
Budding Trees

Ozan İrsoy
Department of Computer Science

Cornell University
Ithaca, NY 14853-7501, USA
Email: oirsoy@cs.cornell.edu

Olcay Taner Yıldız
Department of Computer Engineering

Işık University
Şile, İstanbul 34980 Turkey

Email: olcaytaner@isikun.edu.tr

Ethem Alpaydın
Department of Computer Engineering

Boğaziçi University
Bebek, İstanbul 34342 Turkey
Email: alpaydin@boun.edu.tr

Abstract—We propose a new decision tree model, named
the budding tree, where a node can be both a leaf and an
internal decision node. Each bud node starts as a leaf node, can
then grow children, but then later on, if necessary, its children
can be pruned. This contrasts with traditional tree construction
algorithms that only grows the tree during the training phase,
and prunes it in a separate pruning phase. We use a soft
tree architecture and show that the tree and its parameters
can be trained using gradient-descent. Our experimental results
on regression, binary classification, and multi-class classification
data sets indicate that our newly proposed model has better
performance than traditional trees in terms of accuracy while
inducing trees of comparable size.

I. INTRODUCTION

A decision tree is a hierarchical structure for supervised
learning tasks, composed of internal decision nodes and ter-
minal label nodes [1]–[3]. Given an input vector (including a
bias term) x = [1, x1, ..., xd]T , the response at node m has the
following recursive definition:

ym(x) =






ρm if m is leaf
yml(x) else if gm(x) > 0
ymr(x) else if gm(x) ≤ 0

(1)

If m is a leaf node, for binary classification, ρm ∈ [0, 1]
is the probabilistic response denoting the probability that the
instance is positive; for regression ρm ∈ R is the numeric
response. If m is not a leaf but an internal node, depending
on the outcome of the test gm(x), we take the left or right
branch, yml and ymr respectively, and continue recursively.

Frequently [2], gm(x) uses only one of the input attributes:

gm(x) = xj + w0

and this is called the univariate tree. The multivariate tree [4],
[5] is a generalization where we define

gm(x) = wTx

hence defining arbitrary oblique splits. The univariate tree is
a special case where wmi = 1 for some i ∈ {1, ..., d} and
wmj = 0 for all j #∈ {0, i}, and as such defines a split that is
orthogonal to the axis xi. If we relax the linearity assumption
on gm(·), we have the multivariate nonlinear tree. If the above
constraints on gm(·) are dependent on the node m itself, then
we have the omnivariate tree [6].

Regardless of the type of the decision node, learning a
tree is a difficult problem [3]. Finding the smallest decision

tree that can classify all the instances in a training set is NP-
hard [7]. That is why, decision tree induction algorithms are
greedy—they do not guarantee finding the smallest decision
tree but they learn in reasonable time.

Basically, a decision tree induction algorithm is composed
of two steps:

1) Growing the tree: Starting from the root, at each node,
given the data reaching that node, we look for the best decision
function gm(x) (univariate or multivariate) that splits the data
into two. If this split leads to an improvement (for example,
in terms of entropy), the split is accepted, the node becomes a
decision node with two children and tree generation continues
at the two children recursively. If the split does not lead to
any improvement, the node is not split further and remains as
a leaf and a proper probability or numeric value is stored in
it.

2) Pruning the tree: Once the tree is grown to its total
length, we check if pruning a subtree, that is, replacing it with
a leaf, leads to improvement over a separate pruning set. We
are basically checking if the tree is overfitting at this stage and
if so, by replacing a subtree with a leaf we are getting rid of
variance.

That is, tree induction is composed of a first phase of
greedily adding subtrees and the second phase of greedily
replacing subtrees with leaves.

Our proposal in this work is to have a tree architecture
where each node, which we call a bud node, can be an internal
node and a leaf at the same time. We allow splitting and
pruning at the same phase in tree learning, instead of having
two separate phases each allowing only one type of change. A
bud starts as a leaf, and if necessary may grow into a decision
node and get children, but always retains its value as a leaf,
and at any stage later on may lose its children and become a
leaf again.

As we will see later, training a budding tree is an incre-
mental process where small changes are done at each step and
in Section II, we discuss the soft decision tree that is better
suited for such small adjustments and as such forms the basis
of the budding tree. In Section III, we discuss the budding tree
model and how it is learned. We give experimental results in
Section IV where we compare the budding tree with various
univariate and multivariate tree models on many regression,
binary, and multi-class classification data sets and we conclude
in Section V.

2014 22nd International Conference on Pattern Recognition

1051-4651/14 $31.00 © 2014 IEEE

DOI 10.1109/ICPR.2014.616

3582

−3 −2 −1 0 1 2 3

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

(a) Hard fit

−3 −2 −1 0 1 2 3

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

(b) Soft fit

Fig. 1. Hard and soft tree fits to sinusoidal toy data. The hard tree gives a piecewise constant approximation because of the hard splits whereas the soft gating
function allows a smooth interpolation between values at the leaves (shown as dotted lines).

II. SOFT DECISION TREE

Equation (1) defines a hard split where in a decision node,
depending on gm(x), we take one of the two branches—we
either go to the left or to the right. In a soft decision tree [8],
we have a soft split:

ym(x) =

{
ρm if m is leaf

gm(x)yml(x) + (1− gm(x))ymr(x) otherwise
(2)

where

gm(x) = sigmoid(wT
mx) =

1

1 + exp(−wT
mx)

(3)

is the gating function that assigns input softly to the two chil-
dren. Note that the splits are multivariate and hence oblique.

In contrast to a hard node which redirects the decision to
only one of its children, a soft node propagates the decision
to both children, weighted by the value of the gating function.
Originally, this is the idea behind the hierarchical mixture of
experts [9]. If we consider separating the regions of respon-
sibility to the left and right subtrees as a binary classification
problem, then the gating model implements a logistic linear
model to estimate the posterior probability of the responsibil-
ities: Pm(left|x) := gm(x) and Pm(right|x) := 1− gm(x).

Soft decision trees are trained incrementally too. When
necessary, nodes are split, children are added and the split
parameters and the leaf values are learned using gradient-
descent. At any split decision during training, every node in
the tree is held fixed, besides the node currently being split
and its two children.

An example is shown in Figure 1 that compares hard
and soft trees. We see that though both uses leaf nodes that
are constants, in the hard tree, hard splits cause a piecewise
constant approximation that leads to a fit that looks like a
ladder. In the case of a soft tree, because we take a weighted

average where weights are given by the soft gating function, we
get a smooth interpolation between leaves and hence a better
fit with much fewer nodes. In this example, the hard tree uses
67 nodes whereas the soft tree uses only seven nodes.

III. THE BUDDING TREE

A. The Model

We define a bud node, which further generalizes the soft
node, by softening the notion of being a leaf as well:

ym(x) = (1− γm)
[
gm(x)yml(x) + (1− gm(x))ymr(x)

]

+ γmρm (4)

where γm ∈ [0, 1] is the leafness parameter. Recursion ends
when a node having γ = 1 is encountered.

A budding tree has a response value in every bud and
internal buds make a contribution to the overall response value
as well. Note that budding trees do not have more expressive
power than soft trees: We may convert any budding tree
to a soft tree without altering the response, by recursively
distributing internal bud contributions, γρ, downwards the tree
to the leaves, such that ρ = γ = 0 for every internal bud and
γ = 1 for every leaf bud. However, this extension will allow
us to use a different training approach, as we discuss below.

Observe that any finite budding decision tree can be seen
as a complete infinite binary tree with leaves having γ = 1
and the nodes below the leaves having arbitrary parameters,
since they do not affect the overall response value. Thus, we
can parametrize any tree by a countably infinite number of
parameters {wm, ρm, γm}m. With this parametrization, our
training algorithm will optimize a loss function over this
infinite dimensional space of all trees. In practice though, we
will have nodes with γ = 1 and hence the actual physical size
of the tree will be finite. This will provide a principled way
to train the model without fixing any part of the tree.

3583

Note that a similar parametrization can be made for mul-
tivariate linear trees, or soft decision trees, with the constraint
that γm is either 0 or 1 for all m. However, by relaxing this
constraint so that γm can take any value from the interval
[0, 1], our optimization problem becomes a continuous opti-
mization problem, rather than a discrete one. This allows us
to use any conventional box-constrained continuous nonlinear
optimization method. Even though there is no formal necessity,
we will use stochastic gradient-descent for ease of exposition
and implementation.

B. Training

Training proceeds as follows: We start with a root node r
having wr = ε, ρr = ε, γr = 1, where ε is a small noise. This
is the tree with a single node having a fixed response. At any
iteration, we will compute the gradient of the error function
with respect to all of the physical nodes we currently have
(which is finitely but unboundedly many), and make a small
update to every parameter of every node, as we will discuss
below.

If any of the nodes make a transition from having γ = 1
to having γ < 1, we will physically split that node. We will
initialize every node m with wm = ε, ρm = ε, γm = 1. With
this training scheme however, the tree has the possibility of
exploding, and to avoid that, we add a regularization term to
the error function to push all γ values towards 1. Hence, later
on during training, γm can be pushed back to 1, effectively
pruning the children.

The training process grows or shrinks the tree depending
on the values of γm of all nodes. Note that while training,
we do not fix any part of the tree, but update all parameters
of all the nodes. This is different from traditional decision
tree methods where all the nodes except the currently added
one are fixed, which hence might suffer from fixing the upper
nodes early on, without seeing how the lower nodes will do in
the following iterations. The budding tree avoids this problem
because it learns all the tree parameters jointly, rather than
learning only the parameters of the last node.

The budding tree can explore a potential split by turning
a leaf node into a partially internal node (decreasing γ from
1 to, say, 0.95), and then after failing to capture a signal for
some time, it can turn that node into a leaf again (due to the
regularization term). This implies that we have growing and
pruning together; it implies a search with the possibility of
backtracking.

More formally, for regression, given the training set X =
{xt, rt}Nt=1, where rt ∈ R is the desired output for xt, we
have

minimize J =
∑

t

1

2
(yr(xt)− rt)2 + λ

∑
m(1− γm) (5)

subject to γm ∈ [0, 1] ∀m

where yr(x) is the output at the root node, calculated using
Equation (4) recursively.

The first term in the objective function of Equation (5)
is simply the sum of squared errors. The second term is the
aforementioned regularization term on γm, where λ is the
regularizing hyper-parameter. This second term is a decay term

that penalizes γm values that are less than 1; hence, it pushes
every node towards being a leaf, rather than an internal node.

Let us focus on stochastic gradient-descent (the error is
computed with respect to a single instance x). Define δm =
∂J t/∂ym(xt), which is the responsibility of the node m. Back-
propagating the error from the root towards the leaves, we have

∂J t

∂wmi
= δtm(1− γm)gm(xt)(1− gm(xt))

(yml(x
t)− ymr(x

t))xt
i, i = 0, . . . , d

∂J t

∂ρm
= δtmγm

∂J t

∂γm
= δtm[−gm(xt)yml(x

t)

− (1− gm(xt))ymr(x
t) + ρm]

− λ

with

δtm =






yr(x)− rt if m is root r
δtpa(m)(1− γm)gm(xt) if m is a left child

δtpa(m)(1− γm)(1− gm(xt)) if m is a right child

where pa(m) is the parent node of node m.

Whenever a γm value exceeds 1 from above or 0 from
below, after an update, we restore it to 1 or 0, which effectively
projects the gradient onto the feasible space. When a node
with γm < 1 has γm = 1 after the update, we do not erase
the parameter values of its children. This means if the node
will be split again later, its children will continue from their
previous set of parameter values.

Starting from a single node with a fixed response, the
training starts to explore a potential split, when an error signal
causes a decrease in γm. As the stochastic gradient-descent
iterates, this causes small updates on the parameters of the chil-
dren. If the split is actually helpful, γ of the parent continues
to decrease smoothly (causing a smooth transformation from
a leaf to an internal node), which will cause greater updates
in the parameters of the children (which in turn can be split
during the process).

This can be considered as a redistribution of responsibility
from the parent to its children: If the parent cannot explain
the data as good as the children being explored, updates will
slowly push the parent into being an internal node, increasing
the effect of the children on the response. However, if the split
is not helpful, regularization term will keep γ of the parent very
close to 1, causing it to behave as a leaf.

We employ an adaptive learning rate using a diagonal
variant of AdaGrad [10]: Let g(τ)θ be the gradient at time step
τ with respect to parameter θ ∈ {ρm, γm, wm}m. The update
rule is

θ(τ) = θ(τ−1) − φ
g(τ)θ√∑τ
l=1(g

(l)
θ)2

where φ is the learning rate.

Intuitively, this causes rare parameters to get larger updates.
This is very helpful in our case because, since higher nodes are

3584

(a) Iteration 24

(b) Iteration 1329

(c) Iteration 2994

Fig. 2. The evolution of a budding tree during training. For every node in the tree, red plots (middle box) show the response function of the corresponding
subtree, blue (left box) plots show the gating function (a higher value assigns more responsibility to the left subtree) and yellow plots (right box) show the ρ
values. Overall transparency of a node denotes the overall effect on the response function, determined by the γ values of ancestors (e.g., a node closer to being
leaf has more transparent children). The transparency of blue and yellow plots further depend on the γ value of the node itself, a higher γ results in a more
transparent gating plot and more opaque plot of ρ. We see that early on, though the tree may look big, lower level nodes and are not really used; as learning
continues, to decrease error, they move away from being a leaf, become a subtree and grow children and thus get a better fit.

updated more frequently than the lower nodes, we would like
the nodes closer to the root to slow down and stabilize, and
nodes away from root to update more aggressively to search
for good splits and leaf values.

An example of how a budding tree evolves during training
is shown in Figure 2. In the beginning, most nodes are leaves
(their children are transparent in the figure) and hence the tree
gives a fit that is too smooth. As we do more iterations, leafness
of nodes decrease (they get more opaque in the figure), they
become internal nodes and allow their children to be updated,
which leads to better approximation.

C. Extension to classification

Extending the definition of budding trees to classification
is simple. For binary classification, we pass the tree output
from the root through a sigmoid to get a value between

0 and 1, which hence can be interpreted as the posterior
probability of the positive class. In classification, the first
term of Equation (5) becomes the cross-entropy instead of
the squared difference. The gradient-descent update rules are
calculated accordingly.

For K > 2 classes, we have a single tree but we store
K values at the leaves for the classes, that is, ρ is a K-
dimensional vector. We calculate the output for all classes
using the same tree but for each using the corresponding ρ
entry in the leaves. We then softmax the K values calculated
at the root for the K classes. Again, cross-entropy is used and
the update rules are derived accordingly.

IV. EXPERIMENTS

In this section, we report experimental results for regres-
sion, binary, and multi-class classification tasks.

3585

TABLE I. REGRESSION EXPERIMENTS

MSE Node count
Hard Soft Budding Ha. So. Bu.

ABA 0.541 0.421 0.416 44 21 35
ADD 0.244 0.070 0.046 327 49 35
BOS 0.342 0.273 0.218 19 32 19
CAL 0.311 0.251 0.240 300 146 94
COM 0.036 0.023 0.019 110 31 19
CON 0.268 0.208 0.156 101 39 38
8FH 0.416 0.381 0.378 47 5 13
8FM 0.068 0.051 0.050 164 9 17
8NH 0.394 0.358 0.342 77 24 27
8NM 0.066 0.049 0.036 272 23 37

TABLE II. BINARY CLASSIFICATION EXPERIMENTS

Accuracy Node count
C4.5 LDT Soft Bud. C. L. So. Bu.

BRE 93.2 95.0 96.5 94.9 7 4 3 12
GER 70.0 74.1 75.9 68.7 1 3 8 56
MAG 82.5 83.0 85.3 86.3 53 38 56 122
MUS 94.5 93.5 95.6 97.0 62 11 33 15
PIM 72.1 76.8 75.0 67.1 8 5 7 68
POL 69.4 77.4 77.1 72.5 34 3 18 61
RIN 87.7 77.2 90.1 88.5 93 3 76 61
SAT 84.5 83.3 87.5 86.8 25 9 27 38
SPA 90.0 89.8 92.4 91.4 36 13 12 49
TWO 82.9 98.0 97.9 96.7 163 3 7 29

We use ten regression (ABAlone, ADD10, BOSton, CAL-
ifornia, COMp, CONcrete, puma8FH, puma8FM, puma8NH,
puma8NM) and ten binary classification (BREast, GERman,
MAGic, MUSk2, PIMa, POLyadenylation, RINgnorm, SATel-
lite47, SPAmbase, TWOnorm) data sets from the UCI reposi-
tory [11], as in [8]. We also use ten multiclass classification
(BALance, CMC, DERmatology, ECOli, GLAss, OPTdigits,
PAGeblock, PENdigits, SEGment, YEAst) data sets from the
UCI repository.

We compare budding trees with the hard C4.5 tree and
soft tree for regression, and with hard univariate C4.5 [2],
hard multivariate LDT [5] and soft tree [8] on classification
problems. Our experimental methodology is as follows: We
first separate one third of the data set as the test set over
which we evaluate the final performance. With the remaining
two thirds, we apply 5×2-fold cross validation. Soft and hard
trees (including the linear discriminant tree) use the validation
set as a pruning set. Budding trees use the validation set to
tune the hyper-parameters φ and λ. Statistical significance is
tested with the paired t-test for the performance measures,
and the Wilcoxon Rank Sum test for the tree sizes, both with
significance level α = 0.05. The values reported are results on
the test set not used for training or validation (model selection).
Significantly best results are shown in boldface in the figures.

Table I shows the mean square error and the number of
nodes of hard, soft and budding trees on the regression data
sets. Except two ties, the budding tree has significantly smaller
mean square error. In terms of the number of nodes, budding
tree has three wins (add10, california, comp), soft tree has
five wins (abalone, puma8fh, puma8fm, puma8nh, puma8nm)
and there are two ties. Note though that at the end of training,
budding trees usually have leaves with parents having γ ≈
1—one can gain from node counts by pruning these subtrees
starting from such nodes at negligible change in the response
accuracy.

Table II shows the accuracy and the number of nodes
of C4.5, LDT, soft and budding trees over binary classi-

TABLE III. MULTI-CLASS CLASSIFICATION EXPERIMENTS

Accuracy Node count
C4.5 LDT Soft Budding C4.5 LDT So. Bu.

BAL 61.91 88.46 89.85 92.44 5 3 10 29
CMC 50.00 46.64 52.03 53.23 24 3 21 28
DER 94.00 93.92 93.6 94.8 15 11 11 11
ECO 77.47 81.39 76.78 83.56 9 11 10 24
GLA 56.62 53.37 54.05 53.78 20 9 11 21
OPT 84.85 93.73 90.97 94.57 120 31 58 40
PAG 96.71 94.65 95.7 96.51 23 29 16 37
PEN 92.95 96.60 96.64 98.13 169 66 54 54
SEG 94.48 91.96 93.99 95.63 41 33 22 33
YEA 54.61 56.66 55.82 59.31 24 22 34 41

fication data sets. In terms of accuracy, budding tree has
two wins (magic, musk2), soft tree has four wins (breast,
german, ringnorm, spambase), LDT has one win (pima),
and there are three ties. In terms of tree sizes, C4.5 and
LDT provide significantly smaller trees on one (german) and
four (polyadenylation, ringnorm, satellite47, twonorm) data
sets, respectively. Upon investigation, we attribute some of
the dissatisfactory performance results of the budding tree to
the small training/validation/test set sizes. For instance, on
pima, german and polyadenylation, budding tree achieves good
accuracy over validation sets, but fails to generalize well to the
test set.

Table III shows the accuracy and the tree sizes of C4.5,
LDT, soft and budding tree over multi-class classification data
sets. Budding tree has significantly better performance than
C4.5 and LDT over six data sets (balance, ecoli, optdigits,
pendigits, segment, yeast), C4.5 has one win (pageblock) and
there are three ties (cmc, dermatology, glass). In terms of three
sizes, LDT has three wins (balance, cmc, optdigits), soft tree
has two wins (pageblock, segment), and there are five ties
(dermatology, ecoli, glass, pendigits, yeast).

V. CONCLUSIONS

We propose a new decision tree model where a node can
be a leaf and an internal node at the same time. Our proposed
budding trees have several advantages over soft trees.

Budding trees solve the optimization problem taking all
the parameters into account, unlike traditional trees which
solve incremental subproblems greedily, one subtree at a time.
During training, as new nodes are added, the existing node
parameters are not fixed but the whole tree is continuously
updated so as to better take into account the changes in the
model.

They retain the advantages of soft trees over hard trees:
A soft response function provides smoother fits. This allows
less bias near the decision boundaries for classification tasks,
and provides a smooth interpolation between children, which
better suits regression problems. Furthermore, a linear gating
function enables oblique splits in contrast to axis-orthogonal
splits of univariate trees.

Budding nodes are able to make a transition smoothly
from being a leaf to being an internal node. This makes
small updates possible, which allows true online learning
without explicitly reconstructing the tree. It is also possible
for an expanded node to go back to being a leaf again, hence
incorporating pruning into the training, which normally used
to be a separate phase. This can also be seen as backtracking

3586

and is better than greedy hill-climbing that never backtracks
as is traditionally used in tree construction.

Budding trees have a soft architecture and provide a con-
tinuous and differentiable response in terms of their parameters
and hence they can be trained using a continuous optimization
method like gradient-descent. With the utilization of chain
rule, the parameters in all the layers and nodes can be trained
together, each proportional to its responsibility.

Our experimental results on ten regression, ten binary
classification and ten multi-class classification data sets have
shown that budding trees, most of the time, lead to better
approximation than well-known decision tree methods using
trees of comparable sizes. Due to continuity and stochasticity
of the optimization, most leaf nodes have parents that are
almost leaves with their γ ≈ 1, which increases the number
of nodes with negligible change in the response. These extra
nodes make it difficult to compare model complexities and
if desired, can be pruned to reduce the number of nodes.
As a future research direction, L1 or L2 type regularization
on the splitting hyperplane parameters w can be employed
as in [12], followed by a feature selection step. Another
possible direction is to train multiple such budding trees and
combine them, either by randomization and averaging, or
through backfitting [13].

Of course, using gradient-descent has the disadvantage of
a possibility of getting stuck in local minima but note that
incremental tree construction methods are also far from finding
the optimal decision tree and they investigate a much smaller
portion of the state space.

In terms of representational power, the budding tree is not
more powerful than a soft tree, that is, it cannot approximate
any function that cannot be approximated by a soft tree. The
novelty of the budding tree is in its construction, namely, that
it implements a smooth change in the state space of trees.
Whereas the traditional tree induction methods have explicit
steps where a leaf is converted to a subtree and always stays
that way, unless pruned in a separate pruning phase, in the
budding tree, this state transition between leaf and decision
node, or child/parent is done smoothly; a leaf may become the
decision node of subtree, it may be both, and then it may go

back to being a leaf again. In that sense, it can be said that the
budding tree implements a floating search in the space of trees
as opposed to the traditional tree induction methods that always
go forward in training, and always backward in pruning. The
budding tree allows smooth and retractable changes in both
directions.

REFERENCES

[1] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi-
cation and Regression Trees. Pacific Grove, California: Wadsworth &
Brooks, 1984.

[2] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[3] L. Rokach and O. Maimon, “Top-down induction of decision trees
classifiers-a survey,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, vol. 35, no. 4, pp. 476–487,
2005.

[4] S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction
of oblique decision trees,” Journal of Artificial Intelligence Research,
vol. 2, pp. 1–32, 1994.

[5] O. T. Yıldız and E. Alpaydın, “Linear discriminant trees,” International
Journal of Pattern Recognition and Artificial Intelligence, vol. 19,
no. 03, pp. 323–353, 2005.

[6] ——, “Omnivariate decision trees,” Neural Networks, IEEE Transac-
tions on, vol. 12, no. 6, pp. 1539–1546, 2001.

[7] T. Hancock, T. Jiang, M. Li, and J. Tromp, “Lower bounds on learning
decision lists and trees,” Information and Computation, vol. 126, no. 2,
pp. 114–122, 1996.

[8] O. İrsoy, O. T. Yıldız, and E. Alpaydın, “Soft decision trees,” in
International Conference on Pattern Recognition, 2012.

[9] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the
em algorithm,” Neural computation, vol. 6, no. 2, pp. 181–214, 1994.

[10] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online learning and stochastic optimization,” The Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011.

[11] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

[12] O. T. Yıldız and E. Alpaydın, “Regularizing soft decision trees,” in
Computer and Information Sciences III: 27th International Symposium
on Computer and Information Sciences, E. Gelenbe and R. Lent, Eds.
Springer, 2013, pp. 15–21.

[13] H. A. Chipman, E. I. George, R. E. McCulloch et al., “Bart: Bayesian
additive regression trees,” The Annals of Applied Statistics, vol. 4, no. 1,
pp. 266–298, 2010.

3587

