follows:

Je1□e2K = e1 ◦ e2
Jx : τ @ eK = Jτ Ke

JGK = ∀g ∈ G.JgK
JHK = ∀h ∈ H .JhK J⟨G⟩ H ⊢ σK = JGK→ JHK→ JσK

where (□, ◦) ∈ {(⊏, ⊏), (⊑, ⊑), (≺, ≺), (⪯, ⪯), (⊂, ⊂), (≡,=)}. Note that□ is a guard operator, while ◦

is a HyLoE operator. Finally, a rule R (see Fig. 10) is true if JseqK (R’s conclusion) follows from
Jseq1K ∧ · · · ∧ JseqnK (R’s hypotheses) for all possible instances of e, t, and i.

Primitive Rules. We now provide a sample of LoCK’s derivation rules. Additional rules such

as LoCK’s structural and predicate logic rules are presented in [Vukotic et al. 2019, Appx.C]. As

mentioned above, LoCK is sound in the sense that we have proved that its inference rules are sound

w.r.t. the HyLoE-based semantics introduced above (we skip those proofs here for space reasons).

Fig. 11 presents LoCK’s event relation rules. The family of elimination rules □E allows turning

HyLoE operators into guards, while the families of introduction rules□I and□It allow using those

guards to navigate between points in space/time to prove HyLoE expressions. The two rules if¬�
23
Note also that the collection of guards is not minimal for convenience.

17

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 11 LoCK’s event relation rules

Let □ ∈ {⊏, ≺} and (◁,◀) ∈ {(≺, ⪯), (⊏, ⊑), (⊏, ≺), (⊑, ⪯), (⊂, ⊏), (≡, ⊑)}

Λ[e′] ⟨G, y : e′□e⟩ H [x : τ @ e′] ⊢ σ
⟨G⟩ H [x : □τ @ e] ⊢ σ

□E
⟨G[e′□e]⟩ H ⊢ τ @ e′

⟨G[e′□e]⟩ H ⊢ □τ @ e
□I

⟨G[e′□e]⟩ H ⊢ □τ @ e′

⟨G[e′□e]⟩ H ⊢ □τ @ e
□It

⟨G, y : pred=(e)⊂e⟩ H ⊢ σ
⟨G⟩ H ⊢ ¬� @ e

⟨G⟩ H ⊢ σ
if¬�

⟨G, y : pred=(e) ≡ e⟩ H ⊢ σ
⟨G⟩ H ⊢ � @ e

⟨G⟩ H ⊢ σ
if�

⟨G[e′ ◀ e]⟩ H ⊢ σ
⟨G[e′ ◁ e]o ⟩ H ⊢ σ

weak

⟨G[e1 ≡ e2]⟩ H [τ @ e2] ⊢ σ
⟨G[e1 ≡ e2]⟩ H [τ @ e1] ⊢ σ

subH
⟨G[y : e1 ≡ e2]⟩ H ⊢ τ @ e1
⟨G[y : e1 ≡ e2]⟩ H ⊢ τ @ e2

subC
⟨G, y : e ≡ e⟩ H ⊢ σ
⟨G⟩ H ⊢ σ

≡refl

Fig. 12 LoCK’s logic of events rules

⟨G[e1⊏e2]⟩ H ⊢ ¬� @ e2
¬�

⟨G⟩ H ⊢ � ∨ ¬� @ e
�dec

Λ[e′] ⟨G, y : e′⊑e⟩ H ⊢ � → τ @ e′

⟨G, y : e′⊑e⟩ H ⊢ ⊂τ → τ @ e′

⟨G⟩ H ⊢ τ @ e
ind

⟨G⟩ H ⊢@(a) @ e1
⟨G⟩ H ⊢@(a) @ e2

⟨G, y : e1 ≡ e2 ⟩ H ⊢ σ
⟨G, y : e1⊏e2 ⟩ H ⊢ σ
⟨G, y : e2⊏e1 ⟩ H ⊢ σ

⟨G⟩ H ⊢ σ
tri

Fig. 13 LoCK’s knowledge rules

Let (π , κ , ρ) ∈ {(=, <, <), (<, =, <), (<, <, <), (=, =, =)}.

⟨G⟩ H ⊢ υ2 = υ1 @ e
⟨G⟩ H ⊢ υ1 = υ2 @ e

sym
⟨G⟩ H ⊢ i1 π i @ e ⟨G⟩ H ⊢ i κ i2 @ e

⟨G⟩ H ⊢ i1 ρ i2 @ e
trans

⟨G⟩ H ⊢ K+(d) ∨ ¬K+(d) @ e
Kdec

⟨G⟩ H [i < i] ⊢ σ
irrefl

⟨G⟩ H ⊢ O(d, a1) @ e
⟨G⟩ H ⊢ O(d, a2) @ e

⟨G⟩ H ⊢ a1 = a2 @ e
1owner

⟨G⟩ H ⊢ G(d1, t) @ e
⟨G⟩ H ⊢ G(d2, t) @ e

⟨G⟩ H ⊢ d1 = d2 @ e
1data

⟨G⟩ H ⊢ I+(i1) @ e
⟨G⟩ H ⊢ I+(i2) @ e

⟨G⟩ H ⊢ i1 = i2 @ e
1id

and if� provide an axiomatization of pred=. The weak family of rules allows weakening guards,

e.g., from ≺ to ⪯ (strengthening rules are presented in [Vukotic et al. 2019, Appx.C]). Finally, using

subH and subC one can substitute events in sequents’ hypotheses and conclusions.

Fig. 12 presents LoCK’s HyLoE rules. The ind rule is an induction rule on causal time. It says

that to prove that a property is true at some event e, it is enough to prove that it is true at the

first event prior to e (the base case), and that for any event e′ prior to e, if it is true right before e′,
then it is also true at e′ (the inductive case). The tri rule axiomatizes the HyLoE fact that if two

events e1 and e2 happen at the same location a, then either the events are equal, or one happened

before the other. The ¬� rule states that if some event e1 happened strictly and locally before some

event e2, then e2 cannot be the first event at that location. Finally, �dec states that � is decidable.

Fig. 13 presents LoCK’s knowledge rules. The Kdec rule says thatK+ is decidable. The 1owner
rule states that a given piece of data can only be owned by a single node. The 1data rule states

that trusted pieces of data can only be related to a single piece of data. Finally, the 1id rule states

that one can only know about a single identifier at any point in time.

6.5 Examples of Derivations Within LoCK
Let us now provide a few simple examples to illustrate the expressiveness of our calculus, as well

as the usefulness of some of its features, such as guards.
24

24
We use here some standard rules such as→E (implication elimination); ∨E (or elimination); ∨Il/∨Ir (or introduction

left/right); or hyp (hypothesis rule), which are described in [Vukotic et al. 2019, Appx.C].

18

Asphalion OOPSLA’19, ,

⟨y : e′⊏e⟩ x : τ @ e′ ⊢ ¬� @ e
¬�

⟨⊘⟩ x : ⊏τ @ e ⊢ ¬� @ e
□E

⟨⊘⟩ ⊘ ⊢ ⊏τ → ¬� @ e
→E

Non-initial-events. We start by proving that if τ happened before,

then the current event cannot be the initial event, i.e.: ⊏τ → ¬�
(see derivation on the right).

25
In this first example, we only navigate

between events in the hypothesis x : we use the □E elimination rule

to introduce a guard, that allows navigating from the point in space/time where ⊏τ is true (i.e., e),
to the point where τ is true (i.e., e′) . We conclude using ¬�, which says that a point that has

predecessors cannot be the first event.

⟨y : e′⊏e, y′ : e′′⊏e′⟩ x : τ @ e′′ ⊢ τ @ e′′
hyp

⟨y : e′⊏e, y′ : e′′⊏e′⟩ x : τ @ e′′ ⊢ ⊏τ @ e′
□I

⟨y : e′⊏e, y′ : e′′⊏e′⟩ x : τ @ e′′ ⊢ ⊏τ @ e
□It

⟨y : e′⊏e⟩ x : ⊏τ @ e′ ⊢ ⊏τ @ e
□E

⟨⊘⟩ x : ⊏⊏τ @ e ⊢ ⊏τ @ e
□E

⟨⊘⟩ ⊘ ⊢ ⊏⊏τ → ⊏τ @ e
→E

Collapsing. We now prove another simple, though

slightly more involved, example (see derivation on the

right), where we use guards to navigate through events

in multiple formulas: both in hypothesis x and in the con-

clusion. Namely, we prove: ⊏⊏τ → ⊏τ , which says that

if it happened before that τ happened before, then τ hap-

pened before.
26
We use the □E elimination rule twice to go

from the point where ⊏⊏τ is true (i.e., e), to the point where τ is true (i.e., e′′). We then use the□It

introduction rule to navigate to the e′ intermediary point. Finally, we use the □I introduction rule

to navigate to e′′, while eliminating ⊏ (as opposed to the previous step, which keeps the operator).

Weakening. Our next example illustrates how our weak rules become handy when navigating

between points in space/time. We show here that we can derive ⟨G⟩ H [x : ⊑τ @ e] ⊢ σ from

⟨G, y : e′⊑e⟩ H [x : τ @ e′] ⊢ σ , i.e., we derive ⊑’s elimination rule. We weaken here both ⊏ and ≡,

to ⊑, in order to obtain the same guard in both branches of our derivation:
27

Λ[e′] ⟨G, y : e′⊑e⟩ H [x : τ @ e′] ⊢ σ

Λ[e′] ⟨G, y : e′⊏e⟩ H [x : τ @ e′] ⊢ σ
weak

⟨G⟩ H [x : ⊏τ @ e] ⊢ σ
□E

Λ[e′] ⟨G, y : e′⊑e⟩ H [x : τ @ e′] ⊢ σ

⟨G, y : e⊑e⟩ H [x : τ @ e′] ⊢ σ

⟨G, y : e ≡ e⟩ H [x : τ @ e′] ⊢ σ
weak

⟨G⟩ H [x : τ @ e] ⊢ σ
≡refl

⟨G⟩ H [x : ⊑τ @ e] ⊢ σ
∨E

Predecessor. Next, we prove that if τ was true at pred=(e) (denoted ep below) then it must be

that τ happened before or at e.28 Once again, we use here LoCK’s feature that different expressions
in a sequent can be true at different events: x is true at ep , while the conclusion of the root is

true at e. In the following proof, Π1 is a proof that � is decidable (using �dec); Π2 is a proof of �
(using hyp); and Π3 is a proof of ¬� (using hyp)—those are eluded here for readability:

Π1

⟨y : ep ≡ e⟩ x : τ @ e, o : � @ e ⊢ τ @ e
hyp

⟨y : ep ≡ e⟩ x : τ @ ep , o : � @ e ⊢ τ @ e
subH

Π2

⟨⊘⟩ x : τ @ ep , o : � @ e ⊢ τ @ e
if�

⟨⊘⟩ x : τ @ ep , o : � @ e ⊢ ⊑τ @ e
∨Ir

⟨y : ep⊏e⟩ x : τ @ ep , o : ¬� @ e ⊢ τ @ ep
hyp

⟨y : ep⊏e⟩ x : τ @ ep , o : ¬� @ e ⊢ ⊏τ @ e
□I

⟨y : ep ⊂e⟩ x : τ @ ep , o : ¬� @ e ⊢ ⊏τ @ e
weak

Π3

⟨⊘⟩ x : τ @ ep , o : ¬� @ e ⊢ ⊏τ @ e
if¬�

⟨⊘⟩ x : τ @ ep , o : ¬� @ e ⊢ ⊑τ @ e
∨Il

⟨⊘⟩ x : τ @ ep , o : � ∨ ¬� @ e ⊢ ⊑τ @ e
∨E

⟨⊘⟩ x : τ @ ep ⊢ ⊑τ @ e
cut

Acquired knowledge. Finally, let us present another useful fact that allows getting back to the

point where the knowledge was acquired (because it was locally generated or because it was

25
See DERIVED RULE local before implies not first true in model/CalculusSM derived3.v.

26
See DERIVED RULE twice local before implies once true in model/CalculusSM derived3.v.

27
See DERIVED RULE unlocal before eq hyp true in model/CalculusSM.v.

28
See DERIVED RULE at pred implies local before eq true in model/CalculusSM derived3.v.

19

https://github.com/vrahli/Asphalion/tree/v1.0/model/CalculusSM_derived3.v
https://github.com/vrahli/Asphalion/tree/v1.0/model/CalculusSM_derived3.v
https://github.com/vrahli/Asphalion/tree/v1.0/model/CalculusSM.v
https://github.com/vrahli/Asphalion/tree/v1.0/model/CalculusSM_derived3.v

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

received): if we know some piece of data d, then there was a point e′ in the past, where we did not

know d before e′ but we knew it after e′.29 We state this fact as a derived rule as follows:

⟨G⟩ H ⊢ K+(d) @ e

⟨G⟩ H ⊢ ⊑(K+(d) ∧ ¬K−(d)) @ e (1)

which we prove by induction on causal time using ind. To prove the base case, we first eliminate ⊑
using ∨Ir. The left conjunct follows trivially from our hypothesis, and we prove the right conjunct

using weak and ¬�. The inductive case follows from Kdec, i.e. that knowledge is decidable.

6.6 Typical System Assumptions and Consequences
In order to derive general results about distributed knowledge, such as in Sec. 6.7, let us first present

some typical assumptions about knowledge, which we express here within LoCK (see the file called

model/CalculusSM.v for more details). We illustrate in Sec. 7.2 that those assumptions indeed make

sense, by validating them to, in turn, derive properties about MinBFT from those general results.

Assumptions. We first start by defining those assumptions, and we then explain their meaning:

LID = ∀tλt.L(t) → ≺(OD(t)) (2)

KLD = ∀tλt.K+(t) → (K−(t) ∨ L(t) ∨ OD(t)) (3)

Mon = (∃iλi.I−(i) ∧ I+(i)) ∨ (∃iλi1, i2.i1 < i2 ∧ I−(i1) ∧ I+(i2)) (4)

New = ∀tλt.∀iλi, i1, i2.(OD(t) ∧ I−(i1) ∧ I+(i2)) → (i1 < i ∧ i ≤ i2 ∧ HI(t, i) ∧ ¬HI(t, i1)) (5)

Uniq = ∀tλt1, t2.∀iλi.(OD(t1) ∧ OD(t2) ∧ HI(t1, i) ∧ HI(t2, i)) → t1 = t2 (6)

Through LID, we get to assume that if one learns some trusted data, it must be that it was dissem-

inated by the corresponding trusted component that owns the data. Moreover, as stated by KLD,
typically if we know some trusted information, then we either knew it before, or we just learned it,

or we just disseminated it. Also, a typical property of trusted components is Mon, which says that

the identifiers maintained by those components monotonically increase, i.e., either the recorded

identifier stays the same (left disjunct), or it increases (right disjunct). In addition, as stated by New,
if a trusted component is in charge of generating trusted identifiers, such an identifier i must be

between the one recorded before and the one recorded after it generated i. Finally, trusted pieces of
data disseminated by a trusted component at a given point in time are typically unique (Uniq).

Provenance of knowledge. From KLD (Eq. 3) and using LoCK’s induction on causal time rule (ind),
we can derive:

30 K+(t)→ ⊑L(t) ∨ ⊑OD(t). Then, using LID (Eq. 2), and using a similar collapsing
result as the one presented in Sec. 6.5 above (to collapse ⊑≺ into ⪯ here), we can further derive:

31

K+(t) → ⪯(OD(t)) (7)

Uniqueness over time. Uniq can be generalized to trusted pieces of data generated at any point in

space/time by a trusted component. Namely, we can derive the following rule within LoCK:
32

Λ[e′] ⟨G⟩ H ⊢ Mon ∧ New ∧ Uniq @ e′
⟨G⟩ H ⊢ OD(t1) ∧ HI(t1, i) ∧ @(a) @ e1
⟨G⟩ H ⊢ OD(t2) ∧ HI(t2, i) ∧ @(a) @ e2

⟨G⟩ H ⊢ t1 = t2 @ e (8)

This derived rule is critical to prove Thm. 6.1 in Sec. 6.7. It says that if two trusted pieces of data

t1 and t2 are disseminated at e1 and e2, respectively, such that they have the same identifier and

that e1 and e2 happened at the same location a, then t1 must be equal to t2. We can derive this

29
See the lemma called DERIVED RULE knowledge acquired true in the filed called model/CalculusSM.v.

30
See the lemma called DERIVED RULE trusted KLD implies or true in the file called model/CalculusSM.v.

31
See the lemma called DERIVED RULE trusted KLD implies gen true in the file called model/CalculusSM.v.

32
See the lemma called DERIVED RULE trusted disseminate unique ex true in the file called model/CalculusSM.v.

20

https://github.com/vrahli/Asphalion/tree/v1.0/model/CalculusSM.v
https://github.com/vrahli/Asphalion/tree/v1.0/model/CalculusSM.v
https://github.com/vrahli/Asphalion/tree/v1.0/model/CalculusSM.v
https://github.com/vrahli/Asphalion/tree/v1.0/model/CalculusSM.v
https://github.com/vrahli/Asphalion/tree/v1.0/model/CalculusSM.v

Asphalion OOPSLA’19, ,

result using LoCK’s trichotomy rule tri. If e1 = e2 then we conclude using Uniq. If e1 happened
locally before e2 (and similarly if e2 happened before e1) then from Mon, and using LoCK’s induction
on causal time rule ind, we derive that the identifier i1 recorded after e1 must be less than or equal

to the one, say i2, recorded before e2. Moreover, from New, we derive that i is less than or equal

to i1 and i2 is strictly less than i. Finally, we conclude using the trans and irrefl derivation rules.

6.7 Distributed Lifting
Theorem 6.1 (Distributed Lifting). Using the above mentioned rules and assumptions, we

derived the following rule within LoCK:33

Λ[e′] ⟨G⟩ H ⊢ LID ∧ KLD ∧ Mon ∧ New ∧ Uniq @ e′

⟨G⟩ H ⊢ K+(t1) ∧ O(t1, a) ∧ G(d1, t1) ∧ HI(t1, i) @ e1
⟨G⟩ H ⊢ K+(t2) ∧ O(t2, a) ∧ G(d2, t2) ∧ HI(t2, i) @ e2

⟨G⟩ H ⊢ d1 = d2 @ e

This derived rule allows lifting properties of trusted sub-components to the level of a distributed

system. It states that if all assumptions presented in Sec. 6.6 are satisfied at all events; and at event e1
some node knows some trusted information t1, owned by a, with identifier i, and generated from

some data d1; and similarly at e2 some node knows some trusted information t2, also owned by a
and with identifier i, and generated from d2; then the two pieces of data d1 and d2 must be equal.

This is the crux of proving the safety properties of MinBFT’s normal case operation (see Sec. 7.2).

Proof Sketch 1. We derive here Thm. 6.1 essentially from the “derived knowledge” formula 7 and
the “uniqueness” derived rule 8 presented above. FromK+(t1) (at e1) andK+(t2) (at e2), we can derive
using Eq. 7 that there must be two previous events e′

1
and e′

2
such that t1 was disseminated at e′

1
and t2

was disseminated at e′
2
(by their rightful owners). Because a owns both t1 and t2 then it must be that e′

1

and e′
2
happened at the same location. We can then derive that t1 = t2 from the derived rule 8. Finally,

we derive that d1 = d2 using LoCK’s 1data inference rule.

6.8 Example: Micro’s Agreement
As mentioned above, we used Thm. 6.1 to prove the agreement property of the Micro system

defined in Sec. 3 (as well as of the MinBFT variants discussed in Sec. 7). For that we first need

to instantiate LoCK’s parameters (we only discuss some of the most interesting parameters—

see MinBFT/MicroBFTkn.v for more details). We instantiate Data by the union type that contains

commit messages, accept messages, and UIs, i.e., all pieces of data that mention a counter; Identifier
is instantiated byN; and Trust is the type of UIs as generated by usig components. The sys parameter

is instantiated by Micro; mem is instantiated by log; trust is instantiated by usig; trustHasId(ui, i)
is true if i is the counter contained in ui; know(d,m) is true if d occurs in the list of commits m
maintained by log; verify(e, auth) returns true iff the usig component running at e can indeed verify

auth; trusted2id returns the counter maintained by the usig component; lt is <; and initId is 0.

Getting back to Micro’s agreement property: we have to prove that if the backups accept two

requests r1 and r2 both with trusted counter value i (generated by the primary), then those requests

must be equal. See Sec. 3 for a formal statement of this property. From the facts that the two

requests r1 and r2 were accepted at e1 and e2, respectively, we derive that those requests must have

been known at these two points. More precisely, because as explained in Sec. 5.3, the commits

corresponding to those two requests must be logged, then there must exist two pieces of trusted

data (two UIs) ui1 and ui2 , such that JK+(ui1)Ke1 , JK+(ui2)Ke2 , ui1 corresponds to the piece of data

⟨r1, i⟩, i.e. JG(⟨r1, i⟩, ui1)Ke1 , and ui2 corresponds to the piece of data ⟨r2, i⟩, i.e. JG(⟨r2, i⟩, ui2)Ke2 .
33
See the lemma called DERIVED RULE trusted knowledge unique3 ex true in the file called model/CalculusSM.v.

21

https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/MicroBFTkn.v
https://github.com/vrahli/Asphalion/tree/v1.0/model/CalculusSM.v

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Moreover, both ui1 and ui2 have trusted counter i, i.e. JHI(ui1, i)Ke1 and JHI(ui2, i)Ke2 , and both

were generated (are owned) by the primary, i.e. JO(ui1, primary)Ke1 and JO(ui2, primary)Ke2 . We

are now ready to use Thm. 6.1. To use this LoCK theorem in our HyLoE proof, we use the fact that it

is true w.r.t. its HyLoE semantics described in Sec. 6.3. Namely, we derive J⟨r1, i⟩ = ⟨r2, i⟩Ke (for any
event e) from the fact that JLIDKe′ , JKLDKe′ , JMonKe′ , JNewKe′ , and JUniqKe′ are true at all events e′.
These assumptions are straightforwardly true about Micro, and are proved within HyLoE directly.

Finally, because J⟨r1, i⟩ = ⟨r2, i⟩Ke , i.e., ⟨r1, i⟩ = ⟨r2, i⟩, we conclude that r1 = r2 . High-level results
such as Thm. 6.1 allow us to capture the logic of distributed systems at a high-level of abstraction,

leaving proving simple protocol-dependent properties directly within HyLoE.
34

7 CASE STUDIES: USIG- AND TRINC-BASED MINBFT
We exercised Asphalion by implementing and verifying two versions of the seminal MinBFT hybrid

protocol [Veronese et al. 2013]: one based on USIGs (as in the original version), and one based on

TrIncs [Levin et al. 2009]. As discussed below, USIGs and TrIncs have different pros and cons that

make them both interesting to use and verify. We proved the agreement property of both versions

using Thm. 6.1, which we proved within LoCK (see Sec. 6.7). Because other hybrid protocols rely

on trusted components that are similar to USIGs and TrIncs, we believe that our methodology can

also be used to verify the correctness of other hybrid protocols such as [Behl et al. 2017; Chun et al.

2007; Kapitza et al. 2012]. We now present MinBFT (see [Veronese 2010; Veronese et al. 2013] for

further details), starting with a description of the trusted components our implementations rely on.

7.1 MinBFT Recap

var coun te r = 0 ; var i d ; var keys ;

function c r e a t eU I (msg) : UI {
coun te r ++ ;
H: = hash (msg , id , counter , keys) ;
return ⟨ id , counter ,H⟩ ; }

function v e r i f yU I (msg , UI) : boo l {
H: = hash (msg , UI . id , UI . counter , keys) ;
return (UI . d i g e s t == H) ; }

USIG. To achieve safety with only 2f +1 replicas, every
MinBFT replica runs a local service called USIG (Unique

Sequential Identifier Generator). Its purpose is to securely

count messages so that replicas can know whether they

have missed messages. Every sent message is supposed

to be tagged with a USIG-generated certificate called UI

(Unique Identifier). A UI is a triple of: an id (the replica’s

unique id), a counter value, and a signed hash (of the

message/id/counter triple). USIGs provide only two simple operations: to generate and verify UIs

(see pseudo-code above). Counter values produced by USIGs are monotonic (and without gaps)

and therefore uniquely identify messages. This is guaranteed even when replicas are compromised

because by definition USIGs execute inside trusted-trustworthy components, i.e., in tamperproof

environments. To the best of our knowledge USIGs have the smallest TCB compared to other

trusted components used in contemporary hybrid protocols, such as TrIncs discussed next.

TrInc. In [Levin et al. 2009], the authors introduced a new kind of trusted components called

Trusted Incrementer (TrInc for short). TrInc is more general than USIG in the sense that it maintains

multiple counters (one can dynamically add new counters through TrInc’s interface), and that

counters can have gaps: given a counter k , k’s next value is provided by the client of the TrInc and

has to be greater than the current value (see [Levin et al. 2009] for uses of these features). This is to

contrast with a USIG, which increments its counter by one on each createUI call. Note that the fact
that counters do not have gaps does not need to be enforced by the trusted components, which is

made explicit when using TrInc instead of USIG. TrInc’s flexibility comes at the price of slightly

more complex trusted components. However, this flexibility makes TrInc compelling and led BFT

implementations such as Hybster [Behl et al. 2017] to be based on TrInc instead of USIG.

34
As discussed in [Vukotic et al. 2019, Appx.D], we have also proved the crux ofMicro’s validity property within LoCK.

22

Asphalion OOPSLA’19, ,

MinBFT. MinBFTworks in a succession of configurations called

views. In each view v , the distinguished replica p = v mod n (n
is the total number of replicas), called the primary, is in charge

of ordering client requests by assigning sequence numbers (the

counter values generated by its USIG) to them. As long as the primary is not suspected to be faulty,

MinBFT executes its normal case operation (see above diagram); and switches to a view-change
operation otherwise.

35
We focus here on the normal case operation, which works as follows:

1. To execute an operation op with timestamp seq, client c sends a message ⟨REQUEST, c, seq,op⟩σc
to all replicas and waits for f + 1 matching replies from different replicas.

2.When the primary p receives a requestm, it calls its USIG to generate a new identifier uii and
sends ⟨PREPARE,v,m,uii ⟩ to all other replicas (v is the current view).

3.Upon receipt of ⟨PREPARE,v,m,uii ⟩, replica j calls its USIG to verifyuii , generates a new identifier

ui j , and sends ⟨COMMIT,v,m,uii ,ui j ⟩ to all other replicas.

4. If replica k receives f + 1 valid ⟨COMMIT,v,m,uii ,ui j ⟩ messages (i.e., the UIs are valid) from

different replicas, it executes the requestm, and sends the result res of this execution in a reply

⟨REPLY,k, seq, res⟩σk to the client. In addition, upon receipt of a new commit, k calls its USIG to

generate a new identifier uik and sends ⟨COMMIT,v,m,uii ,uik ⟩ to all others.

In all these steps, a replica i handles a message only if: (1) the message is signed properly in case

of requests; (2) the message comes from the current primary in case of prepares; (3) the view number

is the current one; and (4) upon receipt of a UI from a replica j , replica i has already received all the

UIs from j with lower counter values.

7.2 Implementation and Verification of MinBFT
Let us now describe how we used Asphalion to implement the two variants of MinBFT mentioned

above using MoC, and verify their correctness using HyLoE and LoCK. We focus on the USIG-based

version, and only mention the TrInc-based one when the two versions differ.

MinBFT system. In our MoC implementation of MinBFT (see MinBFT/MinBFT.v for more details),

a replica is a local system called MinBFTlocalSys. Each local system is composed of: (1) a main

component (called MAINcomp), which among other things maintains the replicated service; (2) a

USIG component (called USIGcomp—the only trusted component) as described in Sec. 7.1; and (3) a

log component (called LOGcomp) that stores all sent and received messages. Finally, the distributed

system MinBFTsys is the function mapping each replica name to MinBFTlocalSys.

MinBFT knowledge. To verify properties about MinBFT using LoCK, we had to instantiate the

parameters presented in Fig. 5.
36
We only discuss here some of the most interesting parameters. We

instantiate Data with a type that contains both UIs and triples of the form view/request/UI, which

is the canonical information contained in most messages. Trust is instantiated with the type of UIs,

and Identifier is instantiated with the type of counters. The component name mem is instantiated

with LOGcomp; while trust is instantiated with USIGcomp. The predicate know is instantiated by

a predicate that states that the data is stored in the log. Finally sys is instantiated with MinBFTsys.

As opposed to the USIG-based version, to reason about the TrInc-based version, we have instan-

tiated Identifier with the type of counter value lists, because TrInc maintains multiples counters.

We then say that a UI ui, with counter id i and counter value c, has identifier l (a list of counter
values) if the counter value in l corresponding to i is c (the other counters can have any values).

35
MinBFT provides a garbage collection process to discard messages so as not to exhaust the memory; and a view-change

process to ensure liveness. Those are outside the scope of this paper, and are left as future work, because the normal phase

operation provides the necessary and sufficient context to address the challenges of reasoning about hybrid systems.

36
See the files called MinBFT/MinBFTkn0.v, MinBFT/MinBFTkn.v and MinBFT/TrInckn.v in our implementation.

23

https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/MinBFT.v
https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/MinBFTkn0.v
https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/MinBFTkn.v
https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/TrInckn.v

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Verified properties. Using Asphalion we proved the following Coq lemma, which is critical to

prove the safety of MinBFT’s normal case operation (the→ direction is the agreement property):
37

Lemma agreement iff : ∀ (eo : EventOrdering) (e1 e2 : Event) (r1 r2 : Request) (i1 i2 : nat) (l1 l2 : list name),

AXIOM auth messages were sent or byz eo MinBFTsys

→ ((send accept r1 i1 l1) ∈ MinBFTsys { e1)→ ((send accept r2 i2 l2) ∈ MinBFTsys { e2)→ (i1 = i2↔ r1 = r2).

The AXIOM auth messages were sent or byz axiom is discussed below. This lemma states that

if a correct replica executes a client request r with counter value i1 (which triggers the sending of

an accept message), then no other correct replica will execute the same request with a different

counter value i2 , i1; and two correct replicas cannot execute two different requests with the same

counter value (all the other replicas could well be faulty). As mentioned above, this lemma is a

straightforward consequence of the general Thm. 6.1 proved within LoCK and presented in Sec. 6.7.

Knowledge assumptions. Because Thm. 6.1 relies on some assumptions (see Sec. 6.6), we had

to prove that those are indeed true about our MinBFT implementations. KLD is a straightforward
consequence of the way MinBFT accumulates knowledge by logging messages: a message is logged

if it is generated or received. We proved Mon using the local lifting Thm. 5.1, described in Sec. 5.4.

It is true because USIGs (and TrIncs) indeed maintain monotonic counters. New and Uniq are

straightforwardly true because USIGs always increment their counters before generating a new

UI. LID differs from the others because it is not a direct consequence of MinBFT’s behavior, but

follows from our generic AXIOM auth messages were sent or byz HyLoE assumption, which is

a constraint on event orderings that rules out impossible message transmissions. It states that if a

node receives a valid piece of data d (in the sense that its authenticity has been checked), then either

(1) a correct node sent d following the protocol; or (2) some arbitrary event happened, for which

no information is available, and some node sent d either authenticating it itself or impersonating

some other node; or (3) some arbitrary event happened at which a trusted component generated d.

7.3 Differences from the Original Proof
As it turns out, our proof of agreement iff is significantly simpler than the original pen-and-paper

proof [Veronese 2010, pp.151–153]. The original proof of the← direction, which we claim here

to be unnecessarily convoluted, goes as follows: given that two quorums of f + 1 replicas each
have committed (r,i1) and (r,i2), respectively, there must be a replica at the intersection of the two

quorums that has committed both i1 and i2 (since there are 2f + 1 replicas in total). Then, their

proof goes by cases on whether or not that replica and the primary are correct, leading to four

cases. However, this replica at the intersection of the two quorums is not required because if a

replica has executed a request, it must have received at least one prepare/commit for this request

containing a UI created by the primary’s USIG. Therefore, we can deduce that the primary’s USIG

must have created UIs for the two counters corresponding to the two quorums mentioned above.

We can then trace back these two counters to the time the primary’s USIG generated UIs for them,

and conclude using monotonicity. Note that we do not need to go by cases on whether replicas are

correct or not because trusted components of hybrid systems (USIGs here) cannot be tampered

with, and the above reasoning rely solely on properties that the system inherits from the trusted

components. Thanks to Asphalion’s operators, such as ls { e described in Sec. 5.2, we can always

reliably access these trusted components because they cannot be compromised and because in the

context of such safety proofs, they must have been running at the time they outputted values (i.e.,

at the time they created UIs in the case of USIGs). As a matter of fact, agreement iff holds even if

the primary, except for its USIG, has been compromised.

37
See the the files called MinBFT/MinBFTagreement iff.v and MinBFT/TrIncagreement iff.v.

24

https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/MinBFTagreement_iff.v
https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/TrIncagreement_iff.v

Asphalion OOPSLA’19, ,

8 EVALUATION
Extraction. We use Coq’s extraction mechanism to obtain executable OCaml code from our

distributed systems implemented in MoC (see Sec. 5.1). However, because we want to run the

different components of a local system separately (i.e. execute the trusted ones within trusted

environments such as Intel SGX), the monad structure is “erased” during extraction.
38
Instead, a

separate module is created for each component, and calls to sub-components are extracted to calls

to those modules. In addition, the functional states of MoC components are turned into imperative

ones within those modules.
39
Running the sub-components of a local system separately enables

executing the trusted ones within trusted environments, in our case Intel SGX enclaves.

Trusted execution. We use Graphene-SGX [Tsai et al. 2017], a library for running unmodified ap-

plications inside Intel SGX enclaves, to execute MinBFT’s trusted USIG components inside enclaves

(see MinBFT/runtime w sgx/README.md or [Vukotic et al. 2019, Appx.G] for details). Because Graphene-

SGX’s driver closes enclaves after each call, and because only part of the extracted code is meant

to run inside enclaves, our SGX-based runtime environment uses a TCP interface for replicas to

interact with USIGs running in Graphene-SGX enclaves. Also, because to the best of our knowledge,

at the time of writing, Intel SGX only supports C applications, our SGX-based runtime environment

includes C wrappers around the OCaml code of the USIG components, and OCaml wrappers around

the TCP interface implemented in C (these wrappers use [OCaml2C 2019]). Note that to support

calling the interfaces of trusted components through the above mentioned TCP interface, one

has to write custom serializers/deserializers (see for example MinBFT/runtime w sgx/tcp client.c and

MinBFT/runtime w sgx/tcp server.c). We leave it for future work to generate those automatically.

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000 100000

av
er

ag
e

re
sp

on
se

 ti
m

e
in

 m
s

timestamp/instance

verif. PBFT f=3
verif. PBFT f=2
verif. PBFT f=1

verif. MinBFT f=3
verif. MinBFT f=2
verif. MinBFT f=1

Comparison. As shown on the right, the average la-

tency of our USIG-based implementation is lower than

the one of the verified version of PBFT presented in [Rahli

et al. 2018]. Although Graphine-SGX incurs some over-

head, our MinBFT implementation is faster because:

(1) MinBFT uses less communication steps than PBFT;

and (2) our MinBFT implementation uses less expensive

crypto than in [Rahli et al. 2018]. Our experiments use

one client, f ∈ {1, 2, 3}, and the replicated service is a state machine that accumulates inputs using

addition. We used a desktop with 16GB of RAM, and 8 i7-6700 cores running at 3.40GHz.

Trusted Computing Base. The TCB of our system is composed of: (1) the fact that our HyLoE

model faithfully reflects the behavior of hybrid systems (see Sec. 4); (2) the validity of the assumption

described in Sec. 7.2; (3) Coq’s logic and implementation; (4) our runtime environment implemented

in OCaml (Sec. 8); (5) and the hardware and software on which our framework is running.

Proof Effort. Our model is about 13.8K lines of spec. and 11.9K lines of proofs, while our MinBFT

proofs are about 7.9K lines of spec. and 4.7K lines of proofs (excluding the code we reused from

Velisarios). Developing Asphalion and partially verifying MinBFT took us about one person-year.

9 RELATEDWORK
Several logics, models and tools have been developed over the years to reason about distributed

systems (see Fig. 14). However, to the best of our knowledge, Asphalion is the first theorem prover

based framework for verifying the correctness of implementations of hybrid fault-tolerant protocols.

38
The monad erasure we perform is very simple and standard (see MinBFT/runtime w sgx/MinBFTinstance.v).

39
Verifying the correctness of this “compilation” phase is left for future work.

25

https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/runtime_w_sgx/README.md
https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/runtime_w_sgx/tcp_client.c
https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/runtime_w_sgx/tcp_server.c
https://github.com/vrahli/Asphalion/tree/v1.0/MinBFT/runtime_w_sgx/MinBFTinstance.v

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 14 Comparison with related work

Running code Byz. (synch.) Byz. (asynch.) Hybrid

ConsL/DISEL/EventML/IronFleet/Ivy/ModP/PSync/Verdi ✓ ✗ ✗ ✗
PVS ✗ ✓ ✗ ✗
HO-model/ByMC/IOA/TLA

+ ✗ ✓ ✓ ✗
Event-B ✓/✗ ✓ ✗ ✗
Velisarios ✓ ✓ ✓ ✗
Asphalion ✓ ✓ ✓ ✓

9.1 Logics and Models

Event-B [Abrial 2010; Abrial et al. 2010] is a set-theory-based language for modeling reactive

systems and for refining high-level abstract specifications into low-level ones. It supports code

generation [Fürst et al. 2014; Méry and Singh 2011] (not all features are covered), and has been

used in a number of projects [Krenický and Ulbrich 2010; Lynch 1996], e.g., to prove the agreement

and validity of synchronous Byzantine agreement algorithms [Krenický and Ulbrich 2010].

The Heard-Of (HO) model [Biely et al. 2007; Charron-Bost and Schiper 2009] requires protocols

to be divided into rounds, allowing processes to execute in lock-step. It was implemented in

Isabelle/HOL [Charron-Bost et al. 2011] and used to verify the EIGByz [Bar-Noy et al. 1992]

Byzantine agreement algorithm for synchronous systems. Model checking and the HO-model have

also been used in [Chaouch-Saad et al. 2009; Tsuchiya and Schiper 2007, 2008] to verify crash

fault-tolerant consensus algorithms [Charron-Bost and Schiper 2009].

IOA [Garland et al. 2004; Garland and Lynch 2000; Georgiou et al. 2009; Tauber 2004] is a pro-

gramming/specification language for describing asynchronous distributed systems as I/O au-

tomata [Lynch and Tuttle 1987] and for stating their properties.

TLA+ [Chaudhuri et al. 2010; Lamport 1994, 2004] is a language for specifying and reasoning about

systems, that combines a temporal logic for describing systems, and set theory to specify data

structures. It has been used in a large number of projects [Bolosky et al. 2007; Chand et al. 2016;

Joshi et al. 2003; Lu et al. 2011; Newcombe et al. 2015], including to prove Multi-Paxos’ safety and

liveness [Chand et al. 2016], and the safety of a variant of an abstract model of PBFT [BPaxos 2018].

9.2 Tools

ByMC [Konnov et al. 2015, 2017a,b; Lazic et al. 2017] is a model checker for verifying the safety

and liveness of BFT algorithms, which can automatically check parametrized threshold-guarded

algorithms (e.g., where nodes wait for messages from a majority of senders). It relies on a short

counterexample property, which says that if a distributed algorithm violates a temporal specification

then there is a parameter independent counterexample of bounded length.

ConsL [Maric et al. 2017] is a language for expressing crash-fault tolerant consensus algorithms,

whose semantics is expressed in HO, and that connects to the Spin model checker [Holzmann 2004].

As for ByMC, it relies on guards. The authors proved cutoff bounds that reduce the parameterized

verification of consensus algorithms to a guard-depending number of processes.

DISEL [Sergey et al. 2018] is a framework for modular verification of implementations of crash fault

tolerant systems. It provides a programming language shallowly embedded in Coq, and a separation-

style program logic. It introduces two techniques enabling modular verification: the WITHINV rule

to strengthen assumptions, and send-hooks to allow logical access between components.

EventML [Bickford et al. 2012; Rahli et al. 2015, 2017] is a domain specific language implemented

on top of the Nuprl prover [Constable et al. 1986]. It provides expressive and modular combinators

26

Asphalion OOPSLA’19, ,

for implementing and reasoning about crash-fault tolerant distributed systems (e.g., the authors

proved Multi-Paxos’ safety [Rahli et al. 2012; Schiper et al. 2012, 2014]).

IronFleet [Hawblitzel et al. 2015, 2017] uses a combination of Dafny, Hoare logic and TLA to

automatically verify the safety and liveness of distributed protocols. The authors proved the safety

and liveness of a Paxos-based replication protocol, as well as a distributed key value store.

Ivy [Padon et al. 2016] initially supported debugging infinite-state systems using bounded ver-

ification, and verifying their safety by gradually building inductive invariants. Their decidable
decomposition notion [Taube et al. 2018] (i.e., systems, models and proofs must be built modularly

to enable the use of different decidable logics) allowed Ivy to automatically verify the correctness

of implementations of crash-fault tolerant systems such as Raft and Paxos (as opposed to models

in [Padon et al. 2017]). Ivy also supports liveness by reducing it to safety [Padon et al. 2018].

ModP [Desai et al. 2018] is a programming framework to build, specify and compositionally test

dynamic, asynchronous distributed systems. The authors used it to modularly implement and

validate (through testing) two fault-tolerant distributed systems (including Multi-Paxos).

PSync [Dragoi et al. 2016] is an HO-based domain specific language embedded in Scala, that enables

executing and verifying synchronous and partially asynchronous crash fault-tolerant distributed

algorithms. It relies on the multi-sorted first-order Consensus verification logic (CL) [Dragoi et al.
2014]. To prove safety, users have to provide invariants, which CL checks for validity.

PVS was extensively used to verify synchronous systems that tolerate malicious faults [Schmid

et al. 2002], to the extent that these verification efforts influenced its design [Owre et al. 1995].

Velisarios [Rahli et al. 2018] is a Coq-based framework for verifying the correctness of homoge-

neous BFT systems. It provides a knowledge library to reason about systems at a high-level of

abstraction. Using Velisarios, the authors verified PBFT’s agreement property [Castro 2001].

Verdi [Wilcox et al. 2015; Woos et al. 2016] is a framework to develop and reason about crash-fault

tolerant distributed systems using Coq, that can generate running OCaml code. Verdi provides a

compositional way of specifying distributed systems, by applying verified system transformers (e.g.,
Raft [Ongaro and Ousterhout 2014] transforms a distributed system into a crash-tolerant one).

10 CONCLUSIONS AND FUTUREWORK
This paper introduces Asphalion, the first theorem prover-based framework to reason about

executable hybrid fault-tolerant systems, which have been getting increasing attention over the

past few years. It provides three novel languages: HyLoE, a hybrid logic of events to model hybrid

systems; MoC, a monadic programming language to implement systems composed of interacting

components; and LoCK, a sound hybrid knowledge calculus to reason about systems at a high-level

of abstraction. In addition, Asphalion introduces novel proof techniques to lift properties about

(trusted) sub-components to the level of distributed systems. Using Asphalion, we proved among

other things the agreement property of two variants of the seminal MinBFT protocol.

In the future, we would like to extend LoCK so that some proofs about distributed knowledge

could be automated. In addition, we would like to investigate whether LoCK specifications could

be compiled to running code. We also wish to implement a formally verified compiler from MoC to

imperative code. Finally, we plan to exercise Asphalion further by verifying other hybrid protocols.

ACKNOWLEDGMENTS
The authors thank Christoph Lambert for his invaluable help and for sharing his SGX expertise.

This work is partially supported by the Fonds National de la Recherche Luxembourg (FNR)

through PEARL grant FNR/P14/8149128.

27

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

REFERENCES
2014. DSN 2014. IEEE. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900116

Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Ramakrishna Kotla, and Jean-Philippe Martin. 2017a. Revisiting

Fast Practical Byzantine Fault Tolerance. CoRR abs/1712.01367 (2017). arXiv:1712.01367 http://arxiv.org/abs/1712.01367

Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman. 2017b. Solida: A Blockchain Protocol

Based on Reconfigurable Byzantine Consensus, See [Aspnes et al. 2018], 25:1–25:19. https://doi.org/10.4230/LIPIcs.

OPODIS.2017.25

Jean-Raymond Abrial. 2010. Modeling in Event-B - System and Software Engineering. Cambridge University Press. http:

//www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521895569

Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta, and Laurent Voisin. 2010. Rodin:

an open toolset for modelling and reasoning in Event-B. 12, 6 (2010), 447–466. https://doi.org/10.1007/s10009-010-0145-y

Gustavo Alonso, Ricardo Bianchini, and Marko Vukolic (Eds.). 2017. EUROSYS 2017. ACM. https://doi.org/10.1145/3064176

Abhishek Anand and Ross A. Knepper. 2015. ROSCoq: Robots Powered by Constructive Reals. In ITP-6 (LNCS), Christian
Urban and Xingyuan Zhang (Eds.), Vol. 9236. Springer, 34–50. https://doi.org/10.1007/978-3-319-22102-1_3

James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão (Eds.). 2018. OPODIS 2017. LIPIcs, Vol. 95. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik. http://www.dagstuhl.de/dagpub/978-3-95977-061-3

Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong. 1992. Shifting Gears: Changing Algorithms on the

Fly to Expedite Byzantine Agreement. Inf. Comput. 97, 2 (1992), 205–233. https://doi.org/10.1016/0890-5401(92)90035-E

Johannes Behl, Tobias Distler, and Rüdiger Kapitza. 2017. Hybrids on Steroids: SGX-Based High Performance BFT, See

[Alonso et al. 2017], 222–237. https://doi.org/10.1145/3064176.3064213

Ido Ben-Zvi. 2011. Causality, Knowledge and Coordinaltion in Distributed Systems. Ph.D. Dissertation. Technion – Computer

Science Department.

Ido Ben-Zvi and Yoram Moses. 2014. Beyond Lamport’s Happened-before: On Time Bounds and the Ordering of Events in

Distributed Systems. J. ACM 61, 2 (2014), 13:1–13:26. https://doi.org/10.1145/2542181

Yves Bertot and Pierre Casteran. 2004. Interactive Theorem Proving and Program Development. SpringerVerlag. http:

//www.labri.fr/perso/casteran/CoqArt.

Alysson Neves Bessani, João Sousa, and Eduardo Adílio Pelinson Alchieri. 2014. State Machine Replication for the Masses

with BFT-SMART, See [DBL 2014], 355–362. https://doi.org/10.1109/DSN.2014.43

Mark Bickford. 2009. Component Specification Using Event Classes. In CBSE 2009 (LNCS), Grace A. Lewis, Iman Poernomo,

and Christine Hofmeister (Eds.), Vol. 5582. Springer, 140–155.

Mark Bickford, Robert L. Constable, Joseph Y. Halpern, and Sabina Petride. 2004. Knowledge-Based Synthesis of Distributed

Systems Using Event Structures. In LPAR 2004 (LNCS), Franz Baader and Andrei Voronkov (Eds.), Vol. 3452. Springer,

449–465. https://doi.org/10.1007/978-3-540-32275-7_30

Mark Bickford, Robert L. Constable, and Vincent Rahli. 2012. Logic of Events, a framework to reason about distributed systems.

In Languages for Distributed Algorithms Workshop. http://www.nuprl.org/documents/Bickford/LOE-LADA2012.html

Martin Biely, Josef Widder, Bernadette Charron-Bost, Antoine Gaillard, Martin Hutle, and André Schiper. 2007. Tolerating

corrupted communication. In PODC 2007, Indranil Gupta and Roger Wattenhofer (Eds.). ACM, 244–253. https://doi.org/

10.1145/1281100.1281136

William J. Bolosky, John R. Douceur, and Jon Howell. 2007. The Farsite project: a retrospective. Operating Systems Review
41, 2 (2007), 17–26. https://doi.org/10.1145/1243418.1243422

BPaxos 2018. Mechanically Checked Safety Proof of a Byzantine Paxos Algorithm. http://lamport.azurewebsites.net/tla/

byzpaxos.html

Armando Castañeda, Yannai A. Gonczarowski, and Yoram Moses. 2014. Unbeatable Consensus. In Distributed Computing -
28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings (LNCS), Fabian Kuhn (Ed.),

Vol. 8784. Springer, 91–106. https://doi.org/10.1007/978-3-662-45174-8_7

Armando Castañeda, Yannai A. Gonczarowski, and Yoram Moses. 2016. Unbeatable Set Consensus via Topological and

Combinatorial Reasoning. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016,
Chicago, IL, USA, July 25-28, 2016, George Giakkoupis (Ed.). ACM, 107–116. https://doi.org/10.1145/2933057.2933120

Miguel Castro. 2001. Practical Byzantine Fault Tolerance. Ph.D. MIT. Also as Technical Report MIT-LCS-TR-817.

Miguel Castro and Barbara Liskov. 1999a. A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replication Algorithm.

Technical Memo MIT-LCS-TM-590. MIT.

Miguel Castro and Barbara Liskov. 1999b. Practical Byzantine Fault Tolerance. In OSDI 1999, Margo I. Seltzer and Paul J.

Leach (Eds.). USENIX Association, 173–186. https://doi.org/10.1145/296806.296824

Saksham Chand, Yanhong A. Liu, and Scott D. Stoller. 2016. Formal Verification of Multi-Paxos for Distributed Consensus.

In FM 2016 (LNCS), John S. Fitzgerald, Constance L. Heitmeyer, Stefania Gnesi, and Anna Philippou (Eds.), Vol. 9995.

119–136. https://doi.org/10.1007/978-3-319-48989-6_8

28

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6900116
http://arxiv.org/abs/1712.01367
http://arxiv.org/abs/1712.01367
https://doi.org/10.4230/LIPIcs.OPODIS.2017.25
https://doi.org/10.4230/LIPIcs.OPODIS.2017.25
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521895569
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521895569
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1145/3064176
https://doi.org/10.1007/978-3-319-22102-1_3
http://www.dagstuhl.de/dagpub/978-3-95977-061-3
https://doi.org/10.1016/0890-5401(92)90035-E
https://doi.org/10.1145/3064176.3064213
https://doi.org/10.1145/2542181
http://www.labri.fr/perso/casteran/CoqArt
http://www.labri.fr/perso/casteran/CoqArt
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1007/978-3-540-32275-7_30
http://www.nuprl.org/documents/Bickford/LOE-LADA2012.html
https://doi.org/10.1145/1281100.1281136
https://doi.org/10.1145/1281100.1281136
https://doi.org/10.1145/1243418.1243422
http://lamport.azurewebsites.net/tla/byzpaxos.html
http://lamport.azurewebsites.net/tla/byzpaxos.html
https://doi.org/10.1007/978-3-662-45174-8_7
https://doi.org/10.1145/2933057.2933120
https://doi.org/10.1145/296806.296824
https://doi.org/10.1007/978-3-319-48989-6_8

Asphalion OOPSLA’19, ,

K. Mani Chandy and Leslie Lamport. 1985. Distributed Snapshots: Determining Global States of Distributed Systems. ACM
Trans. Comput. Syst. 3, 1 (1985), 63–75. https://doi.org/10.1145/214451.214456

K. Mani Chandy and Jayadev Misra. 1986. How Processes Learn. Distributed Computing 1, 1 (1986), 40–52. https:

//doi.org/10.1007/BF01843569

Mouna Chaouch-Saad, Bernadette Charron-Bost, and Stephan Merz. 2009. A Reduction Theorem for the Verification of

Round-Based Distributed Algorithms. In RP 2009 (LNCS), Olivier Bournez and Igor Potapov (Eds.), Vol. 5797. Springer,

93–106. https://doi.org/10.1007/978-3-642-04420-5_10

Bernadette Charron-Bost, Henri Debrat, and Stephan Merz. 2011. Formal Verification of Consensus Algorithms Tolerating

Malicious Faults. In SSS 2011 (LNCS), Xavier Défago, Franck Petit, and Vincent Villain (Eds.), Vol. 6976. Springer, 120–134.

https://doi.org/10.1007/978-3-642-24550-3_11

Bernadette Charron-Bost and André Schiper. 2009. The Heard-Of model: computing in distributed systems with benign

faults. Distributed Computing 22, 1 (2009), 49–71. https://doi.org/10.1007/s00446-009-0084-6

Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. 2010. Verifying Safety Properties with the

TLA+ Proof System. In IJCAR 2010 (LNCS), Jürgen Giesl and Reiner Hähnle (Eds.), Vol. 6173. Springer, 142–148. https:

//doi.org/10.1007/978-3-642-14203-1_12

Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. 2007. Attested append-only memory: making

adversaries stick to their word. In SOSP 2007, Thomas C. Bressoud and M. Frans Kaashoek (Eds.). ACM, 189–204.

https://doi.org/10.1145/1294261.1294280

R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler,

P.Panangaden, J.T. Sasaki, and S.F. Smith. 1986. Implementing mathematics with the Nuprl proof development system.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Coq 2019. The Coq Proof Assistant. http://coq.inria.fr/

Miguel Correia, Nuno Ferreira Neves, Lau Cheuk Lung, and Paulo Veríssimo. 2005. Low complexity Byzantine-resilient

consensus. Distributed Computing 17, 3 (2005), 237–249. https://doi.org/10.1007/s00446-004-0110-7

Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. 2004. How to Tolerate Half Less One Byzantine Nodes in Practical

Distributed Systems. In SRDS 2004. IEEE Computer Society, 174–183. https://doi.org/10.1109/RELDIS.2004.1353018

Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. 2013. BFT-TO: Intrusion Tolerance with Less Replicas. Comput.
J. 56, 6 (2013), 693–715. https://doi.org/10.1093/comjnl/bxs148

Miguel Correia, Paulo Veríssimo, and Nuno Ferreira Neves. 2002. The Design of a COTSReal-Time Distributed Security

Kernel. In EDCC-4 (LNCS), Fabrizio Grandoni and Pascale Thévenod-Fosse (Eds.), Vol. 2485. Springer, 234–252. https:

//doi.org/10.1007/3-540-36080-8_21

Asa Dan, Rajit Manohar, and Yoram Moses. 2017. On Using Time Without Clocks via Zigzag Causality. In PODC 2017,
Elad Michael Schiller and Alexander A. Schwarzmann (Eds.). ACM, 241–250. https://doi.org/10.1145/3087801.3087839

Christian Decker, Jochen Seidel, and Roger Wattenhofer. 2016. Bitcoin meets strong consistency. In ICDCN 2016. ACM,

13:1–13:10. https://doi.org/10.1145/2833312.2833321

Ankush Desai, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia. 2018. Compositional programming and testing of

dynamic distributed systems. PACMPL 2, OOPSLA (2018), 159:1–159:30. https://doi.org/10.1145/3276529

Tobias Distler, Christian Cachin, and Rüdiger Kapitza. 2016. Resource-Efficient Byzantine Fault Tolerance. IEEE Trans.
Computers 65, 9 (2016), 2807–2819. https://doi.org/10.1109/TC.2015.2495213

Cezara Dragoi, Thomas A. Henzinger, Helmut Veith, Josef Widder, and Damien Zufferey. 2014. A Logic-Based Framework

for Verifying Consensus Algorithms. In VMCAI 2014 (LNCS), Kenneth L. McMillan and Xavier Rival (Eds.), Vol. 8318.

Springer, 161–181. https://doi.org/10.1007/978-3-642-54013-4_10

Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. 2015. The Need for Language Support for Fault-Tolerant

Distributed Systems. In SNAPL 2015 (LIPIcs), Thomas Ball, Rastislav Bodík, Shriram Krishnamurthi, Benjamin S. Lerner,

and Greg Morrisett (Eds.), Vol. 32. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 90–102. https://doi.org/10.4230/

LIPIcs.SNAPL.2015.90

Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. 2016. PSync: a partially synchronous language for fault-

tolerant distributed algorithms. In POPL 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 400–415. https:

//doi.org/10.1145/2837614.2837650

Derek Dreyer, Amal Ahmed, and Lars Birkedal. 2011. Logical Step-Indexed Logical Relations. Logical Methods in Computer
Science 7, 2 (2011). https://doi.org/10.2168/LMCS-7(2:16)2011

Cynthia Dwork and Yoram Moses. 1990. Knowledge and Common Knowledge in a Byzantine Environment: Crash Failures.

Inf. Comput. 88, 2 (1990), 156–186. https://doi.org/10.1016/0890-5401(90)90014-9

Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik. 2017. HYDRA: hybrid design for remote attestation (using

a formally verified microkernel). InWiSec 2017, Guevara Noubir, Mauro Conti, and Sneha Kumar Kasera (Eds.). ACM,

99–110. https://doi.org/10.1145/3098243.3098261

29

https://doi.org/10.1145/214451.214456
https://doi.org/10.1007/BF01843569
https://doi.org/10.1007/BF01843569
https://doi.org/10.1007/978-3-642-04420-5_10
https://doi.org/10.1007/978-3-642-24550-3_11
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/978-3-642-14203-1_12
https://doi.org/10.1007/978-3-642-14203-1_12
https://doi.org/10.1145/1294261.1294280
http://coq.inria.fr/
https://doi.org/10.1007/s00446-004-0110-7
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1093/comjnl/bxs148
https://doi.org/10.1007/3-540-36080-8_21
https://doi.org/10.1007/3-540-36080-8_21
https://doi.org/10.1145/3087801.3087839
https://doi.org/10.1145/2833312.2833321
https://doi.org/10.1145/3276529
https://doi.org/10.1109/TC.2015.2495213
https://doi.org/10.1007/978-3-642-54013-4_10
https://doi.org/10.4230/LIPIcs.SNAPL.2015.90
https://doi.org/10.4230/LIPIcs.SNAPL.2015.90
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.1145/2837614.2837650
https://doi.org/10.2168/LMCS-7(2:16)2011
https://doi.org/10.1016/0890-5401(90)90014-9
https://doi.org/10.1145/3098243.3098261

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. 2003. Reasoning About Knowledge. https://doi.org/10.7551/

mitpress/5803.001.0001

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. 1997. Knowledge-Based Programs. Distributed
Computing 10, 4 (1997), 199–225. https://doi.org/10.1007/s004460050038

Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. 2017. An Empirical Study on the Correctness of

Formally Verified Distributed Systems, See [Alonso et al. 2017], 328–343. https://doi.org/10.1145/3064176.3064183

Andreas Fürst, Thai Son Hoang, David A. Basin, Krishnaji Desai, Naoto Sato, and Kunihiko Miyazaki. 2014. Code Generation

for Event-B. In IFM 2014 (LNCS), Elvira Albert and Emil Sekerinski (Eds.), Vol. 8739. Springer, 323–338. https://doi.org/

10.1007/978-3-319-10181-1_20

S. Garland, N. Lynch, J. Tauber, and M. Vaziri. 2004. IOA user guide and reference manual. Technical Report MIT/LCS/TR-961.

Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA.

Stephen J. Garland and Nancy Lynch. 2000. Using I/O automata for developing distributed systems. In Foundations of
componentbased systems, Gary T. Leavens and Murali Sitaraman (Eds.). Cambridge University Press, New York, NY, USA,

285–312. http://dl.acm.org/citation.cfm?id=336431.336455

Chryssis Georgiou, Nancy Lynch, Panayiotis Mavrommatis, and Joshua A. Tauber. 2009. Automated implementation of

complex distributed algorithms specified in the IOA language. Int. J. Softw. Tools Technol. Transf. 11 (February 2009),

153–171. Issue 2. https://doi.org/10.1007/s10009-008-0097-7

Guy Goren and Yoram Moses. 2018. Silence. In PODC 2018, Calvin Newport and Idit Keidar (Eds.). ACM, 285–294. https:

//doi.org/10.1145/3212734

Joseph Y. Halpern. 1987. Using Reasoning About Knowledge to Analyze Distributed Systems. An-
nual Review of Computer Science 2, 1 (1987), 37–68. https://doi.org/10.1146/annurev.cs.02.060187.000345

arXiv:https://doi.org/10.1146/annurev.cs.02.060187.000345

Joseph Y. Halpern and Yoram Moses. 1990. Knowledge and Common Knowledge in a Distributed Environment. J. ACM 37,

3 (1990), 549–587. https://doi.org/10.1145/79147.79161

Joseph Y. Halpern and Rafael Pass. 2017. A Knowledge-Based Analysis of the Blockchain Protocol. In TARK 2017 (EPTCS),
Jérôme Lang (Ed.), Vol. 251. 324–335. https://doi.org/10.4204/EPTCS.251.22

Joseph Y. Halpern and Lenore D. Zuck. 1992. A Little Knowledge Goes a Long Way: Knowledge-Based Derivations and

Correctness Proofs for a Family of Protocols. J. ACM 39, 3 (1992), 449–478. https://doi.org/10.1145/146637.146638

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath T. V. Setty, and

Brian Zill. 2015. IronFleet: proving practical distributed systems correct. In SOSP 2015, Ethan L. Miller and Steven Hand

(Eds.). ACM, 1–17. https://doi.org/10.1145/2815400.2815428

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath T. V. Setty, and

Brian Zill. 2017. IronFleet: proving safety and liveness of practical distributed systems. Commun. ACM 60, 7 (2017),

83–92. https://doi.org/10.1145/3068608

Gerard J. Holzmann. 2004. The SPIN Model Checker - primer and reference manual. Addison-Wesley.

Hyperledger 2019. Hyperledger. https://github.com/hyperledger-labs

Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran, Mark R. Tuttle, and Yuan Yu. 2003. Checking Cache-Coherence

Protocols with TLA
+
. Formal Methods in System Design 22, 2 (2003), 125–131. https://doi.org/10.1023/A:1022969405325

Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle, Seyed Vahid Mohammadi, Wolfgang

Schröder-Preikschat, and Klaus Stengel. 2012. CheapBFT: resource-efficient byzantine fault tolerance. In EuroSys ’12,
Pascal Felber, Frank Bellosa, and Herbert Bos (Eds.). ACM, 295–308. https://doi.org/10.1145/2168836.2168866

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and Bryan Ford. 2016. Enhanc-

ing Bitcoin Security and Performance with Strong Consistency via Collective Signing. In USENIX Security Sympo-
sium, Thorsten Holz and Stefan Savage (Eds.). USENIX Association, 279–296. https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/kogias

Igor Konnov, Helmut Veith, and Josef Widder. 2015. SMT and POR Beat Counter Abstraction: Parameterized Model Checking

of Threshold-Based Distributed Algorithms. In CAV 2015 (LNCS), Daniel Kroening and Corina S. Pasareanu (Eds.),

Vol. 9206. Springer, 85–102. https://doi.org/10.1007/978-3-319-21690-4_6

Igor V. Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. 2017a. A short counterexample property for safety and

liveness verification of fault-tolerant distributed algorithms. In POPL 2017, Giuseppe Castagna and Andrew D. Gordon

(Eds.). ACM, 719–734. https://doi.org/10.1145/3009837

Igor V. Konnov, Helmut Veith, and Josef Widder. 2017b. On the completeness of bounded model checking for threshold-based

distributed algorithms: Reachability. Inf. Comput. 252 (2017), 95–109. https://doi.org/10.1016/j.ic.2016.03.006

Roman Krenický and Mattias Ulbrich. 2010. Deductive Verification of a Byzantine Agreement Protocol. Technical Report
2010-7. Karlsruhe Institute of Technology, Department of Computer Science. https://lfm.iti.kit.edu/english/769.php

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (1978),

558–565. https://doi.org/10.1145/359545.359563

30

https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1007/s004460050038
https://doi.org/10.1145/3064176.3064183
https://doi.org/10.1007/978-3-319-10181-1_20
https://doi.org/10.1007/978-3-319-10181-1_20
http://dl.acm.org/citation.cfm?id=336431.336455
https://doi.org/10.1007/s10009-008-0097-7
https://doi.org/10.1145/3212734
https://doi.org/10.1145/3212734
https://doi.org/10.1146/annurev.cs.02.060187.000345
http://arxiv.org/abs/https://doi.org/10.1146/annurev.cs.02.060187.000345
https://doi.org/10.1145/79147.79161
https://doi.org/10.4204/EPTCS.251.22
https://doi.org/10.1145/146637.146638
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/3068608
https://github.com/hyperledger-labs
https://doi.org/10.1023/A:1022969405325
https://doi.org/10.1145/2168836.2168866
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://doi.org/10.1007/978-3-319-21690-4_6
https://doi.org/10.1145/3009837
https://doi.org/10.1016/j.ic.2016.03.006
https://lfm.iti.kit.edu/english/769.php
https://doi.org/10.1145/359545.359563

Asphalion OOPSLA’19, ,

Leslie Lamport. 1994. The Temporal Logic of Actions. ACM Trans. Program. Lang. Syst. 16, 3 (1994), 872–923. https:

//doi.org/10.1145/177492.177726

Leslie Lamport. 2004. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley.

Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The Byzantine Generals Problem. ACM Trans. Program.
Lang. Syst. 4, 3 (1982), 382–401. https://doi.org/10.1145/357172.357176

Marijana Lazic, Igor Konnov, Josef Widder, and Roderick Bloem. 2017. Synthesis of Distributed Algorithms with Parameter-

ized Threshold Guards, See [Aspnes et al. 2018], 32:1–32:20. https://doi.org/10.4230/LIPIcs.OPODIS.2017.32

Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda. 2009. TrInc: Small Trusted Hardware for Large

Distributed Systems. In USENIX 2009, Jennifer Rexford and Emin Gün Sirer (Eds.). USENIX Association, 1–14. http:

//www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf

Tianxiang Lu, Stephan Merz, and Christoph Weidenbach. 2011. Towards Verification of the Pastry Protocol Using TLA
+
.

In FORTE 2011 (LNCS), Roberto Bruni and Jürgen Dingel (Eds.), Vol. 6722. Springer, 244–258. https://doi.org/10.1007/978-

3-642-21461-5_16

Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek Saxena. 2016. A Secure Sharding

Protocol For Open Blockchains. In CCS 2016, Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.

Myers, and Shai Halevi (Eds.). ACM, 17–30. https://doi.org/10.1145/2976749.2978389

Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann.

Nancy A. Lynch and Mark R. Tuttle. 1987. Hierarchical Correctness Proofs for Distributed Algorithms. In PODC 1987, Fred B.
Schneider (Ed.). ACM, 137–151. https://doi.org/10.1145/41840.41852

Ognjen Maric, Christoph Sprenger, and David A. Basin. 2017. Cutoff Bounds for Consensus Algorithms. In CAV 2017 (LNCS),
Rupak Majumdar and Viktor Kuncak (Eds.), Vol. 10427. Springer, 217–237. https://doi.org/10.1007/978-3-319-63390-9_12

Dominique Méry and Neeraj Kumar Singh. 2011. Automatic code generation from event-B models. In Symposium on
Information and Communication Technology, SoICT 2011, Huynh Quyet Thang and Dinh Khang Tran (Eds.). ACM, 179–188.

https://doi.org/10.1145/2069216.2069252

Eugenio Moggi. 1989. Computational Lambda-Calculus and Monads. In LICS. IEEE Computer Society, 14–23.

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web

services uses formal methods. Commun. ACM 58, 4 (2015), 66–73. https://doi.org/10.1145/2699417

OCaml2C 2019. Interfacing C with OCaml. https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html

Diego Ongaro and John K. Ousterhout. 2014. In Search of an Understandable Consensus Algorithm. In 2014 USENIX Annual
Technical Conference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014., Garth Gibson and Nickolai Zeldovich

(Eds.). USENIX Association, 305–319. https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

Sam Owre, John M. Rushby, Natarajan Shankar, and Friedrich W. von Henke. 1995. Formal Verification for Fault-Tolerant

Architectures: Prolegomena to the Design of PVS. IEEE Trans. Software Eng. 21, 2 (1995), 107–125. https://doi.org/10.

1109/32.345827

Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and Sharon Shoham. 2018. Reducing liveness

to safety in first-order logic. PACMPL 2, POPL (2018), 26:1–26:33. https://doi.org/10.1145/3158114

Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017. Paxos made EPR: decidable reasoning about distributed

protocols. PACMPL 1, OOPSLA (2017), 108:1–108:31. https://doi.org/10.1145/3140568

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by

interactive generalization. In PLDI 2016, Chandra Krintz and Emery Berger (Eds.). ACM, 614–630. https://doi.org/10.

1145/2908080.2908118

Prakash Panangaden and Kim Taylor. 1992. Concurrent Common Knowledge: Defining Agreement for Asynchronous

Systems. Distributed Computing 6, 2 (1992), 73–93. https://doi.org/10.1007/BF02252679

Rafael Pass and Elaine Shi. 2017. Hybrid Consensus: Efficient Consensus in the Permissionless Model. In DISC 2017 (LIPIcs),
Andréa W. Richa (Ed.), Vol. 91. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 39:1–39:16. https://doi.org/10.4230/

LIPIcs.DISC.2017.39

Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. 2015. Formal Specification, Verification, and

Implementation of Fault-Tolerant Systems using EventML. ECEASST 72 (2015). http://journal.ub.tu-berlin.de/eceasst/

article/view/1013

Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. 2017. EventML: Specification, Verification, and

Implementation of Crash-Tolerant State Machine Replication Systems. SCP (2017).

Vincent Rahli, Nicolas Schiper, Robbert van Renesse, Mark Bickford, and Robert L. Constable. 2012. A diversified and correct-

by-construction broadcast service. In ICNP 2012. IEEE Computer Society, 1–6. https://doi.org/10.1109/ICNP.2012.6459943

Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Jorge Esteves Veríssimo. 2018. Velisarios: Byzantine Fault-Tolerant

Protocols Powered by Coq. In ESOP 2018 (LNCS), Amal Ahmed (Ed.), Vol. 10801. Springer, 619–650. https://doi.org/10.

1007/978-3-319-89884-1_22

31

https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/177492.177726
https://doi.org/10.1145/357172.357176
https://doi.org/10.4230/LIPIcs.OPODIS.2017.32
http://www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf
http://www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf
https://doi.org/10.1007/978-3-642-21461-5_16
https://doi.org/10.1007/978-3-642-21461-5_16
https://doi.org/10.1145/2976749.2978389
https://doi.org/10.1145/41840.41852
https://doi.org/10.1007/978-3-319-63390-9_12
https://doi.org/10.1145/2069216.2069252
https://doi.org/10.1145/2699417
https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1109/32.345827
https://doi.org/10.1109/32.345827
https://doi.org/10.1145/3158114
https://doi.org/10.1145/3140568
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1145/2908080.2908118
https://doi.org/10.1007/BF02252679
https://doi.org/10.4230/LIPIcs.DISC.2017.39
https://doi.org/10.4230/LIPIcs.DISC.2017.39
http://journal.ub.tu-berlin.de/eceasst/article/view/1013
http://journal.ub.tu-berlin.de/eceasst/article/view/1013
https://doi.org/10.1109/ICNP.2012.6459943
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1007/978-3-319-89884-1_22

OOPSLA’19, , Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Nicolas Schiper, Vincent Rahli, Robbert Van Renesse, Mark Bickford, and Robert L. Constable. 2012. ShadowDB: A Replicated

Database on a Synthesized Consensus Core. In Eighth Workshop on Hot Topics in System Dependability (HotDep’12). http:

//www.nuprl.org/documents/Schiper/ShadowDB_A_Replicated_Database_on_a_Synthesized_Consensus_Core.pdf

Nicolas Schiper, Vincent Rahli, Robbert van Renesse, Mark Bickford, and Robert L. Constable. 2014. Developing Correctly

Replicated Databases Using Formal Tools, See [DBL 2014], 395–406. https://doi.org/10.1109/DSN.2014.45

Ulrich Schmid, Bettina Weiss, and John M. Rushby. 2002. Formally Verified Byzantine Agreement in Presence of Link Faults.

In ICDCS. 608–616. https://doi.org/10.1109/ICDCS.2002.1022311

SecureBlue 2019. Secure Blue. https://researcher.watson.ibm.com/researcher/view_page.php?id=6904

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming and Proving with Distributed Protocols. In POPL
2018.

SGX 2019. SGX. https://software.intel.com/en-us/sgx

João Sousa, Alysson Bessani, and Marko Vukolic. 2018. A Byzantine Fault-Tolerant Ordering Service for the Hyperledger

Fabric Blockchain Platform. In DSN 2018. IEEE Computer Society, 51–58. https://doi.org/10.1109/DSN.2018.00018

Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv, Sharon Shoham, James R. Wilcox, and Doug

Woos. 2018. Modularity for decidability of deductive verification with applications to distributed systems. In PLDI 2018,
Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 662–677. https://doi.org/10.1145/3192366.3192414

Joshua A. Tauber. 2004. Verifiable Compilation of I/O Automata without Global Synchronization. Ph.D. Dissertation.

Departement of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA.

TrustZone 2019. ARM TrustZone. https://www.arm.com/products/security-on-arm/trustzone

Chia-che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical Library OS for Unmodified Applications on

SGX, Dilma Da Silva and Bryan Ford (Eds.). USENIX Association, 645–658. https://www.usenix.org/conference/atc17/

technical-sessions/presentation/tsai

Tatsuhiro Tsuchiya and André Schiper. 2007. Model Checking of Consensus Algorithm. In SRDS 2007. IEEE Computer

Society, 137–148. https://doi.org/10.1109/SRDS.2007.20

Tatsuhiro Tsuchiya and André Schiper. 2008. Using Bounded Model Checking to Verify Consensus Algorithms. In DISC
2008 (LNCS), Gadi Taubenfeld (Ed.), Vol. 5218. Springer, 466–480. https://doi.org/10.1007/978-3-540-87779-0_32

Paulo Veríssimo. 2006. Travelling through wormholes: a new look at distributed systems models. SIGACT News 37, 1 (2006),
66–81. https://doi.org/10.1145/1122480.1122497

Paulo Veríssimo and Antonio Casimiro. 2002. The Timely Computing Base Model and Architecture. IEEE Trans. Computers
51, 8 (2002), 916–930. https://doi.org/10.1109/TC.2002.1024739

Paulo Veríssimo, Antonio Casimiro, and Christof Fetzer. 2000. The timely computing base: Timely actions in the presence of

uncertain timeliness. In DSN 2000. IEEE Computer Society, 533–542. https://doi.org/10.1109/ICDSN.2000.857587

Guiliana Santos Veronese. 2010. Intrusion Tolerance in Large Scale Networks. Ph.D. Dissertation. Universidade de Lisboa.
Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung. 2010. EBAWA: Efficient Byzantine

Agreement for Wide-Area Networks. IEEE Computer Society, 10–19. https://doi.org/10.1109/HASE.2010.19

Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and Paulo Veríssimo. 2013. Efficient

Byzantine Fault-Tolerance. IEEE Trans. Computers 62, 1 (2013), 16–30. https://doi.org/10.1109/TC.2011.221

Ivana Vukotic, Vincent Rahli, and Paulo Verissimo. 2019. Asphalion: Trustworthy Shielding Against Byzantine Faults. (2019).

https://vrahli.github.io/articles/asphalion-long.pdf Extended version.

James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas E. Anderson.

2015. Verdi: a framework for implementing and formally verifying distributed systems. In PLDI 2015, David Grove and

Steve Blackburn (Eds.). ACM, 357–368. https://doi.org/10.1145/2737924.2737958

Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas E. Anderson. 2016. Planning for

change in a formal verification of the raft consensus protocol. In CPP 2016, Jeremy Avigad and Adam Chlipala (Eds.).

ACM, 154–165. https://doi.org/10.1145/2854065.2854081

32

http://www.nuprl.org/documents/Schiper/ShadowDB_A_Replicated_Database_on_a_Synthesized_Consensus_Core.pdf
http://www.nuprl.org/documents/Schiper/ShadowDB_A_Replicated_Database_on_a_Synthesized_Consensus_Core.pdf
https://doi.org/10.1109/DSN.2014.45
https://doi.org/10.1109/ICDCS.2002.1022311
https://researcher.watson.ibm.com/researcher/view_page.php?id=6904
https://software.intel.com/en-us/sgx
https://doi.org/10.1109/DSN.2018.00018
https://doi.org/10.1145/3192366.3192414
https://www.arm.com/products/security-on-arm/trustzone
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://doi.org/10.1109/SRDS.2007.20
https://doi.org/10.1007/978-3-540-87779-0_32
https://doi.org/10.1145/1122480.1122497
https://doi.org/10.1109/TC.2002.1024739
https://doi.org/10.1109/ICDSN.2000.857587
https://doi.org/10.1109/HASE.2010.19
https://doi.org/10.1109/TC.2011.221
https://vrahli.github.io/articles/asphalion-long.pdf
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1145/2854065.2854081

	Abstract
	1 Introduction
	2 Overview
	2.1 High-Level Architecture of Asphalion
	2.2 High-Level Reasoning
	2.3 Rationale for Designing Asphalion
	2.4 Benefits and Limitations
	2.5 Notation

	3 Running example
	4 HyLoE: A Hybrid Logic of Events
	4.1 Basic HyLoE Concepts
	4.2 Accounting for Trusted Components in HyLoE Through Hybrid Events
	4.3 Hybrid Event Orderings

	5 MoC: Component-Based Programming
	5.1 Components as State Machines, and Local and Distributed Systems
	5.2 Relating MoC Systems and HyLoE Events
	5.3 Example: a Compositional Proof of a Simple Micro Property
	5.4 Lifting Through ``Deep'' Restrictions

	6 LoCK: A Hybrid Knowledge Calculus
	6.1 LoCK's Parameters
	6.2 LoCK's Syntax
	6.3 LoCK's Semantics
	6.4 LoCK's Rules
	6.5 Examples of Derivations Within LoCK
	6.6 Typical System Assumptions and Consequences
	6.7 Distributed Lifting
	6.8 Example: Micro's Agreement

	7 Case Studies: USIG- and TrInc-based MinBFT
	7.1 MinBFT Recap
	7.2 Implementation and Verification of MinBFT
	7.3 Differences from the Original Proof

	8 Evaluation
	9 Related Work
	9.1 Logics and Models
	9.2 Tools

	10 Conclusions and Future Work
	Acknowledgments
	References

