
Brief Announcement: A Simple Stretch 2 Distance Oracle∗

Rachit Agarwal P. Brighten Godfrey

University of Illinois at Urbana-Champaign, IL, USA
{agarwa16, pbg}@illinois.edu

ABSTRACT

We present a distance oracle that, for weighted graphs with n
vertices and m edges, is of size 8n4/3m1/3 log2/3 n and returns
stretch-2 distances in constant time. Our oracle achieves bounds
identical to the constant-time stretch-2 oracle of Pǎtraşcu and
Roditty, but admits significantly simpler construction and proofs.

Categories and Subject Descriptors

E.1 [Data Structures]: Graphs and Networks; G.2.2 [Discrete
Mathematics]: Graph Theory—graph algorithms

General Terms

ALgorithms, Theory

Keywords

Approximate distance oracles, distance queries

1. INTRODUCTION
A distance oracle is a compact representation of the all-pairs

shortest path matrix of a graph. To achieve a compact (that
is, subquadratic in number of vertices) representation, we allow
approximation measured in terms of stretch. A stretch-c oracle
returns, for any pair of vertices at distance d, a distance estimate
of at most c · d; corresponding path can be retrieved in constant
time per hop. Distance oracles have a wide range of applications
including compact routing [1,5,9] and quickly computing paths
on large networks [1, 3, 10]. For general weighted graphs, Tho-
rup and Zwick [10] designed an oracle of size O(n3/2) that re-
turns distances of stretch 3 in constant time. Furthermore, they
showed that this oracle is optimal in the worst case — there exist
graphs for which any oracle that returns distances of stretch 3
requires space Ω(n3/2) and that returns distances of stretch less
than 3 requires space Ω(n2).

∗This work was supported by National Science Foundation grant
CNS 1017069.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PODC’13, July 22–24, 2013, Montréal, Québec, Canada.
ACM 978-1-4503-2065-8/13/07.

However, the graphs that constitute the hard cases for stretch
less than 3 are extremely dense, while essentially all real-world
graphs are sparse. For oracles that improve upon the Thorup-
Zwick oracle by exploiting graph sparsity, new upper bounds
[1, 2, 4–7] and lower bounds [8] have recently been derived.
In particular, Pǎtraşcu and Roditty [6] designed a constant-time
stretch-2 oracle of size O(n4/3m1/3) for weighted graphs; their
construction was extended for larger stretch values for unweigh-
ted [1] and for weighted graphs [7]. In fact, a more general
space-stretch-time trade-off can be achieved [2,4,5] by exploit-
ing graph sparsity; this further reduces the space requirements
for stretch 2 and larger [5] and even allows computing distances
of stretch less than 2 [2,4].

A particularly interesting result among the aforementioned is
that of Pǎtraşcu and Roditty [6] — a stretch-2 constant-time
oracle of size O(n4/3m1/3). However, their construction uses
substantially more complex techniques than oracles for dense
graphs and oracles with super-constant query time. For weighted
graphs, their algorithm for constructing the oracle is particularly
complex — it first samples a set of edges A and a set of vertices
B (each with a different probability); it then constructs partial
shortest path trees around each vertex in B with a stopping cri-
teria that depends on edges in set A. Finally, the algorithm con-
structs partial shortest path trees around each remaining vertex
with a new stopping criteria that depends on edges in set A, ver-
tices in set B and the edges explored while constructing partial
shortest path trees around vertices in set B.

We present a new constant-time stretch-2 oracle for weighted
graphs that admits significantly simpler construction and proofs.
Our algorithm requires sampling a set A of vertices and con-
structing partial shortest path trees around each vertex using a
single stopping criteria that depends only on vertices in set A:

THEOREM 1. Given a weighted undirected graph with n vertices
and m edges with non-negative edge weights, there exists a distance
oracle of expected size 8n4/3m1/3 log2/3 n that returns a stretch-2
distance in constant time.

Our construction uses the notion of balls used in [10] and
of vicinities used in [2, 4, 5]. We say that a pair of vertices
have a ball-vicinity intersection if the ball of one vertex has
a non-empty intersection with the vicinity of the other vertex.
To bound the space requirements, we exploit graph sparsity to
prove a non-trivial upper bound on the number of vertex pairs
with ball-vicinity intersection; this requires a special ball con-
struction algorithm previously used in design of compact rout-
ing schemes [9]. Furthermore, to bound the stretch, we show
that for any pair of vertices with non-intersecting ball-vicinity, a
stretch-2 distance can be computed by storing a small amount
of information per vertex in the graph.

2. PRELIMINARIES
We assume that G = (V, E) is a weighted undirected graph

with n vertices and m edges with non-negative edge weights.
Let d(s, t) denote the shortest distance between a pair of vertices
s, t ∈ V . For any subset of vertices V ′ ⊂ V , we denote by N(V ′)
the set of neighbors of vertices in V ′. Given a vertex v and a
subset of vertices L ⊂ V , we let the nearest vertex in set L,
denoted by ℓ(v), be the vertex a ∈ L that minimizes d(v, a), ties
broken arbitrarily. The ball radius of v, denoted by rv , is the
distance between v and ℓ(v).

Balls and Vicinities, Inverse-balls and Inverse-Vicinities. We
will also need the following definitions:

• Ball of a vertex B(v): the set of vertices w ∈ V for which
d(v, w)< rv;

• Inverse-Ball of a vertex B̄(v): the set of vertices that con-
tain v in their ball;

• Vicinity of a vertex B+(v): the set of vertices in B(v) ∪
N(B(v));

• Inverse-vicinity of a vertex B̄+(v): the set of vertices that
contain v in their vicinity.

Our construction of balls, vicinities, inverse-balls and inverse-
vicinities will use the following result:

LEMMA 2. [2, 9] For any weighted undirected graph and for
any 1 ≤ α ≤ n, there exists a subset of vertices L of expected size
8n log n/α such that |B̄(v)| ≤ α and |B̄+(v)| ≤ αdeg(v) for each
vertex v in the graph.

The first part of the lemma that shows the existence of a set L to
bound the size of the inverse-ball of each vertex is due to Tho-
rup and Zwick [9]; for sake of completeness, the algorithm for
constructing such a set L is informally described in Appendix A.
It is easy to verify that the set of vertices in the inverse-vicinity of
any vertex v is given by B̄+(v) =

⋃
w∈N (v) B̄(w); this leads to the

bound on the size of the inverse-vicinity of each vertex (using
the same set L). We emphasize that the above lemma bounds
the size of set L in expectation, while the size of inverse-ball and
inverse-vicinity for any vertex is bounded deterministically.

3. DISTANCE ORACLE
Our construction of the oracle begins by creating a set L of

vertices using the result of Lemma 2 (the value of α will be
specified later). The oracle stores, for each v ∈ V :

• a hash table storing the exact distance to each vertex in L;

• the nearest vertex ℓ(v) and the ball radius rv; and

• a hash table storing the exact distance to each vertex in
the set Sv = {w : B(v) ∩ B+(w) ̸=)}, that is, to each
vertex w whose vicinity intersects with the ball of v.

Query algorithm. When queried for the distance between
vertices s, t ∈ V , the algorithm returns the exact distance if s ∈ St

or if t ∈ Ss. Else, the algorithm returns d(s,ℓ(s))+ d(t ,ℓ(s)) if
rs ≤ rt and d(t ,ℓ(t))+ d(s,ℓ(t)) otherwise.

3.1 Proof of Theorem 1
The proof borrows two ideas from [2]. The first is used to

bound the size of the oracle — intuitively, if each vertex has
a small size inverse-ball (or equivalently, is contained in a few
balls) as guaranteed by Lemma 2, then the number of vertex
pairs with ball-vicinity intersection is also small, thereby bound-
ing
∑

v |Sv |. The second is used to bound the stretch — any
pair of vertices s, t with non-intersecting ball-vicinity must be
rather far away and either the path s ! ℓ(s) ! t or the path
t ! ℓ(t)! s must be a stretch-2 path.

LEMMA 3. Let G = (V, E) be a weighted undirected graph with
n vertices and m edges. For any fixed 1 ≤ α ≤ n, if the oracle is
constructed as above, then:

∑
v∈V |Sv | ≤ 2α2m.

Proof: For any vertex w ∈ V , let γ(w) be the number of ver-
tex pairs whose ball-vicinity intersection contains w; that is,
γ(w) = |{(u, v) : w ∈ B(u) ∩ B+(v)}|. Then, by definition, we
get that
∑

v∈V |Sv | ≤
∑

w∈V γ(w). Recall, using Lemma 2, each
vertex w (deterministically) belongs to at most α balls and at
most αdeg(w) vicinities. Hence, the number of ball-vicinity in-
tersections that can occur at w is bounded by γ(w)≤ α2 deg(w).
Hence,
∑

v∈V |Sv | ≤
∑

w∈V γ(w)≤ 2α2m. "

LEMMA 4. [2] Let G = (V, E) be a weighted undirected graph.
For any pair of vertices s, t ∈ V , if B(s) ∩ B+(t) =), then the
shortest distance is lower bounded as d(s, t)≥ rs + rt .

Proof: Let P = (s, x1, x2, . . . , t) be the shortest path between s
and t . Let i0 = max{i|xi ∈ P ∩ B(s)}, w = xi0

and w′ = xi0+1.
Since w′ /∈ B(s), we get that d(s, w′)≥ rs. Since B(s)∩B+(t) =),
we have that w /∈ B+(t) and hence, w′ /∈ B(t) leading to the fact
that d(t , w′)≥ rt . Finally, w′ being on the shortest path between
s and t , we have that d(s, t) = d(s, w′) + d(t , w′)≥ rs + rt . "

Proof of Theorem 1. We first bound the size of the oracle.
Using Lemma 2, the expected size of set L is 8n log n/α; and,
using Lemma 3, the size of set

∑
v∈V |Sv | is bounded by 2α2m.

Hence, the oracle’s size is bounded by 8n2 log n/α+ 2α2m; this
expression is minimized for α = 2n2/3m−1/3 log1/3(n), leading to
the desired bound.

Next, we show that the query algorithm returns a distance
of at most 2d(s, t). If B(s) ∩ B+(t) ̸=), the algorithm returns
the exact distance. For the case when B(s) ∩ B+(t) =), as-
sume, without loss of generality, that rs ≤ rt . Then, using
Lemma 4, d(s, t) ≥ 2rs ; or equivalently, 2rs ≤ d(s, t). The dis-
tance returned by the query algorithm is d(s,ℓ(s))+ d(t ,ℓ(s)),
which using triangle inequality, is at most 2d(s,ℓ(s))+ d(s, t) =
2rs + d(s, t)≤ 2d(s, t), as claimed. "

For the special case of unweighted graphs, it is possible to reduce
the space requirements at the cost of a small additive stretch.
Pǎtraşcu and Roditty [6] designed a constant time oracle of size
O(n5/3) for unweighted graphs that, for any pair of vertices at
distance d, returns a path of length at most 2d + 1. Using ideas
similar to above, we get a simplified construction for the case of
unweighted graphs as well (see Appendix B).

4. REFERENCES
[1] I. Abraham and C. Gavoille. On approximate distance

labels and routing schemes with affine stretch. In
International Symposium on Distributed Computing
(DISC), pages 404–415, 2011.

[2] R. Agarwal. Distance oracles with super-constant query
time, Technical report, 2013.

[3] R. Agarwal, M. Caesar, P. B. Godfrey, and B. Y. Zhao.
Shortest paths in less than a millisecond. In ACM
SIGCOMM Workshop on Online Social Networks (WOSN),
2012.

[4] R. Agarwal and P. B. Godfrey. Distance oracles for stretch
less than 2. In ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2013.

[5] R. Agarwal, P. B. Godfrey, and S. Har-Peled. Approximate
distance queries and compact routing in sparse graphs. In
Proc. IEEE Conference on Computer Communications
(INFOCOM), pages 1754–1762, 2011.

[6] M. Pǎtraşcu and L. Roditty. Distance oracles beyond the
Thorup-Zwick bound. In Proc. IEEE Annual Symposium on
Foundations of Computer Science (FOCS), pages 815–823,
2010.

[7] M. Pǎtraşcu, L. Roditty, and M. Thorup. A new infinity of
distance oracles for sparse graphs. In IEEE Symposium on
Foundations of Computer Science (FOCS), 2012.

[8] C. Sommer, E. Verbin, and W. Yu. Distance oracles for
sparse graphs. In Proc. IEEE Annual Symposium on
Foundations of Computer Science (FOCS), pages 703–712,
2009.

[9] M. Thorup and U. Zwick. Compact routing schemes. In
Proc. ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 1–10, 2001.

[10] M. Thorup and U. Zwick. Approximate distance oracles.
Journal of the ACM, 52(1):1–24, January 2005.

APPENDIX

A. INFORMAL PROOF OF LEMMA 2
Fix some 1 ≤ α ≤ n. The algorithm maintains two set of ver-

tices — a set L that constitutes the final output of the algorithm
and another set W that contains all vertices that have inverse-
ball of size more than α. The set L is initialized to an empty set
and W is initialized to the vertex set V . The algorithm runs in
multiple iterations; in each iteration, it uniform randomly sam-
ples 4n/α vertices from W , inserts them to set L; re-computes
the inverse-ball of each vertex and updates W to all vertices that
still contains more than α vertices in their inverse-ball. The al-
gorithm terminates when W contains 4n/α or fewer vertices; in
this case, all vertices in W are inserted in set L.

The main idea behind the proof of correctness is as follows.
Clearly, by construction, each vertex has inverse-ball of size at
most α. The main challenge is to bound the size of set L. It is
shown in [9] that the expected number of iterations performed
by the algorithm before termination is at most 2 log n; since
4n/α vertices are added to L in each iteration, the size of the
set L output by the algorithm is at most 8n log n/α.

B. UNWEIGHTED GRAPHS
A stretch-(c, c′) oracle for unweighted graphs returns, for any

pair of vertices at distance d, a path of length at most c · d + c′.
Pǎtraşcu and Roditty [6] designed a constant-time stretch-(2, 1)
oracle of size O(n5/3) for general unweighted graphs. Using
ideas similar to those for weighted graphs, we get a simpler con-
struction for the case of unweighted graphs as well:

THEOREM 5. Given a unweighted undirected graph with n ver-
tices and m edges, there exists a distance oracle of expected size
4n5/3 log2/3 n that returns a stretch-(2, 1) distance in constant time.

Abraham and Gavoille [1] presented a similar construction
and further generalized it for larger stretch values. Due to the

focus on small stretch values, our exposition is slightly simpler
than their. The construction and proofs for the following oracle
is similar to that for weighted graphs with the only difference
that it now suffices to consider ball-ball intersections rather than
ball-vicinity intersections.

B.1 Distance oracle
Our construction of the oracle begins by creating a set L of

vertices using the result of Lemma 2 (the value of α will be
specified later). The oracle stores, for each v ∈ V :

• a hash table storing the exact distance to each vertex in L;

• the nearest vertex ℓ(v) and the ball radius rv; and

• a hash table storing the exact distance to each vertex in the
set Sv = {w : B(v) ∩ B(w) ̸=)}, that is, to each vertex w
whose ball intersects with the ball of v.

Query algorithm. When queried for the distance between
vertices s, t ∈ V , the algorithm returns the exact distance if s ∈ St

or if t ∈ Ss. Else, the algorithm returns d(s,ℓ(s))+ d(t ,ℓ(s)) if
rs ≤ rt and d(t ,ℓ(t))+ d(s,ℓ(t)) otherwise.

B.2 Proof of Theorem 5
As with the proof of Theorem 1, this proof uses two ideas. The

first is used to bound the oracle’s size — we show that if each
vertex has a small size inverse-ball (or equivalently, is contained
in a few balls) as guaranteed by Lemma 2, then the number
of vertex pairs with ball-ball intersection is also small, thereby
bounding
∑

v |Sv |. Second, we show that any pair of vertices
s, t with non-intersecting ball-ball must be rather far away and
either the path s! ℓ(s)! t or the path t ! ℓ(t)! s must be a
stretch-(2, 1) path.

LEMMA 6. Let G = (V, E) be a unweighted undirected graph
with n vertices. For any fixed 1 ≤ α≤ n, if the oracle is constructed
as above, then:

∑
v∈V |Sv | ≤ α

2n.

Proof: For any vertex w ∈ V , let γ(w) be the number of vertex
pairs whose ball-ball intersection contains w; that is, γ(w) =
|{(u, v) : w ∈ B(u) ∩ B(v)}|. Then, by definition, we get that∑

v∈V |Sv | ≤
∑

w∈V γ(w). Recall, using Lemma 2, each vertex
w (deterministically) belongs to at most α balls. Hence, the
number of ball-ball intersections that can occur at w is bounded
by α2; consequently, we have that for any vertex w ∈ V , γ(w)≤
α2. Hence,
∑

v∈V |Sv | ≤
∑

w∈V γ(w)≤ α
2n. "

Proof of Theorem 5. We first bound the size of the oracle.
Using Lemma 2, the expected size of set L is 8n log n/α; and,
using Lemma 6, the size of set

∑
v∈V |Sv | is bounded by α2n.

Hence, the size of the oracle is bounded by 8n2 log n/α+ α2n;
this expression is minimized for α = 2n1/3 log1/3(n), leading to
the desired bound.

Next, we show that the query algorithm returns a distance of
at most 2d(s, t) + 1. If B(s) ∩ B(t) ̸=), the algorithm returns
the exact distance. For the case when B(s)∩ B(t) =), assume,
without loss of generality, that rs ≤ rt . Let P = (s, x1, x2, . . . , t)
be the shortest path between s and t . Let i0 = max{i|xi ∈ P ∩
B(s)}, w = xi0

and w′ = xi0+1. Since w′ /∈ B(s), we get that
d(s, w′) ≥ rs. Since B(s) ∩ B(t) =), we have that w /∈ B(t)
and hence, d(t , w) ≥ rt . Finally, w′ being on the shortest path
between s and t , we have that d(s, t) = d(s, w′) + d(t , w′) =
d(s, w′) + d(t , w)− 1 ≥ rs + rt − 1 ≥ 2rs − 1; or equivalently,
2rs ≤ d(s, t)+1. The distance returned by the query algorithm is
d(s,ℓ(s))+ d(t ,ℓ(s)), which using triangle inequality, is at most
2d(s,ℓ(s))+ d(s, t) = 2rs + d(s, t)≤ 2d(s, t)+ 1, as claimed. "

	Introduction
	Preliminaries
	Distance Oracle
	Proof of Theorem 1

	References
	Informal proof of Lemma 2
	Unweighted graphs
	Distance oracle
	Proof of Theorem 5

