
BlowFish: Dynamic Storage-Performance Tradeoff in Data Stores

Anurag Khandelwal
UC Berkeley

Rachit Agarwal
UC Berkeley

Ion Stoica
UC Berkeley

Abstract
We present BlowFish, a distributed data store that admits
a smooth tradeoff between storage and performance for
point queries. What makes BlowFish unique is its abil-
ity to navigate along this tradeoff curve efficiently at fine-
grained time scales with low computational overhead.

Achieving a smooth and dynamic storage-performance
tradeoff enables a wide range of applications. We apply
BlowFish to several such applications from real-world
production clusters: (i) as a data recovery mechanism dur-
ing failures: in practice, BlowFish requires 5.4⇥ lower
bandwidth and 2.5⇥ lower repair time compared to state-
of-the-art erasure codes, while reducing the storage cost
of replication from 3⇥ to 1.9⇥; and (ii) data stores with
spatially-skewed and time-varying workloads (e.g., due
to object popularity and/or transient failures): we show
that navigating the storage-performance tradeoff achieves
higher system-wide utility (e.g., throughput) than selec-
tively caching hot objects.

1 Introduction
Random access and search are the two fundamental op-
erations performed on modern data stores. For instance,
key-value stores [3, 5, 11, 15, 16, 18, 23, 25] and NoSQL
stores [1, 4, 7, 12, 13, 17, 21, 30] support random access at
the granularity of records. Many of these [1,4,7,17,21,22]
also support search on records. These data stores typically
store an amount of data that is larger than available fast
storage1, e.g., SSD or main memory. The goal then is to
maximize the performance using caching, that is, execut-
ing as many queries in faster storage as possible.

The precise techniques for efficiently utilizing cache
vary from system to system. At a high-level, most data
stores partition the data across multiple shards (par-
titions), with each server potentially storing multiple
shards [1, 7, 21, 23]. Shards may be replicated and cached
across multiple servers and the queries are load balanced
across shard replicas [1, 4, 7, 12, 21].

1To support search, many of these systems store indexes in addition
to the input, which further adds to the storage overhead. We collectively
refer to the indexes combined with the input as “data”.

To cache more shards, many systems use compres-
sion [1, 4, 7, 21]. Unfortunately, compression leads to
a hard tradeoff between throughput and storage for the
cached shards — when stored uncompressed, a shard can
support high throughput but takes a larger fraction of
available cache size; and, when compressed, takes smaller
cache space but also supports lower throughput. Further-
more, switching between these two extreme points on
the storage-performance tradeoff space cannot be done at
fine-grained time scales since it requires compression or
decompression of the entire shard. Such a hard storage-
performance tradeoff severely limits the ability of existing
data stores in many real-world scenarios when the under-
lying infrastructure [28,29], workload [9,10,14,26,31], or
both changes over time. We discuss several such scenarios
from real-world production clusters below (§1.1).

We present BlowFish, a distributed data store that en-
ables a smooth storage-performance tradeoff between the
two extremes (uncompressed, high throughput and com-
pressed, low throughput), allowing fine-grained changes
in storage and performance. What makes BlowFish
unique is that applications can navigate from one oper-
ating point to another along this tradeoff curve dynami-
cally over fine-grained time scales. We show that, in many
cases, navigating this smooth tradeoff has higher system-
wide utility (e.g., throughput per unit of storage) than
existing techniques. Intuitively, this is because BlowFish
allows shards to increase/decrease the storage “fraction-
ally”, just enough to meet the performance goals.

1.1 Applications and summary of results
BlowFish, by enabling a dynamic and smooth storage-
performance tradeoff, allows us to explore several prob-
lems from real-world production clusters from a different
“lens”. We apply BlowFish to three such problems:

Storage and bandwidth efficient data repair during
failures. Existing techniques either require high storage
(replication) or high bandwidth (erasure codes) for data
repair, as shown in Table 1. By storing multiple replicas at
different points on tradeoff curve, BlowFish can achieve
the best of the two worlds — in practice, BlowFish re-
quires storage close to erasure codes while requiring re-

1

Table 1: Storage and bandwidth requirements for erasure
codes, replication and BlowFish for data repair during failures.

Erasure Replication BlowFish
(RS) Code

Storage 1.2⇥ 3⇥ 1.9⇥
Repair

Bandwidth 10⇥ 1⇥ 1⇥

pair bandwidth close to replication. System state is re-
stored by copying one of the replicas and navigating along
the tradeoff curve. We explore the corresponding storage-
bandwidth-throughput tradeoffs in §4.2.

Skewed workloads. Existing data stores can benefit sig-
nificantly using compression [1, 4, 7, 12, 21]. However,
these systems lose their performance advantages in case
of dynamic workloads where (i) the set of hot objects
changes rapidly over time [9, 14, 26, 31], and (ii) a single
copy is not enough to efficiently serve a hot object. Studies
from production clusters have shown that such workloads
are a norm [9, 10, 14, 26, 31]. Selective caching [8], that
caches additional replicas for hot objects, only provides
coarse-grained support to handle dynamic workloads —
each replica increases the throughput by 2⇥ while incur-
ring an additional storage overhead of 1⇥.

BlowFish not only provides a finer-grained tradeoff (in-
creasing the storage overhead fractionally, just enough
to meet the performance goals), but also achieves a bet-
ter tradeoff between storage and throughput than selec-
tive caching of compressed objects. We show in §4.3 that
BlowFish achieves 2.7–4.9⇥ lower storage (for compa-
rable throughput) and 1.5⇥ higher throughput (for fixed
storage) compared to selective caching.

Time-varying workloads. In some scenarios, production
clusters delay additional replica creation to avoid unnec-
essary traffic (e.g., for 15 minutes during transient fail-
ures [28, 29]). Such failures contribute to 90% of the fail-
ures [28, 29] and create high temporal load across re-
maining replicas. We show that BlowFish can adapt to
such time-varying workloads even for spiked variations
(as much as by 3⇥) by navigating along the storage-
performance tradeoff in less than 5 minutes (§4.4).

1.2 BlowFish Techniques
BlowFish builds upon Succinct [7], a system that sup-
ports queries on compressed data2. At a high-level, Suc-
cinct stores two sampled arrays, whose sampling rate acts
as a proxy for the compression factor in Succinct. Blow-

2Unlike Succinct, BlowFish does not enforce compression; some
points on the tradeoff curve may have storage comparable to systems
that store indexes along with input data.

Fish introduces Layered Sampled Array (LSA), a new data
structure that stores sampled arrays using multiple layers
of sampled values. Each combination of layers in LSA
correspond to a static configuration of Succinct. Layers in
LSA can be added or deleted transparently, independent
of existing layers and query execution, thus enabling dy-
namic navigation along the tradeoff curve.

Each shard in BlowFish can operate on a different
point on the storage-performance tradeoff curve. This
leads to several interesting problems: how should shards
(within and across servers) share the available cache?
How should shard replicas share requests? BlowFish
adopts techniques from scheduling theory, namely back-
pressure style Join-the-shortest-queue [19] mechanism, to
resolve these challenges in a unified and near-optimal
manner. Shards maintain request queues that are used both
to load balance queries as well as to manage shard sizes
within and across servers.

In summary, this paper makes three contributions:

• Design and implementation of BlowFish, a distributed
data store that enables a smooth storage-performance
tradeoff, allowing fine-grained changes in storage and
performance for each individual shard.

• Enables dynamic adaptation to changing workloads by
navigating along the smooth tradeoff curve at fine-
grained time scales.

• Uses techniques from scheduling theory to perform
load balancing and shard management within and
across servers.

2 BlowFish Overview
We briefly describe Succinct data structures in §2.1, with a
focus on how BlowFish transforms these data structures to
enable the desired storage-performance tradeoff. We then
discuss the storage model and target workloads for Blow-
Fish (§2.2). Finally, we provide a high-level overview of
BlowFish design (§2.3).

2.1 Succinct Background
Succinct internally supports random access and search on
flat unstructured files. Using a simple transformation from
semi-structured data to unstructured data [7], Succinct
supports queries on semi-structured data, that is, a col-
lection of records. Similar to other key-value and NoSQL
stores [1,3,4,12,15,21,23], each record has a unique iden-
tifier key, and a potentially multi-attribute value. Suc-
cinct supports random access via get, put and delete
operations on keys; in addition, applications can search
along individual attributes in values.

2

Succinct supports random access and search using four
data structures — Array-of-Suffixes (AoS), Input2AoS,
AoS2Input and NextCharIdx (see Figure 1). AoS stores
all suffixes in the input file in lexicographically sorted or-
der. Input2AoS enables random access by mapping off-
sets in the input file to corresponding suffixes in the AoS.
AoS2Input enables search by mapping suffixes in AoS to
corresponding offsets in the input file. The Input2AoS and
AoS2Input arrays do not possess any special structure,
and require ndlogne space each for a file with n charac-
ters (since each entry is an integer in range 0 to n� 1);
Succinct reduces their space requirement using sampling.
The fourth array, NextCharIdx, allows computing unsam-
pled values in Input2AoS and AoS2Input. The AoS and
the NextCharIdx arrays have certain structural properties
that enable a compact representation. The description of
AoS, NextCharIdx, and their compact representations is
not required to keep the paper self-contained; we refer the
reader to [7]. We provide necessary details on representa-
tion of Input2AoS and AoS2Input below.

Sampled Arrays: Storage versus Performance. Suc-
cinct reduces the space requirements of Input2AoS and
AoS2Input using sampling — only a few sampled values
(e.g., for sampling rate a , value at indexes 0,a,2a, ..)
from these two arrays are stored. NextCharIdx allows
computing unsampled values during query execution.

The tradeoff is that for a sampling rate of a , the
storage requirement for Input2AoS and AoS2Input is
2ndlogne/a and the number of operations required for
computing each unsampled value is a .

Succinct thus has a fixed small storage cost for AoS and
NextCharIdx, and the sampling rate a acts as a proxy for
overall storage and performance in Succinct.

2.2 BlowFish data model and assumptions
BlowFish enables the same functionality as Succinct
(§2.1) — support for random access and search queries
on flat unstructured files, with extensions for key-value
stores and NoSQL stores.

Assumptions. BlowFish makes two assumptions. First,
systems are limited by capacity of faster storage, that is
operate on data sizes that do not fit entirely into the fastest
storage. Indeed, indexes to support search queries along
with the input data makes it hard to fit the entire data in
fastest storage especially for purely in-memory data stores
(e.g., Redis [5], MICA [23], RAMCloud [25]). Second,
BlowFish assumes that data can be sharded in a manner
that a query does not require touching each server in the
system. Most real-world datasets and query workloads ad-
mit such sharding schemes [14, 26, 31].

$
ato$

mato$
o$

omato$
to$

tomato$

0
1
2
3
4
5
6

AoS

t
o
m
a
t
o
$

Input

6
4
2
1
5
3
0

Input2Aos

(a)

$
ato$

mato$
o$

omato$
to$

tomato$

0
1
2
3
4
5
6

AoS

0
1
2
3
4
5
6

t
o
m
a
t
o
$

Input

6
3
2
5
1
4
0

AoS2Input

(b)

Figure 1: AoS stores suffixes in the input in lexicographically
sorted order. (a) Input2AoS maps each index in the input to the
index of the corresponding suffix in AoS. (b) Aos2Input maps
each suffix index in AoS to the corresponding index in the input.

2.3 BlowFish Design Overview
BlowFish uses a system architecture similar to existing
data stores, e.g., Cassandra [21] and ElasticSearch [1].
Specifically, BlowFish comprises of a set of servers that
store the data as well as execute queries (see Figure 2).
Each server shares a similar design, comprising of mul-
tiple data shards (§3.1), a request queue per shard that
keeps track of outstanding queries, and a special module
server handler that triggers navigation along the storage-
performance curve and schedules queries (§3.2).

Each shard admits the desired storage-performance
tradeoff using Layered Sampled Array (LSA), a new data
structure that allows transparently changing the sampling
factor a for Input2AoS and AoS2Input over fine-grained
time scales. Smaller values of a indicate higher stor-
age requirements, but also lower latency (and vice versa).
Layers can be added and deleted without affecting exist-
ing layers or query execution thus enabling dynamic navi-
gation along the tradeoff curve. We describe LSA and the
layer addition-deletion process in LSA in §3.1.

BlowFish allows each shard to operate at a different op-
erating point on the storage-performance tradeoff curve
(see Figure 3). Such a flexibility comes at the cost of
increased dynamism and heterogeneity in system state.
Shards on a server can have varying storage footprint and
as a result, varying throughput. Moreover, storage foot-
print and throughput may vary across shard replicas. How
should shards (within and across servers) share the avail-
able cache? How should shard replicas share requests?
When should a shard trigger navigation along the storage-
performance tradeoff curve?

3

search(string str)

Server
Handler

{Search result,Queue lengths}

. . .

Server
Handler

Server
Handler

Server
Handler

Figure 2: Overall BlowFish architecture. Each server has an architecture similar to the one shown in Figure 3. Queries are
forwarded by Server Handlers to appropriate servers, and query responses encapsulate both results and queue lengths at that server.

Server
Handler

Server
Handler

Figure 3: Main idea behind BlowFish: (left) the state of the system at some time t; (right) the state of the shards after BlowFish
adapts — the shards that have longer outstanding queue lengths at time t adapt their storage footprint to a larger one, thus serving
larger number of queries per second than at time t; the shards that have smaller outstanding queues, on the other hand, adapt their
storage footprint to a smaller one thus matching the respective load.

BlowFish adopts techniques from scheduling theory,
namely Join-the-shortest-queue [19] mechanism, to re-
solve the above questions in a unified manner. BlowFish
servers maintain a request queue per shard, that stores out-
standing requests for the respective shard. A server han-
dler module periodically monitors request queues for lo-
cal shards, maintains information about request queues
across the system, schedules queries and triggers naviga-
tion along the storage-performance tradeoff curve.

Upon receiving a query from a client for a particu-
lar shard, the server handler forwards the query to the
shard replica with shortest request queue length. All in-
coming queries are enqueued in the request queue for the
respective shard. When the load on a particular shard is no
more than its throughput at the current operating point on
the storage-performance curve, the queue length remains
minimal. On the other hand, when the load on the shard
increases beyond the supported throughput, the request
queue length for this shard increases (see Figure 3 (left)).
Once the request queue length crosses a certain thresh-
old, the navigation along the tradeoff curve is triggered
either using the remaining storage on the server or by re-
ducing the storage overhead of a relatively lower loaded
shard. BlowFish internally implements a number of op-
timizations for selecting navigation triggers, maintaining
request hysteresis to avoid unnecessary oscillations along
the tradeoff curve, storage management during navigation
and ensuring correctness in query execution during the
navigation. We discuss these design details in §3.2.

3 BlowFish Design
We start with the description of Layered Sampled Array
(§3.1) and then discuss the system details (§3.2).

3.1 Layered Sampled Array
BlowFish enables a smooth storage-performance trade-
off using a new data structure, Layered Sampled Ar-
ray (LSA), that allows dynamically changing the sam-
pling factor in the two sampled arrays — Input2AoS and
AoS2Input. We describe LSA below.

Consider an array A, and let SA be another array that
stores a set of sampled-by-index values from A. That is,
for sampling rate a , SA[idx] stores A value at index
a⇥idx. For instance, if A = {6, 4, 3, 8, 9, 2}, the
sampled-by-index array with sampling rate 4 and 2 are
SA4 = {6, 9} and SA2 = {6, 3, 9}, respectively.

LSA emulates the functionality of SA, but stores the
sampled values in multiple layers, together with a few
auxiliary structures (Figure 4). Layers in LSA can be
added or deleted transparently without affecting the ex-
isting layers. Addition of layers results in higher storage
(lower sampling rate a) and lower query latency; layer
deletion, on the other hand, reduces the storage but also
increases the query latency. Furthermore, looking up a
value in LSA is agnostic to the existing layers, indepen-
dent of how many and which layers exist (pseudo code in
Appendix A). This allows BlowFish to navigate along the
storage-performance curve without any change in query
execution semantics compared to Succinct.

4

Idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Values 9 11 15 2 3 1 0 6 12 13 8 7 14 4 5 10

LayerID
Exists

Layer?

8 1 9 12
4 1 3 14

2 1 15 0 8 5

LayerID 8 2 4 2 8 2 4 2
LayerIdx 0 0 0 1 1 2 1 3

LayerID 8 4 2
Count 1 1 2

Figure 4: Illustration of Layered Sampled Array (LSA). The original unsampled array is shown above the dashed line (gray values
indicate unsampled values). In LSA, each layer stores values for sampling rate given by LayerID, modulo values that are already
stored in upper layers (in this example, sampling rates 8,4,2). Layers are added and deleted at the bottom; that is, LayerID=2 will
be added if and only if all layers with sampling rate 4,8,16, .. exist. Similarly, LayerID=2 will be the first layer to be deleted. The
ExistsLayer bitmap indicates whether a particular layer exists (1) or not (0). LayerID and ExistsLayer allow checking whether
or not value at any index idx is stored in LSA — we find the largest existing LayerID that is a proper divisor of idx. Note that
among every consecutive 8 values in original array, 1 is stored in topmost layer, 1 in the next layer and 2 in the bottommost layer.
This observation allows us to find the index into any layer LayerIdx where the corresponding sampled value is stored.

Layer Addition. The design of LSA as such allows ar-
bitrary layers (in terms of sampling rates) to coexist; fur-
thermore, layers can be added or deleted in arbitrary order.
However, our implementation of LSA makes two simplifi-
cations. First, layers store sampled values for indexes that
are power of two. Second, new layers are always added at
the bottom. The rationale is that these two simplifications
induce a certain structure in LSA, that makes the increase
in storage footprint as well as time taken to add the layer
very predictable. In particular, under the assumption that
the unsampled array is of length n = 2k for some inte-
ger k, the number of sampled values stored at any layer is
equal to the cumulative number of sampled values stored
in upper layers (see Figure 4). If the sampling rate for
the new layer is a , then this layer stores precisely n/2a
sampled values; thus, the increase in storage becomes pre-
dictable. Moreover, since the upper layers constitute sam-
pling rate 2a , computing each value in the new layer re-
quires 2a operations (§2.1). Hence, adding a layer takes a
fixed amount of time independent of the sampling rate of
layer being added.

BlowFish supports two modes for creating new layers.
In dedicated layer construction, the space is allocated for
a new layer3 and dedicated threads populate values in the
layer; once all the values are populated the ExistsLayer
bit is set to 1. The additional compute resources required

3using free unused cache or by deleting layers from relatively lower
loaded shards, as described in §3.2.4.

in dedicated layer construction may be justified if the time
spent in populating the new layer is smaller than the pe-
riod of increased throughput experienced by the shard(s).
However, such may not be the case for many scenarios.

The second mode for layer creation in BlowFish is op-
portunistic layer construction. This mode exploits the fact
that the unsampled values for the two arrays are com-
puted on the fly during query execution. A subset of the
these values are the ones to be computed for populating
the new layer. Hence, the query execution phase can be
used to populate the new layer without using dedicated
threads. The challenge in this mode is when to update the
ExistsLayer flag — if set during the layer creation, the
queries may incorrectly access values that have not yet
been populated; on the other hand, the layer may remain
unused if the flag is set after all the values are populated.
BlowFish handles this situation by using a bitmap that
stores a bit per sampled value for that layer. A set bit in-
dicates that the value has already been populated and vice
versa. The algorithm for opportunistic layer construction
is outlined in Algorithm 2 in Appendix A.

It turns out that opportunistic layer construction per-
forms really well for real-world workloads that typically
follow a zipf-like distribution (repeated queries on certain
objects). Indeed, the required unsampled values are com-
puted during the first execution of a query and are thus
available for all subsequent executions of the same query.
Interestingly, this is akin to caching the query results with-
out any explicit query result caching implementation.

5

Layer Deletion. Deleting layers is relatively easier in
BlowFish. To maintain consistency with layer additions,
layer deletion proceeds from the bottom most layer. Layer
deletions are computationally inexpensive, and do not re-
quire any special strategy. Upon the request for layer dele-
tion, the ExistsLayer bitmap is updated to indicate that
the corresponding layer is no longer available. Subsequent
queries, thus, stop accessing the deleted layer. In order to
maintain safety, we delay the memory deallocation for a
short period of time after updating the ExistsLayer flag.

3.2 BlowFish Servers
We now provide details on the design and implementation
of BlowFish servers.

3.2.1 Server Components
Each BlowFish server has three main components (see
Figure 2 and Figure 3):

Data shards. Each server stores multiple data shards, typ-
ically one per CPU core. Each shard stores the two sam-
pled arrays — Input2AoS and AoS2Input — using LSA,
along with other data structures in Succinct. This enables
a smooth storage-performance tradeoff, as described in
§3.1. The aggregate storage overhead of the shards may
be larger than available main memory. Each shard is mem-
ory mapped; thus, only the most accessed shards may be
paged into main memory.

Request Queues. BlowFish servers maintain a queue
of outstanding queries per shard, referred to as request
queues. The length of request queues provide a rough ap-
proximation to the load on the shard — larger request
queue lengths indicate a larger number of outstanding re-
quests for the shard, implying that the shard is observing
more queries than it is able to serve (and vice versa).

Server Handler. Each server in BlowFish has a server
handler module that acts as an interface to clients as well
as other server handlers in the system. Each client con-
nects to one of the server handlers that handles the client
query (similar to Cassandra [21]). The server handler in-
teracts with other server handlers to execute queries and to
maintain the necessary system state. BlowFish server han-
dlers are also responsible for query scheduling and load
balancing, and for making decisions on how shards share
the cache available at the local server. We discuss these
functionalities below.
3.2.2 Query execution
Similar to existing data stores [1, 4, 21], an incoming
query in BlowFish may touch one or more shards depend-
ing on the sharding scheme. The server handler handling
the query is responsible for forwarding the query to the

server handler(s) of the corresponding shard(s); we dis-
cuss query scheduling across shard replicas below. When-
ever possible, the query results from multiple shards on
the same server are aggregated by the server handler.

Random access and search. BlowFish does not require
changes in Succinct algorithms for executing queries at
each shard, with the exception of looking up values in
sampled arrays4. In particular, since the two sampled ar-
rays in Succinct — Input2AoS and AoS2Input — are
replaced by LSA, the corresponding lookup algorithms
are replaced by lookup algorithms for LSA (§2.3, Fig-
ure 4). We note that, by using ExistsLayer flag, Blow-
Fish makes LSA lookup algorithms transparent to existing
layers and query execution.

Updates. BlowFish implements data appends exactly as
Succinct [7] does. Specifically, BlowFish uses a multi-
store architecture with a write-optimized LogStore that
supports fine-grained appends, a query-optimized Suffix-
Store that supports bulk appends and a memory-optimized
SuccinctStore. LogStore and SuffixStore, for typical clus-
ter configurations, store less than 0.1% of the entire
dataset (the most recently added data). BlowFish does not
require changes in LogStore and SuffixStore implemen-
tation, and enables the storage-performance tradeoff for
data only in SuccinctStore. Since the storage and the per-
formance of the system is dominated by SuccinctStore,
the storage-performance tradeoff curve of BlowFish is not
impacted by update operations.

3.2.3 Scheduling and Load Balancing
BlowFish server handlers maintain the request queue
lengths for each shard in the system. Each server han-
dler periodically monitors and records the request queue
lengths for local shards. For non-local shards, the request
queue lengths are collected during the query phase —
server handlers encapsulate the request queue lengths for
their local shards in the query responses. Upon receiving a
query response, a server handler decapsulates the request
queue lengths and updates its local metadata to record the
new lengths for the corresponding shards.

Each shard (and shard replica) in BlowFish may oper-
ate on a different point on the storage-performance curve
(Figure 3). Thus, different replicas of the same shard may
have different query execution time for the same query. To
efficiently schedule queries across such a heterogeneous
system, BlowFish adopts techniques from scheduling the-
ory literature — a back-pressure scheduling style Join-
the-shortest-queue [19] mechanism. An incoming query

4The description of these algorithms is not required to keep the paper
self-contained; we refer the reader to [7] for details.

6

for a shard is forwarded to the replica with the small-
est request queue length. By conceptually modeling this
problem as replicas having the same speed but varying
job sizes (for the same query), the analysis for Join-the-
shortest-queue [19] applies to BlowFish, implying close
to optimal load balancing.

3.2.4 Dynamically Navigating the Tradeoff
BlowFish uses the request queues not only for scheduling
and load balancing, but also to trigger navigation along
the storage-performance tradeoff curve for each individ-
ual shard. We discuss below the details on tradeoff naviga-
tion, and how this enables efficient cache sharing among
shards within and across servers.

One challenge in using request queue lengths as an ap-
proximation to load on the shard is to differentiate short-
term spikes from persistent overloading of shards (Fig-
ure 5). To achieve this, BlowFish server handlers also
maintain exponentially averaged queue lengths for each
local shard — the queue lengths are monitored every d
time units, and the exponentially averaged queue length
at time t is computed as:

Qavg
t = b ⇥Qt +(1�b)⇥Qavg

t�d (1)

The parameters b and d provide two knobs for approx-
imating the load on a shard based on its request queue
length. b is a fraction (b < 1) that determines the con-
tribution of more recent queue length values to the av-
erage — larger b assigns higher weight to more recent
values in the average. d is the periodicity at which queue
lengths are averaged — smaller values of d (i.e., more
frequent averaging) results in higher sensitivity to bursts
in queue length. Note that a small exponentially average
queue length implies a persistently underloaded shard.

We now describe how shards share the available cache
within and across servers by dynamically navigating
along the storage-performance tradeoff curve. We start
with the relatively simpler case of shards on the same
server, and then describe the case of shards across servers.

Shards on the same server. Recall that BlowFish imple-
mentation adds and deletes layers in a bottom-up fash-
ion, with each layer storing sampled values for powers
of two. Thus, at any instant, the sampling rate of LSA
is a power of two (2,4,8, . . .). For each of these sam-
pling rates, BlowFish stores two threshold values. The
upper threshold value is used to trigger storage increase
for any particular shard — when the exponentially aver-
aged queue length of a shard S crosses the upper thresh-
old value, S must be consistently overloaded and must in-
crease its throughput.

However, the server may not have extra cache to sustain
the increased storage for S. For such scenarios, BlowFish

Q(t)

t(a)

Q(t)

t(b)

Q(t)

t(c)

Figure 5: Three different scenarios of queue length (Q(t))
variation with time (t). (a) shows a very short-lasting “spike”,
(b) shows a longer lasting spike while (c) shows a persistent
“plateau” in queue-length values. BlowFish should ideally ig-
nore spikes as in (a) and attempt to adapt to the queue length
variations depicted in (b) and (c).

stores a lower threshold value which is used to trigger
storage reduction. In particular, if the exponentially av-
eraged queue length and the instantaneous request queue
length for one of the other shards S’ on the same server
is below the lower threshold, BlowFish reduces the stor-
age for S’ before triggering the storage increase for S. If
there is no such S’, the server must already be throughput
bottlenecked and the navigation for S is not triggered.

We make two observations. First, the goals of expo-
nentially averaged queue lengths and two threshold val-
ues are rather different: the former makes BlowFish stable
against temporary spikes in load, while the latter against
“flap damping” of load on the shards. Second, under stable
loads, the above technique for triggering navigation along
the tradeoff curve allows each shard on the same server to
share cache proportional to its throughput requirements.

Shard replicas across servers. At the outset, it may seem
like shards (and shard replicas) across servers need to co-
ordinate among themselves to efficiently share the total
system cache. It turns out that local cache sharing, as
described above, combined with BlowFish’s scheduling
technique implicitly provides such a coordination.

Consider a shard S with two replicas R1 and R2, both
operating at the same point on the tradeoff curve and hav-
ing equal queue lengths. The incoming queries are thus
equally distributed across R1 and R2. If the load on S
increases gradually, both R1 and R2 will eventually ex-
perience load higher than the throughput they can sup-
port. At this point, the request queue lengths at R1 and R2
start building up at the same rate. Suppose R2 shares the
server with other heavily loaded shards (that is, R2 can
not navigate up the tradeoff curve). BlowFish will then
trigger a layer creation for R1 only. R1 can thus support
higher throughput and its request queue length will de-
crease. BlowFish’s scheduling technique kicks in here: in-
coming queries will now be routed to R1 rather than equal
load balancing, resulting in lower load at R2. It is easy to
see that at this point, BlowFish will load balance queries
to R1 and R2 proportional to their respective throughputs.

7

4 Evaluation
BlowFish is implemented in ⇡ 2K lines of C++ on top of
Succinct [7]. We apply BlowFish to application domains
outlined in §1.1 and compare its performance against
state-of-the-art schemes for each application domain.

Evaluation Setup. We describe the setup used for each
application in respective subsections. We describe here
what is consistent across all the applications: dataset
and query workload. We use the TPC-H benchmark
dataset [6], that consists of records with 8 byte keys and
roughly 140 byte values on an average; the values com-
prise of 15 attributes (or columns). We note that several
of our evaluation results are independent of the underly-
ing dataset (e.g., bandwidth for data repair, time taken to
navigate along the tradeoff curve, etc.) and depend only
on amount of data per server.

We use a query workload that comprises of 50% ran-
dom access queries and 50% search queries; we discuss
the impact of varying the fraction of random access and
search queries in §4.1. Random access queries return the
entire value, given a key. Search queries take in an (at-
tribute, value) pair and return all keys whose entry for the
input attribute matches the value. We use three query dis-
tributions in our evaluation for generating queries over the
key space (for random access) and over the attribute val-
ues (for search). First, uniform distribution with queries
distributed uniformly across key space and attribute val-
ues; this essentially constitutes a worst-case scenario for
BlowFish5. The remaining two query workloads follow
Zipf distribution with skewness 0.99 (low skew) and 0.01
(heavily skewed), the last one constituting the best-case
scenario for BlowFish.

All our distributed experiments run on Amazon EC2
cluster comprising of c3.2xlarge servers, with 15GB
RAM backed by two 80GB SSDs and 8 vCPUs. Unless
mentioned otherwise, all our experiments shard the input
data into 8GB shards and use one shard per CPU core.

4.1 Storage Performance Tradeoff
We start by evaluating the storage-performance tradeoff
curve enabled by BlowFish. Figure 6 shows this tradeoff
for query workload comprising of 50% random access and
50% search queries; Appendix B presents the curves for
other workloads. Note that the tradeoff for mixed work-
load has characteristics similar to 100% searchworkload
(Appendix B) since, similar to other systems, execution
time for search is significantly higher than random access.
The throughput is, thus, dominated by search latency.

5Intuitively, queries distributed uniformly across shards and across
records alleviates the need for shards having varying storage footprints.

 1

 10

 20

 30

 40

 50

 60

 70

 0 0.25 0.5 0.75 1 1.25 1.5

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

BlowFish footprint / Input Size

Figure 6: Storage-throughput tradeoff curve (per thread) en-
abled by BlowFish. The y-axis is normalized by the throughput
of smallest possible storage footprint (71ops) in BlowFish.

We make two observations in Figure 6. First, BlowFish
achieves storage footprint varying from 0.5⇥ to 8.7⇥ the
input data size (while supporting search functionality; the
figure shows only up to 1.5⇥ the data size for clarity)6. In
particular, BlowFish does not enforce compression. Sec-
ond, increase in storage leads to super-linear increase in
throughput (moving from ⇡ 0.5 to ⇡ 0.75 leads to 20⇥
increase in throughput) due to non-linear computational
cost of operating on compressed data [7].

4.2 Data Repair During Failures
We now apply BlowFish to the first application: efficient
data recovery upon failures.

Existing techniques and BlowFish tradeoffs. Two tech-
niques exist for data repair during failures: replication and
erasure codes. The main tradeoff is that of storage and
bandwidth, as shown in Table 1. Note that this tradeoff
is hard; that is, for both replication and erasure codes,
the storage overhead and the bandwidth for data repair is
fixed for a fixed fault tolerance. We discuss related work
in §5, but note that erasure codes remain inefficient for
data stores serving small objects due to high repair time
and/or bandwidth requirements.

4.2.1 Experimental Setup
We perform evaluation along four metrics: storage over-
head, bandwidth and time required for data repair, and
throughput before and during failures. Since none of the
open-source data stores support erasure codes, we use an
implementation of Reed-Solomon (RS) codes [2]. The
code use 10 data blocks and 2 parity blocks, similar to
those used at Facebook [24, 29], but for two failure case.
Accordingly, we use 3⇥ replication. For BlowFish, we
use an instantiation that uses three replicas with storage
0.9⇥,0.5⇥ and 0.5⇥, aggregating to 1.9⇥ storage — an
operating point between erasure codes and replication.

6The smallest footprint is 0.5⇥ since TPC-H data is not very com-
pressible, achieving compression factor of 3.1 using gzip.

8

50

100

150
B

an
dw

id
th

U
sa

ge
(G

B
)

EC Rep BlowFish

(a) Bandwidth

Transfer Reconstruction

10

30

50

R
ep

ai
rt

im
e

(m
in

s)

EC Rep BlowFish

(b) Repair Time

EC Rep BlowFish

50

100

150

Th
ro

ug
hp

ut
(K

O
ps

)

Before During

(c) Throughput

Figure 7: Comparison of BlowFish against RS erasure codes and replication (discussion in §4.2.2). BlowFish requires 5.4⇥ lower
bandwidth for data repair compared to erasure codes, leading to 2.5⇥ faster repair time. BlowFish achieves throughput comparable
to erasure codes and replication under no failures, and 1.4�1.8⇥ higher throughput during failures.

We use 12 server EC2 cluster to put data and parity
blocks on separate servers; each server contains both data
and parity blocks, but not for the same data. Replicas
for replication and BlowFish were also distributed simi-
larly. We use 160GB of total raw data distributed across
20 shards. The corresponding storage for erasure codes,
replication and BlowFish is, thus, 192, 480 and 310GB.
Note that the cluster has 180GB main memory. Thus, all
data shards for erasure codes fit in memory, while a part of
BlowFish and replication data is spilled to disk (modeling
storage-constrained systems).

We use uniform query distribution (across shards and
across records) for throughput results. Recall that this dis-
tribution constitutes a worst-case scenario for BlowFish.
We measure the throughput for the mixed 50% random
access and 50% search workload.

4.2.2 Results

Storage and Bandwidth. As discussed above, RS codes,
replication and BlowFish have a storage overhead of
1.2⇥, 3⇥ and 1.9⇥. In terms of bandwidth, we note that
the three schemes require storing 16,40 and 26GB of data
per server, respectively. Figure 7(a) shows the correspond-
ing bandwidth requirements for data repair for the three
schemes. Note that while erasure codes require 10⇥ band-
width compared to replication for each individual failed
shard, the overall bandwidth requirements are less than
10⇥ since each server in erasure coded case also stores
lesser data due to lower storage footprint of erasure codes
(best case scenario for erasure codes along all metrics).

Repair time. The time taken to repair the failed data is a
sum of two factors — time taken to copy the data required
for recovery (transfer time), and computations required by
the respective schemes to restore the failed data (recon-
struction time). Figure 7(b) compares the data repair time
for BlowFish against replication and RS codes.

RS codes require roughly 5⇥ higher transfer time com-
pared to BlowFish. Although erasure codes read the re-
quired data in parallel from multiple servers, the access
link at the server where the data is being collected be-
comes the network bottleneck. This is further exacerbated
since these servers are also serving queries. The decod-
ing time of RS codes is similar to reconstruction time for
BlowFish. Overall, BlowFish is roughly 2.5⇥ faster than
RS codes and 1.4⇥ slower than replication in terms of
time taken to restore system state after failures.

Throughput. The throughput results for the three
schemes expose an interesting tradeoff (see Figure 7(c)).

When there are no failures, all the three schemes
achieve comparable throughput. This is rather non-
intuitive since replication has three replicas to serve
queries while erasure codes have only one and Blow-
Fish has replicas operating at smaller storage footprints.
However, recall that the cluster is bottlenecked by the ca-
pacity of faster storage. If we load balance the queries
in replication and in BlowFish across the three replicas,
many of these queries are executed off SSD, thus reduc-
ing the overall system throughput (much more for repli-
cation since many more queries are executed off SSD). To
that end, we evaluated the case of replication and Blow-
Fish where queries are load balanced to only one replica;
in this case, as expected, all the three schemes achieve
comparable throughput.

During failures, the throughput for both erasure codes
and replication reduces significantly. For RS codes, 10
out of (remaining) 11 servers are used to both read the
data required for recovery as well as to serve queries. This
severely affects the overall RS throughput (reducing it by
2⇥). For replication, note that the amount of failed data
is 40GB (five shards). Recovering these shards results in
replication creating two kinds of interference: interfering

9

2.5

5

7.5

Lo
ad

(K
O

ps
)

Shard ID 4 8 12 16 20

(a) Load distribution across shards

40

80

120

Th
ro

ug
hp

ut
(K

O
ps

)

Sel. Rep. BlowFish Ideal

(b) Throughput for a fixed storage

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8

S
ys

te
m

 S
to

ra
g

e
 /

 I
n

p
u

t
S

iz
e

Load (x 100Kops)

Sel. Rep.
BlowFish

(c) Storage required to sustain load

Figure 8: Comparison of BlowFish and selective caching for skewed workload application. See §4.3 for discussion.

with queries being answered on data unaffected by fail-
ures and queries answered on failed server now being an-
swered off-SSD from remaining servers. This interference
reduces the replication throughput by almost 33%. Note
that both these interferences are minimal in BlowFish:
fewer shards need be constructed, thus fewer servers are
interfered with, and fewer queries go to SSD. It turns out
that the interference is minimal, and BlowFish observes
minimal throughput reduction (less than 12%) during fail-
ures. As a result, BlowFish throughput during failures is
is 1.4�1.8⇥ higher than the other two schemes.

4.3 Skewed Workloads
We now apply BlowFish to the problem of efficiently uti-
lizing the system cache for workloads with skewed query
distribution across shards (e.g., more queries on hot data
and fewer queries on warm data). The case of skew across
shards varying with time is evaluated in next subsection.

State-of-the-art. The state-of-the-art technique for han-
dling spatially-skewed workloads in Selective caching [8]
that caches, for each object, number of replicas propor-
tional to the load on the object.

4.3.1 Experimental Setup
We use 20 data shards, each comprising of 8GB of raw
data, for this experiment. We compare BlowFish and Se-
lective caching using two approaches. In the first ap-
proach, we fix the cluster (amount of fast storage) and
measure the maximum possible throughput that each
scheme can sustain. In the second approach, we vary the
load for the two schemes and compute the amount of fast
storage required by each scheme to sustain that load.

For the former, we use a cluster with 8 EC2 servers. A
large number of clients generate queries with a Zipf dis-
tribution with skewness 0.01 (heavily skewed) across the
shards. As shown in Figure 8(a), the load on the heaviest
shard using this distribution is 20⇥ the load on the light-
est shard — this models the real-world scenario of a few

shards being “hot” and most of the shards being “cold”.
For selective caching, each shard has number of replicas
proportional to its load (recall, total storage is fixed); for
BlowFish, the shard operates at a point on the tradeoff
curve that can sustain the load with minimal storage over-
head. We distribute the shards randomly across the avail-
able servers. For the latter, we vary the load and compute
the amount of fast storage required by the two schemes
to meet the load assuming that the entire data fits in fast
storage. Here, we increase the number of shards to 100 to
perform computations for a more realistic cluster size.

4.3.2 Results

For fixed storage. The storage required for selective
caching and BlowFish to meet the load is 155.52GB
and 118.96GB, respectively. Since storage is constrained,
some shards in selective caching can not serve queries
from faster storage. Intuitively, this is because BlowFish
provides a finer-grained tradeoff (increasing the storage
overhead fractionally, just enough to meet the perfor-
mance goals) compared to the coarse-grained tradeoff of
selective replication (throughput can be increased only by
2⇥ by adding another replica requiring 1⇥ higher storage
overhead). Thus, BlowFish utilizes the available system
cache more efficiently. Figure 8(b) shows that this leads
to BlowFish achieving 1.5⇥ higher throughput than selec-
tive caching. Interestingly, BlowFish achieves 89% of the
ideal throughput, where the ideal is computed by taking
into account the load skew across shards, the total system
storage, the maximum possible per-shard throughput per
server, and by placing heavily loaded shards with lightly
loaded shards. The remaining 11% is attributed to the ran-
dom placement of shards across servers, resulting in some
servers being throughput bottlenecked.

Fixed load. Figure 8(c) shows that, as expected, BlowFish
requires 2.7 – 4.9⇥ lower amount of fast storage com-
pared to selective caching to sustain the load.

10

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120

L
o
a
d
 (

K
O

p
s)

,
T

h
ro

u
g
h
p
u
t
(K

O
p
s)

Time (mins)

load
throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120
 0

 50

 100

 150

 200

 250

L
o
a
d
 (

K
O

p
s)

Q
u
e
u
e
 L

e
n
g
th

 (
K

O
p
s)

Time (mins)

load
queue-length

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

L
o
a
d
 (

K
O

p
s)

S
to

ra
g
e
 R

a
tio

Time (mins)

load
storage-ratio

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120

L
o
a
d
 (

K
O

p
s)

,
T

h
ro

u
g
h
p
u
t
(K

O
p
s)

Time (mins)

load
throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

L
o
a
d
 (

K
O

p
s)

Q
u
e
u
e
 L

e
n
g
th

 (
K

O
p
s)

Time (mins)

load
queue-length

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

L
o
a
d
 (

K
O

p
s)

S
to

ra
g
e
 R

a
tio

Time (mins)

load
storage-ratio

Figure 9: Opportunistic layer construction with spiked changes in load for uniform workload (top three) and skewed workload
(bottom three). The figures show variation in throughput (left), request queue length (center) and storage footprint (right).

4.4 Time-varying workloads
We now evaluate BlowFish’s ability to adapt to time-
varying load, in terms of time taken to adapt and queue
stability. We also evaluate the performance of BlowFish’s
scheduling technique during such time-varying loads.

4.4.1 Experimental Setup
We perform micro-benchmarks to focus on adaptation
time, queue stability and per-thread shard throughput for
time-varying workloads. We use a number of clients to
generate time-varying load on the system. We performed
four sets of experiments: uniform and skewed (Zipf with
skewness 0.01) query distribution (across queried keys
and search terms); and, gradual and spiked variations in
load. It is easy to see that (uniform, spiked) and (skewed,
gradual) are the worst-case and the best-case scenario for
BlowFish, respectively. We present results for spiked vari-
ations in load (e.g., due to transient failures) for both uni-
form and skewed query distribution; the remaining results
are in Appendix C. We perform micro-benchmarks by in-
creasing the load on the shard from 600ops to 1800ops
suddenly (3⇥ increase in load models failures of two
replicas, an extremely unlikely scenario) at time t = 30
and observe the system for an hour before dropping down
the load back to 600ops at time t = 90.

4.4.2 Results
BlowFish adaptation time and queue stability. As the
load is increased from 600ops to 1800ops, the throughput
supported by the shard at that storage ratio is insufficient
to meet the increased load (Figures 9(a) and 9(d)). As a re-

sult, the request queue length for the shard increases (Fig-
ures 9(b) and 9(e)). At one point, BlowFish triggers op-
portunistic layer creation — the system immediately al-
locates additional storage for the two sampled arrays (in-
creased storage ratio in Figures 9(c) and 9(f)); the sampled
values are filled in gradually as queries are executed.

At this point, the results for uniform and skewed query
distribution differ. For the uniform case, the already filled
sampled values are reused infrequently. Thus, it takes
BlowFish longer to adapt (⇡ 5 minutes) before it starts
draining the request queue (the peak in Figure 9(b)).
BlowFish is able to drain the entire request queue within
15 minutes, making the system stable at that point.

For the skewed workload, the sampled values computed
during query execution are reused frequently since queries
repeat frequently. Thus, BlowFish is able to adapt much
faster (⇡ 2minutes) and drain the queues within 5 min-
utes. Note that this is akin to caching of results, explicitly
implemented in many existing data stores [1, 4, 21] while
BlowFish provides this functionality inherently.

BlowFish scheduling. To evaluate the effectiveness and
stability of BlowFish scheduling, we turn our attention to
a distributed setting. We focus our attention on three repli-
cas of the same shard. We make the server storing one of
these replicas storage constrained (replica #3); that is, irre-
spective of the load, the replica cannot trigger navigation
along the storage-performance tradeoff curve. We then
gradually increase the workload from 3KOps to 8KOps
in steps of 1KOps per 30 minutes (Figure 10) and observe
the behavior of request queues at the three replicas.

11

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 30 60 90 120 150 180

L
o

a
d

,
T

h
ro

u
g

h
p

u
t

(K
O

p
s)

Time (mins)

load
replica-1
replica-2
replica-3

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 30 60 90 120 150 180
 0

 1

 2

 3

 4

 5

 6

L
o

a
d

 (
K

O
p

s)

Q
u

e
u

e
 L

e
n

g
th

 (
K

O
p

s)

Time (mins)

load
replica-1
replica-2
replica-3

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 30 60 90 120 150 180
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

L
o

a
d

 (
K

O
p

s)

S
to

ra
g

e
 R

a
tio

Time (mins)

load
replica-1
replica-2
replica-3

Figure 10: The effectiveness and stability of BlowFish’s query scheduling mechanism in a replicated system (discussion in
§4.4). Variation in throughput (left), request queue lengths (center) and storage-footprints (right) for the three replicas.

Initially, each of the three replicas observe a load of
1KOps since queue sizes are equal, and BlowFish sched-
uler equally balances the load. As the load is increased
to 4KOps, the replicas are no longer able to match the
load, causing the request queues at the replicas to build up
(Figure 10(c)). Once the queue lengths cross the thresh-
old, replica #1 and #2 trigger layer construction to match
higher load (Figure 10(a)).

As the first two replicas opportunistically add layers,
their throughput increases; however, the throughput for
the third replicas remains consistent (Figure 10(b)). This
causes the request queue to build up for the third replica
at a rate higher than the other two replicas (Figure 10(c)).
Interestingly, the BlowFish reduces quickly adapts, and
stops issuing queries to replica#3, causing its request
queue length to start dropping. We observe a similar trend
when the load increases to 5KOps. BlowFish does observe
queue length oscillations during adaptation, albeit of ex-
tremely small magnitude.

5 Related Work
BlowFish’s goals are related to three key areas:

Storage-performance tradeoff. Existing data stores usu-
ally support two extreme operating points for each cached
shard — compressed but low throughput, and uncom-
pressed but high throughput. Several compression tech-
niques (e.g., gzip) can allow achieving different com-
pression factors by changing parameters. However, these
require decompression and re-compression of the entire
data on the shard. As shown in the paper, a smooth and
dynamic storage-performance tradeoff not only provides
benefits for existing applications but can also enable a
wide range of new applications.

Data repair. The tradeoff between known techniques for
data repair — replication and erasure codes — is that of
storage overhead and bandwidth. Studies have shown that
the bandwidth requirement of traditional erasure codes

is simply too high to use them in practice [29]. Several
research proposals [20, 27, 29] reduce the bandwidth re-
quirements of traditional erasure codes for batch process-
ing jobs. However, these codes remain inefficient for data
stores serving small objects. As shown in §4, BlowFish
achieves storage close to erasure codes, while maintaining
the bandwidth and repair time advantages of replication.

Selective Caching. As discussed in §1 and §4, selec-
tive caching can achieve good performance for work-
loads skewed towards a few popular objects. However,
it only provides a coarse-grained support — increasing
the throughput by 2⇥ by increasing the storage overhead
by 1⇥. BlowFish, instead, provides a much finer-grained
control allowing applications to increase the storage frac-
tionally, just enough to meet the performance goals.

6 Conclusion
BlowFish is a distributed data store that enables a smooth
storage-performance tradeoff between two extremes —
compressed but low throughput and uncompressed but
high throughput. In addition, BlowFish allows applica-
tions to navigate along this tradeoff curve over fine-
grained time scales. Using this flexibility, we explored
several problems from real-world production clusters
from a new “lens” and showed that the tradeoff exposed
by BlowFish can offer significant benefits compared to
state-of-the-art techniques for the respective problems.

Acknowledgments
This research is supported in part by NSF CISE Ex-
peditions Award CCF-1139158, DOE Award SN10040
DE-SC0012463, and DARPA XData Award FA8750-12-
2-0331, and gifts from Amazon Web Services, Google,
IBM, SAP, The Thomas and Stacey Siebel Foundation,
Adatao, Adobe, Apple Inc., Blue Goji, Bosch, Cisco,
Cray, Cloudera, Ericsson, Facebook, Fujitsu, Guavus,
HP, Huawei, Intel, Microsoft, Pivotal, Samsung, Schlum-
berger, Splunk, State Farm, Virdata and VMware.

12

References
[1] Elasticsearch. http://www.elasticsearch.org.

[2] Longhair: Fast Cauchy Reed-Solomon Erasure
Codes in C. https://github.com/catid/
longhair.

[3] MemCached. http://www.memcached.org.

[4] MongoDB. http://www.mongodb.org.

[5] Redis. http://www.redis.io.

[6] TPC-H. http://www.tpc.org/tpch/.

[7] R. Agarwal, A. Khandelwal, and I. Stoica. Succinct:
Enabling Queries on Compressed Data. In USENIX
Symposium on Networked Systems Design and Im-
plementation (NSDI), 2015.

[8] G. Ananthanarayanan, S. Agarwal, S. Kandula,
A. Greenberg, I. Stoica, D. Harlan, and E. Harris.
Scarlett: Coping with Skewed Content Popularity in
Mapreduce Clusters. In ACM European Conference
on Computer Systems (EuroSys), 2011.

[9] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-scale
Key-value Store. In ACM SIGMETRICS Perfor-
mance Evaluation Review, volume 40, pages 53–64,
2012.

[10] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Va-
jgel. Finding a Needle in Haystack: Facebook’s
Photo Storage. In USENIX Conference on Operating
Systems Design and Implementation (OSDI), 2010.

[11] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo, S. Kulka-
rni, H. C. Li, et al. TAO: Facebook’s Distributed
Data Store for the Social Graph. In USENIX Techni-
cal Conference (ATC), 2013.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A Distributed Storage Sys-
tem for Structured Data. In USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), 2006.

[13] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Google’s Globally-
distributed Database. In USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI),
2012.

[14] C. Curino, E. Jones, Y. Zhang, and S. Madden.
Schism: a Workload-Driven Approach to Database
Replication and Partitioning. Proceedings of the
VLDB Endowment, 3(1-2):48–57, 2010.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s
Highly Available Key-value Store. In ACM Sym-
posium on Operating Systems Principles (SOSP),
2007.

[16] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast Remote Memory. In
USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2014.

[17] R. Escriva, B. Wong, and E. G. Sirer. HyperDex:
A Distributed, Searchable Key-value Store. In ACM
Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication
(SIGCOMM), 2012.

[18] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and Concurrent MemCache with Dumber
Caching and Smarter Hashing. In USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI), 2013.

[19] V. Gupta, M. H. Balter, K. Sigman, and W. Whitt.
Analysis of Join-the-Shortest-Queue Routing for
Web Server Farms. 2007.

[20] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, S. Yekhanin, et al. Erasure Cod-
ing in Windows Azure Storage. In USENIX Annual
Technical Conference (ATC), 2012.

[21] A. Lakshman and P. Malik. Cassandra: A Decen-
tralized Structured Storage System. ACM SIGOPS
Operating Systems Review, 44(2):35–40, 2010.

[22] B. Langmead, C. Trapnell, M. Pop, and S. L.
Salzberg. Ultrafast and memory-efficient alignment
of short DNA sequences to the human genome.
Genome Biology, 10(3):1–10, 2009.

[23] H. Lim, D. Han, D. G. Andersen, and M. Kamin-
sky. MICA: A Holistic Approach to Fast In-memory
Key-value Storage. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
2014.

[24] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,
W. Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang,

13

http://www.elasticsearch.org
https://github.com/catid/longhair
https://github.com/catid/longhair
http://www.memcached.org
http://www.mongodb.org
http://www.redis.io
http://www.tpc.org/tpch/

and S. Kumar. f4: Facebook’s Warm BLOB Stor-
age System. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

[25] J. Ousterhout, P. Agrawal, D. Erickson,
C. Kozyrakis, J. Leverich, D. Mazières, S. Mi-
tra, A. Narayanan, G. Parulkar, M. Rosenblum,
et al. The Case for RAMClouds: Scalable High-
performance Storage Entirely in DRAM. ACM
SIGOPS Operating Systems Review, 43(4):92–105,
2010.

[26] A. Pavlo, C. Curino, and S. Zdonik. Skew-Aware
Automatic Database Partitioning in Shared-Nothing,
Parallel OLTP Systems. In ACM International Con-
ference on Management of Data (SIGMOD), 2012.

[27] K. Rashmi, N. B. Shah, D. Gu, H. Kuang,
D. Borthakur, and K. Ramchandran. A hitchhiker’s
guide to fast and efficient data reconstruction in
erasure-coded data centers. In ACM Conference on
Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication (SIGCOMM),
2014.

[28] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang,
D. Borthakur, and K. Ramchandran. A Solu-
tion to the Network Challenges of Data Recov-
ery in Erasure-coded Distributed Storage Systems:
A Study on the Facebook Warehouse Cluster. In
USENIX Conference on Hot Topics in Storage and
File Systems (HotStorage), 2013.

[29] M. Sathiamoorthy, M. Asteris, D. Papailiopou-
los, A. G. Dimakis, R. Vadali, S. Chen, and
D. Borthakur. XORing Elephants: Novel Erasure
Codes for Big Data. In International Conference on
Very Large Data Bases (VLDB), 2013.

[30] S. Sivasubramanian. Amazon dynamoDB: A Seam-
lessly Scalable Non-relational Database Service. In
ACM International Conference on Management of
Data (SIGMOD), 2012.

[31] C. B. Walton, A. G. Dale, and R. M. Jenevein. A
Taxonomy and Performance Model of Data Skew
Effects in Parallel Joins. In International Confer-
ence on Very Large Data Bases (VLDB), 1991.

A Layered Sampled Array Lookup,
and Opportunistic layer creation

We outline how lookups are performed on the LSA (§3.1)
in Algorithm 1. At a high level, given the LSA index, we
obtain the layer ID and index into the corresponding layer
using LSA’s auxiliary structures (see Figure 4). We use the
layer ID to locate the layer, and obtain the required value
using the index into the layer.

Algorithm 2 describes how BlowFish creates new lay-
ers opportunistically (§3.1); that is, rather than using ded-
icated resources to compute the required sampled values
upon a new layer creation, BlowFish uses the computa-
tions performed during query execution to opportunisti-
cally populate the sampled values in the new layer.
Algorithm 1 LookupLSA

1: procedure GetLayerID (idx) . Get the layer ID given the index
into the sampled array; a is the sampling rate.

2: return LayerID[idx % a]
3: end procedure

4: procedure GetLayerIdx(idx) . Get the index into LayerID given
the index into the sampled array; a is the sampling rate.

5: count Count[LayerID(idx)]

6: return count ⇥ (idx / a) + LayerIdx[idx % a]
7: end procedure

8: procedure LookupLSA (idx) . Performs lookup on the LSA.
9: if IsSampled(idx) then

10: lid GetLayerID(idx) . Get layer ID.
11: lidx GetLayerIdx(idx) . Get index into layer.
12: return SampledArray[lid][lidx]

13: end if
14: end procedure

B Storage-throughput Tradeoff for
different workloads

Figure 6 in §4 shows the storage-throughput tradeoff en-
abled by BlowFish for query workload comprising of
50% random access and 50% search queries. Figure 11
shows this tradeoff for other workloads. In particular, Fig-
ure 11(a) and Figure 11(b) show the storage-throughput
tradeoff for workloads comprising of 100% random ac-
cess and 100% search queries, respectively. Note that the
tradeoff for mixed workload has characteristics similar to
100% search workload since, similar to other systems,
execution time for search is significantly higher than ran-
dom access. The throughput of the system is, thus, domi-
nated by latency of search queries.

14

 1

 5

 10

 15

 20

 25

 0 0.25 0.5 0.75 1 1.25 1.5

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

BlowFish footprint / Input Size

(a) 100% random access

 1

 10

 20

 30

 40

 50

 60

 70

 0 0.25 0.5 0.75 1 1.25 1.5

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

BlowFish footprint / Input Size

(b) 100% search

 1

 10

 20

 30

 40

 50

 60

 70

 0 0.25 0.5 0.75 1 1.25 1.5

N
o

rm
a

liz
e

d
 T

h
ro

u
g

h
p

u
t

BlowFish footprint / Input Size

(c) 50% random access + 50% search

Figure 11: Storage-throughput tradeoff curve (per thread) enabled by BlowFish for three workloads with varying fraction of
random access and search queries. The y-axis is normalized by the throughput of smallest possible storage footprint in BlowFish
(3874ops for random access only, 37ops for search only, and 71ops for the mixed workload).

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210

L
o

a
d

 (
K

O
p

s)
,

T
h

ro
u

g
h

p
u

t
(K

O
p

s)

Time (mins)

load
throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210
 0

 5

 10

 15

 20

 25

 30

 35

 40

L
o

a
d

 (
K

O
p

s)

Q
u

e
u

e
 L

e
n

g
th

 (
K

O
p

s)

Time (mins)

load
queue-length

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

L
o

a
d

 (
K

O
p

s)

S
to

ra
g

e
 R

a
tio

Time (mins)

load
storage-ratio

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210

L
o

a
d

 (
K

O
p

s)
,

T
h

ro
u

g
h

p
u

t
(K

O
p

s)

Time (mins)

load
throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

L
o

a
d

 (
K

O
p

s)

Q
u

e
u

e
 L

e
n

g
th

 (
K

O
p

s)

Time (mins)

load
queue-length

 0

 0.5

 1

 1.5

 2

 2.5

 0 30 60 90 120 150 180 210
 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

L
o

a
d

 (
K

O
p

s)

S
to

ra
g

e
 R

a
tio

Time (mins)

load
storage-ratio

Figure 12: Opportunistic layer construction with gradual changes in load for uniform workload (top three) and skewed workload
(bottom three). The figures show variation in throughput (left), request queue length (center) and storage footprint (right).

C Gradual Workload Variation
We present the results for how BlowFish adapts to time-
varying workloads with a setup identical to §4.4, but for
slightly different variations in the workload. In particular,
instead of increasing the load on the shard from 600ops
to 1800ops suddenly (as in the results of Figure 9), we
increase the load from 600ops to 2000ops, with a grad-
ual increase of 350ops at 30 minute intervals. This gran-
ularity of increase in load is similar to those reported in
real-world production clusters [9], and constitutes a much
easier case for BlowFish compared to the spiked increase
in load considered in §4.4.

Uniform query distribution (Figure 12, top). As the

load increases from 600ops to 950ops (Figure 12(a)), the
load becomes higher than the throughput supported by the
shard at that storage ratio (800ops). Consequently, the re-
quest queue length starts building up (Figure 12(b)), and
BlowFish triggers a layer addition by allocating space
for the new layers (Figure 12(c)). BlowFish opportunis-
tically fills up values in the new layer, and the throughput
for the shard increases gradually. This continues until the
throughput matches the load on the shard; at this point,
however, the throughput continues to increase even be-
yond the load to deplete the outstanding requests in the
queue until the queue length reduces to zero and the sys-
tem resumes normal operation. A similar trend can be
seen when the load is increased to 1650ops.

15

Algorithm 2 CreateLayerOpportunistic

1: procedure CreateLayerOpportunistic(lid) . Marks layer lid
for creation, and initializes bitmap marking layer’s sampled values;
a is the sampling rate.

2: Mark layer lid for creation.
3: LayerSize InputSize/2a
4: for lidx in (0, LayerSize � 1) do
5: IsLayerValueSampled[lid][lidx] 0

6: end for
7: end procedure

8: procedure OpportunisticPopulate(val, idx) .
Exploit query execution to populate layers opportunistically; val is
the unsampled values computed during query execution, and idx is
its index into the unsampled array.

9: lid GetLayerID(idx) . Get layer ID.
10: if layer lid is marked for creation then
11: lidx GetLayerIdx(idx) . Get index into layer.
12: SampledArray[lid][lidx] val
13: IsLayerValueSampled[lid][lidx] 1

14: end if
15: end procedure

Skewed query distribution (Figure 12, bottom). The
trends observed for the skewed workload are similar to
those for the uniform worklod, with two key differences.
First, we observe that BlowFish triggers layer creation
at different points for this workload. In particular, the

throughput for the skewed workload at the same storage
footprint (0.8 in Figure 12(c) and 12(f)) is higher than that
for the uniform workload. To see why, note that the perfor-
mance of search operations varies significantly based on
the queries; while the different queries contribute equally
for the uniform workload, the throughput for the skewed
workload is shaped by the queries that occur more fre-
quently. This effect attributes for the different throughput
characteristics for the two workloads at the same storage
footprint.

Second, as noted before (§4.4), BlowFish adaptation
benefits from the repetitive nature of queries in the skewed
workload, since repeated queries can reuse the values pop-
ulated during their previous execution. In comparison to
uniform query distribution, this leads to faster adaptation
to increase in load and quicker depletion of the increased
request queue lengths.

Comparison with results for the spiked case. Note the
difference in results for the case of spiked increase in load
(Figure 9) and gradual increase in load (Figure 12). In
the former case, the increase in load leads to significantly
higher request queue lengths and hence, it takes much
longer for the sytem to return to normal operations. In the
latter, however, due to gradual increase in load, the sys-
tem can drain the outstanding request queue significantly
faster, can resume normal operations faster, and thus pro-
vides adaptation at much finer time granularity.

16

	Introduction
	Applications and summary of results
	BlowFish Techniques

	BlowFish Overview
	Succinct Background
	BlowFish data model and assumptions
	BlowFish Design Overview

	BlowFish Design
	Layered Sampled Array
	BlowFish Servers
	Server Components
	Query execution
	Scheduling and Load Balancing
	Dynamically Navigating the Tradeoff

	Evaluation
	Storage Performance Tradeoff
	Data Repair During Failures
	Experimental Setup
	Results

	Skewed Workloads
	Experimental Setup
	Results

	Time-varying workloads
	Experimental Setup
	Results

	Related Work
	Conclusion
	Layered Sampled Array Lookup, and Opportunistic layer creation
	Storage-throughput Tradeoff for different workloads
	Gradual Workload Variation

