
The Hoare Logic of Deterministic and Nondeterministic

Monadic Recursion Schemes∗

Konstantinos Mamouras
Cornell University

mamouras@cs.cornell.edu

December 24, 2014

Abstract

The equational theory of deterministic monadic recursion schemes is known to be
decidable by the result of Sénizergues on the decidability of the problem of DPDA
equivalence. In order to capture some properties of the domain of computation, we
augment equations with certain hypotheses. This preserves the decidability of the
theory, which we call simple implicational theory. The asymptotically fastest algorithm
known for deciding the equational theory, and also for deciding the simple implicational
theory, has running time that is non-elementary. We therefore consider a restriction of
the properties about schemes to check: instead of arbitrary equations f ≡ g between
schemes, we focus on propositional Hoare assertions {p}f{q}, where f is a scheme and
p, q are tests. Such Hoare assertions have a straightforward encoding as equations. For
this subclass of program properties, we can also handle nondeterminism at the syntactic
and/or at the semantic level, without increasing the complexity of the theories. We
investigate the Hoare theory of monadic recursion schemes, that is, the set of valid
implications whose conclusions are Hoare assertions and whose premises are of a certain
simple form. We present a sound and complete Hoare-style calculus for this theory.
We also show that the Hoare theory can be decided in exponential time, and that it is
complete for this class.

1 Introduction

The starting point of the present work is the observation that reasoning about recursive
computational processes is hard. Even in the abstract propositional setting, there are fun-
damental barriers. Consider, for example, the familiar pushdown automata (PDAs) and
the equivalent model of context-free grammars (CFGs). The equivalence problem for PDAs
is a standard undecidable problem (see page 197 of [40]). In fact, PDA equivalence is Π0

1-
complete and therefore not even recursively enumerable. This implies, in particular, that
there can be no effective formal system that axiomatizes the equational theory of CFGs (or
of equivalent representations involving a µ least fixpoint operation). In [17] an infinitary
(and hence not effective) complete axiomatization of the equational theory of context-free
languages is presented.

∗This is a revised and expanded version of [32].

1

For a special subclass of PDAs, called deterministic PDAs or DPDAs, the question of
the decidability of language-equivalence was posed in [16]. After remaining open for three
decades, this question was settled positively by Sénizergues in [36] (journal version [37]).
Simplified proofs of this decidability result were presented later in [41] and [38]. Stirling has
also obtained a primitive recursive upper bound for the problem [42], but the proposed algo-
rithm witnessing this bound has worst-case running time that is non-elementary. Recently,
Jančar gave a simplified proof of the decidability result for DPDA equivalence [22, 21].
Jančar’s proof relies on the use of first-order terms and grammars.

DPDA equivalence is related to the problem of equivalence of deterministic monadic
recursion schemes (MRSs). The atomic actions and predicates in such schemes are uninter-
preted, and hence completely abstract. The schemes are called monadic because they only
have one variable. In other words, the entire state of the program is viewed as an indivisible
entity, as opposed to the case of being able to “see” various variables that can be set and
read separately. The (strong) equivalence problem for program schemes is checking whether
two schemes denote the same partial function under every possible deterministic interpre-
tation of the atomic actions and predicates. It was shown in [15] (page 132, Theorem 2.10,
part (b)) that the equivalence of deterministic MRSs can be reduced to the equivalence
problem for deterministic context-free grammars (these grammars correspond to DPDAs).
Moreover, Friedman showed in [14] the converse, namely, that DPDA equivalence can be
reduced to deterministic MRS equivalence. So, by the results of Sénizergues and Stirling,
the equational theory of deterministic MRSs (the set of equations between such schemes
that hold under every deterministic interpretation) is decidable and, in fact, it is a primitive
recursive set.

The decidability of the equational theory of deterministic MRSs suggests that this for-
malism can offer a convenient level of abstraction at which to reason about the control
structure of recursive deterministic programs. However, in order to use such schemes for
real programming applications, we need to reason under hypotheses that capture some
properties of the domain of computation. For example, consider the following equivalent
programs:

program 1 program 2

x := 1;

if (x ≥ 0) then y := 2 else y := 3

x := 1;

y := 2

The equivalence of the above programs hinges on a property of the domain of computation
(the integers) that can be expressed with the Hoare assertion {true}x := 1{x ≥ 0}. This
assertion is read as follows: “after the execution of the statement x := 1, the test x ≥ 0
holds”. However, for the monadic schematic abstractions

a; if p then b else c and a; b

of the above programs (where a, b, c are abstract atomic actions replacing the statements
x := 1, y := 2, and y := 3 respectively, and p is an abstract atomic test replacing x ≥ 0)
equivalence does not hold. Now, reasoning under the hypothesis {true}a{p}, the schemes
a; if p then b else c and a; b can be shown to be equivalent. This simple example suggests that
it would be desirable to be able to handle implications, e.g.

{true}a{p} ⇒ a; b ≡ a; if p then b else c,

2

in addition to just equations. If the hypotheses are allowed to be arbitrary equations,
the theory is rendered undecidable [34] (see also [10]). So, we are led to consider here more
restricted hypotheses that are either Hoare assertions for atomic actions (that is, statements
of the form {p}a{q}), or propositional formulas for tests. The set of valid implications
Φ⇒ f ≡ g, where Φ is a finite collection of thus restricted hypotheses, is called the simple
implicational theory of MRSs.

The best known algorithm for deciding DPDA equivalence, due to Stirling [42], has non-
elementary asymptotic running time. As far as the inherent computational complexity of the
problem is concerned, no non-trivial lower bounds are known. The complexity gap between
the known P-hard lower bound and the primitive recursive upper bound has motivated the
study of further subclasses of DPDAs. Sénizergues shows in [39] that for every integer
t ≥ 1, the equivalence problem for t-turn DPDAs lies in coNP. In such DPDAs the number
of switches between pushing to and popping from the stack is bounded. Böhm, Göller, and
Jančar study deterministic one-counter automata, which extend the standard DFAs with a
non-negative counter, and show that their equivalence problem is NL-complete [5, 6]. An
earlier result for deterministic real-time one-counter automata was obtained in [4].

For the works mentioned in the previous paragraph, the decision problem of scheme
equivalence was shown to be easier by restricting the functionality of the stack of the DPDA.
Intuitively, this can be understood in the context of program schemes as restricting recursion.
In the present work we explore a different way of obtaining an easier decision problem: we
do not restrict recursion, but rather we check a property that is simpler than equivalence.
For an arbitrary monadic recursion scheme f , we check a property given by the Hoare
assertion {p}f{q}. These formulas were introduced in the seminal work of Hoare [20],
which is partially based on the intermediate assertion method of Floyd [13] (see also the
surveys [2, 3]). The assertion {p}f{q} expresses the same property as the equation

⊥ ≡ if p then (f ; if q then⊥ else id) else⊥,

where ⊥ is the program that always diverges, and id is the program that does nothing. Thus,
any Hoare assertion can be encoded as an equation. Again, we want to allow hypotheses
of the form {p}a{q}, where a is an atomic action, and hypotheses that are propositional
formulas for tests. More formally, the properties we consider are expressed by implications
Φ ⇒ {p}f{q}, where Φ is a list of hypotheses. The set of such implications that are true
under any interpretation is called the Hoare theory of MRSs. This Hoare theory is the
primary object of study for the present paper.

As we will see, by restricting attention to program properties that can be encoded as
Hoare assertions, we can allow nondeterminism at the syntactic and/or at the semantic level
without increasing the computational complexity of the theories.

At a technical level, our work is closely related to the line of work on the propositional
fragment of Hoare logic, called Propositional Hoare Logic or PHL. This logic was introduced
by Kozen in [27, 28], where it is shown to be subsumed by KAT. Kleene algebra with tests
(or KAT) [25] is a propositional Horn equational system that combines Kleene algebra (KA)
[23, 24] with Boolean algebra. It has been proved that PHL is PSPACE-complete (see also
[8] for an alternative proof). So, PHL is as complex to decide as the more expressive KAT,
which is also PSPACE-complete. A deductive Hoare-style calculus for a variant of PHL is
presented in [31], which is sound and complete for the set of relationally valid implications
of the form

{p1}a1{q1}, . . . , {pk}ak{qk} ⇒ {p}f{q},

3

where a1, . . . , ak are atomic actions and f is an arbitrary regular program (built using the
operations of composition ;, nondeterministic choice +, and nondeterministic iteration ∗).
Contrary to the present paper, both PHL and KAT are concerned with iteration and do not
handle arbitrary recursion.

Motivated by verification applications, several variants of KA and KAT have been con-
sidered that investigate types [26, 29] (e.g., typed KA with products), extra mutable state
[18] (KAT + B!), extra equations for the primitive letters [30] (KA + Equations, or KAT
+ Equations), as well as the modeling of network policies for software-defined networks
(SDNs) [1] (NetKAT).

We note that the result of [27, 28] on the subsumption of PHL by KAT suggests that
for practical reasoning purposes KAT offers an expressiveness advantage over PHL with no
complexity increase. However, if we add a recursion operator to the language of KAT, then
arbitrary context-free languages can be expressed. This means that the equational theory
can have no recursive axiomatization and no decision procedure. The increased complexity
of such an equational theory that combines nondeterminism and recursion raises the need
for identification of more computationally manageable fragments.

Related to both PHL and KAT is the system called Propositional Dynamic Logic (PDL)
[11, 12], which is a modal logic for reasoning about regular programs. Standard PDL only
concerns programs with iteration and is already EXPTIME-complete. Extensions of PDL
with recursive programs can be highly complex. For example, its extension with the context-
free program {aibai | i ≥ 0} is Π1

1-complete. Much more on the subject of non-regular PDL
can be found in [19].

Our contribution. We investigate the simple implicational theory and the Hoare theory
of monadic recursion schemes. Our results are the following:
• We show that the simple implicational theory of MRSs can be reduced to their equa-

tional theory with an exponential blow-up. It follows that the simple implicational theory
of deterministic MRSs is decidable and, in fact, primitive recursive. This extends the known
result about the decidability of the equational theory of deterministic MRSs.
• We give a sound and complete Hoare-style calculus for the Hoare theory of MRSs.

Completeness is first established w.r.t. the class of all nondeterministic interpretations, and
then it is strengthened to the case of deterministic interpretations. We also obtain analogous
completeness results for monadic while program schemes as a special case. All our complete-
ness results are unconditional (no extra assumptions). They are not relative completeness
theorems in the sense of Cook [9].
• A decision procedure is given for the Hoare theory that requires exponential time.

Moreover, it is shown that the Hoare theory is EXPTIME-hard.

2 Preliminaries

Monadic recursion schemes can be given as a collection of equations, which are to be thought
of as mutually recursive parameterless procedure declarations. For example,

X , if p then a;X;Y ; b else c Y , if q then a else c;Y ;X; d

where p, q are abstract atomic tests and a, b, c, d are abstract atomic actions. The procedure
symbol X is designated as the start symbol. Alternatively, such schemes can be given as
terms that involve the recursion operation µ. The µ operation binds program variables, e.g.

4

while MPS (without µ) MRS (with µ)

deterministic (without +) without + or µ without +

nondeterministic (with +) without µ full syntax

Figure 1: Monadic Recursion Schemes: syntactic restrictions.

µX.if p then a;X; b corresponds to the recursive definition

X , if p then a;X; b.

There are straightforward translations from one formalism to the other that only incur a
polynomial blow-up in size. These translations are related to Bekić’s theorem (see Chapter
10 of [43] for an elementary exposition).

2.1 The language of nondeterministic monadic recursion schemes

The language of monadic recursion schemes is algebraic, and it involves two sorts: the sort
of tests, and the sort of programs.

The tests are built up from atomic tests and the constants true and false, using the test
operations ¬ (negation), ∧ (conjunction), and ∨ (disjunction). We typically use the letters
p, q, . . . to range over arbitrary tests. So, the tests are given by the grammar

tests p, q ::= atomic test | true | false | ¬p | p ∧ q | p ∨ q.

As usual, the implication p → q is treated as abbreviation for ¬p ∨ q, and the double
implication p↔ q as abbreviation for (p→ q) ∧ (q → p).

The base programs are atomic programs a, b, . . . (also called atomic actions), program
variables X,Y, . . ., and the constants id and ⊥, called skip and diverge respectively. Com-
pound programs are constructed using the operations ;, if, while, µ, and +, called (sequential)
composition, conditional, iteration, recursion, and (nondeterministic) choice respectively.
The programs are thus given by the following grammar:

programs f , g ::= actions a, b, . . . | variables X, Y , . . . | id | ⊥ |
f ; g | if p then f else g | while p do f | µX.f | f + g.

For notational brevity, we will sometimes write p[f, g] instead of if p then f else g, and wpf
instead of while p do f .

In Figure 1 we summarize some syntactic restrictions of the language of nondeterministic
MRSs that will be of interest for the present work. In particular, we consider the removal of
the nondeterministic choice + operation and/or the removal of the recursion µ operation.

2.2 Denotational semantics of programs

We present the standard denotational semantics of monadic program schemes. A nonempty
set S represents the abstract state space. Every test is interpreted as a unary predicate on
the state space. Every program term is interpreted as a function from S to the powerset of
S. This semantics is often referred to as the relational semantics of programs (see [35]).

Before we give the formal semantics of the language, we present some relevant notation
and definitions.

5

Notation 1 (nondeterministic functions). For a set A, we write ℘A for the powerset of
A. A function f : A → ℘B is said to be a nondeterministic function from A to B. We
write f : A B to denote that f is of type A → ℘B. The notation f : x 7→ y means
that y ∈ f(x). For nondeterministic functions, we define a binary sum operation +, and an
arbitrary sum operation

∑
as:

f : A B g : A B

f + g , λx ∈ A. f(x) ∪ g(x) : A B

fk : A B k ∈ K∑
k∈K fk , λx ∈ A.

⋃
k∈K fk(x) : A B

The identity function IdA : A A and the zero function 0AB : A B are given by:

IdA , λx ∈ A. {x} 0AB , λx ∈ A. ∅

We consider a (Kleisli) composition operation ; with the typing rule and definition:

f : A B g : B C

f ; g , λx ∈ A.
⋃
y∈f(x) g(y) : A C

The operation + is associative, commutative, and idempotent. The unit for + is the zero
function 0. The operation ; is associative with left and right unit the identity function Id .
The following left and right distributivity laws hold:

f ; (g1 + g2) = f ; g1 + f ; g2 f ;
∑
k∈K gk =

∑
k∈K f ; gk

(f1 + f2); g = f1; g + f2; g (
∑
k∈K fk); g =

∑
k∈K fk; g

For a function f : A A, we define the function fn : A A to be the n-fold composite of
f . That is, f0 = IdA and fn+1 = fn; f for every n ≥ 0. We define the partial order ≤ on
functions of type A B by: f ≤ g iff f + g = g. Observe that f ≤ g iff (f(x) ⊆ g(x) for
every x in A).

Notation 2 (partial functions). We say that f : A B is a partial function, and we write
f : A ⇀ B, if f(x) is either empty or a singleton set for every x ∈ A. So, we think of A ⇀ B
as being a subtype of A B.

f : A ⇀ B

f : A B

We say that f : A ⇀ B is defined on x ∈ A if f(x) = {y} for some y ∈ B. The domain of
the partial function f : A ⇀ B is given by dom f := {x ∈ A | f(x) is defined}.

Representing partial functions as nondeterministic functions offers economy of language,
since we can use the operations we defined previously. We observe that the identity and
zero functions are partial, and that nondeterministic composition ; is composition of partial
functions when applied to partial functions.

IdA : A ⇀ A 0AB : A ⇀ B
f : A ⇀ B g : B ⇀ C

f ; g : A ⇀ C

As operations on partial functions, the sums + and
∑

are partial. For f, g : A ⇀ B, the
sum f + g is defined when f(x) = g(x) for every x in dom f ∩ dom g. We say that f and g
are compatible when their sum f + g is defined. If dom f and dom g are disjoint, then f and
g are clearly compatible. The order ≤ on A ⇀ B is called the extension order. We have
that f ≤ g : A ⇀ B when dom f ⊆ dom g and g agrees with f on dom f .

6

For a partial function p : A ⇀ A with p ≤ IdA we define its complement ∼p : A ⇀ A to
be the unique partial function with p+∼p = IdA. Equivalently, we have:

p : A ⇀ A p ≤ IdA
∼p : A ⇀ A

(∼p)(x) ,

{
{x}, if p(x) = ∅
∅, if p(x) = {x}

Notice that a partial function p : A ⇀ A with p ≤ IdA carries the same information as a
unary predicate on A.

Definition 3 (nondeterministic interpretation). An interpretation of the language of monadic
program schemes consists of a set S, called the state space, and an interpretation function
I. The elements of the set S are called states, and we use lowercase letters x, y, . . . to range
over them. For a program term f , its interpretation I(f) : S S is a nondeterministic
function on the state space.

The interpretation of a test p is a partial function I(p) : S ⇀ S. Intuitively, I(p)(x) =
{x} when p(x) is true, and I(p)(x) = ∅ when p(x) is false. The interpretation function
specifies the meaning of every atomic test and extends to all tests as:

I(true) , IdS I(¬p) , ∼I(p) I(p ∧ q) , I(p); I(q)

I(false) , 0SS I(p ∨ q) , I(p) + I(q)

The interpretation function specifies the meaning I(a) : S S of every atomic program a,
as well as the meaning I(X) : S S of every program variable X. Now, we describe how
I extends to all program terms:

I(id) , IdS I(f ; g) , I(f); I(g) I(f + g) , I(f) + I(g)

I(⊥) , 0SS I(p[f, g]) , I(p); I(f) +∼I(p); I(g)

I(wpf) ,
∑
n≥0 σn, where

σ0 , 0SS

σn+1 , I(p); I(f);σn +∼I(p)

I(µX.f) ,
∑
n≥0 τn, where

τ0 , 0SS

τn+1 , I[X 7→ τn](f)

The expression I[X 7→ τn] above denotes the interpretation that agrees with I, except
possibly for X which is mapped to τn. We expand the definition of I(p[f, g]) as follows:

I(p[f, g])(x) =

{
I(f)(x), if I(p)(x) = {x}
I(g)(x), if I(p)(x) = ∅

for every state x in S. For nondeterministic interpretations I and I ′, we write I ≤ I ′ when
the following hold: 1. I(p) = I ′(p) for every atomic test p, 2. I(a) = I ′(a) for every atomic
action a, and 3. I(X) ≤ I ′(X) for every program variable X.

It is easy to see in the definition of I(wpf) above that the while loop approximants
(σn)n≥0 form an increasing chain, that is σ0 ≤ σ1 ≤ · · · .

Observation 4 (while loops as least fixpoints). Let f be a program term, p be a test, and
I be a nondeterministic interpretation with state space S. Then, the function I(wpf) :
S S is the least fixpoint of the map φ : (S S) → (S S), which is defined by
W 7→ I(p); I(f);W +∼I(p).

7

Claim 5 (monotonicity). Let I, I ′ be nondeterministic interpretations with I ≤ I ′ (see
Definition 3 for ≤ on interpretations). Then, I(f) ≤ I ′(f) for every program f .

A consequence of the monotonicity property above (Claim 5) is that the approximants
{τn | n ≥ 0} for I(µX.f) =

∑
n≥0 τn form a countable chain τ0 ≤ τ1 ≤ τ2 ≤ · · · . The

claim is that τn ≤ τn+1 for every n ≥ 0. The base case τ0 = 0SS ≤ τ1 is obvious. For
the induction step we need to show that τn+1 ≤ τn+2, which is equivalent to the inequality
I[X 7→ τn](f) ≤ I[X 7→ τn+1](f). But this is a consequence of the induction hypothesis
τn ≤ τn+1 and of Claim 5.

Claim 6 (continuity). Let I be a nondeterministic interpretation with state space S, and
σ0 ≤ σ1 ≤ σ2 ≤ · · · be a countable chain of functions in S S. Moreover, we put
σ =

∑
n≥0 σn. Then, we have that I[X 7→ σ](f) =

∑
n≥0 I[X 7→ σn](f) for every program

variable X and every program term f .

Observation 7 (recursion as least fixpoint). Let f be a program term, X be a program
variable, and I be a nondeterministic interpretation with state space S. Then, the function
I(µX.f) : S S is the least fixpoint of the map ψ : (S S)→ (S S), which is defined
by W 7→ I[X 7→W](f).

Claim 8 (while loops & recursion). Let X be a program variable not appearing free in the
program f . Then, I(wpf) = I(µX.p[f ;X, id]).

The claim above (Claim 8) says that every while loop can be written equivalently using
recursion. So, for some of our results we do not need to take while as a primitive operator.
We have chosen to include it as a primitive operation, because we will present a complete
Hoare calculus for while program schemes, that is, schemes in which we do not allow general
recursion.

Definition 9 (deterministic interpretation). As in the case of nondeterministic interpreta-
tions (Definition 3), a deterministic interpretation consists of a state space S and a function
J . The interpretation of tests is exactly the same as in Definition 3. The deterministic
interpretation function J specifies the meaning J(a) : S ⇀ S of every atomic action a, and
the meaning J(X) : S ⇀ S of every program variable X. It extends to all program terms
as in Definition 3.

We note that even though the atomic actions and the variables are interpreted by a
deterministic interpretation J as partial functions, the choice operation + can bring in
nondeterminism. However, for +-free programs f , the interpretation J(f) : S ⇀ S is a
partial function. This is shown by observing that the operations of composition, conditional,
while loop, and recursion all preserve determinism.

3 Hoare Formulas and their Meaning

In this section we present formulas that are used for specifying programs, and we define their
semantics. The basic formulas are the familiar Hoare assertions [20], which are expressions
of the form {p}f{q}. Such formulas are also called partial-correctness assertions. We also
consider assertions under certain hypotheses of a simple form. These formulas are called
simple Hoare implications. The hypotheses are used for restricting the meaning of the
primitive letters with axioms.

8

Definition 10 (tests and entailment). Let I be an interpretation of tests. For a test p and
a state x ∈ S, we write I, x |= p when I(p)(x) = {x}. We read this as: “the state x satisfies
p (under I)”. When I, x |= p for every state x ∈ S, we say that I satisfies p, and we write
I |= p. For a set Φ of tests, the interpretation I satisfies Φ if it satisfies every test in Φ. We
then write I |= Φ. Finally, we say that Φ entails p, denoted Φ |= p, if I |= Φ implies I |= p
for every I.

Definition 11 (Boolean Atoms & Φ-consistency). Suppose that we have fixed a finite set
of atomic tests. For an atomic test p, the expressions p and ¬p are called literals for p
(positive and negative respectively). Fix an enumeration p1, p2, . . . , pk of the atomic tests.
A Boolean atom (or simply atom) is an expression `1`2 · · · `k, where every `i is a literal for
pi. We use lowercase letters α, β, γ, . . . from the beginning of the Greek alphabet to range
over atoms. An atom is essentially a conjunction of literals, and it can also be thought of
as a propositional truth assignment. We write α ≤ p to mean that the atom α satisfies the
test p. We denote by At the set of all atoms.

Assume that Φ is a finite set of tests. We say that an atom α is Φ-consistent if α ≤ p
for every test p in Φ. We write AtΦ for the set of all Φ-consistent atoms.

Definition 12 (the free test interpretation). Let Φ be a finite set of tests. We define the
interpretation IΦ on tests, which is called the free test interpretation w.r.t. Φ. The state
space is the set AtΦ of Φ-consistent atoms, and every test represents a unary predicate on
AtΦ. For an atomic test p, we define

IΦ(p)(α) ,

{
{α}, if α ≤ p
∅, if α ≤ ¬p

for every α in AtΦ. So, IΦ(p) represents the set of Φ-consistent atoms that satisfy p.

An easy induction on the structure of tests proves that for every test p, the function
IΦ(p) : S ⇀ S represents the set of Φ-consistent atoms that satisfy p.

Note 13 (complete Boolean calculus). We assume that we have a complete Boolean calcu-
lus, with which we derive judgments Φ ` p, where Φ is a finite set of tests and p is a test.
This means that the statements

Φ |= p IΦ |= p IΦ(p) = AtΦ Φ ` p

are all equivalent. Thus, we also obtain the equivalence of the following statements:

Φ |= p→ q IΦ |= p→ q IΦ(p) ≤ IΦ(q) Φ ` p→ q

In the proof systems that we will present later, we will be referring to this fixed complete
Boolean calculus when we write Φ ` p.

In the definition that follows, we will introduce logical formulas for specifying program
schemes. We will consider a flexible notion of validity w.r.t. a class of interpretations C. We
denote by All the class of all nondeterministic interpretations. The class Det consists of all
deterministic interpretations, that is, interpretations that map atomic letters and program
variables to partial functions.

9

Definition 14 (equations, implications & Hoare formulas). An equation is an expression
f ≡ g, where f and g are program terms. An interpretation I satisfies the equation f ≡ g,
denoted as I |= f ≡ g, if I(f) = I(g). An equation f ≡ g is C-valid, written |= f ≡ g, when
every interpretation in C satisfies it.

A Hoare assertion is an expression {p}f{q}, where p, q are tests and f is a program.
Informally, it says that when the program starts at a state satisfying the predicate p and f
terminates, then the state after the execution of f satisfies the predicate q. This intuition
is formalized as follows: for all states x, y in the state space,

I, x |= p and I(f) : x 7→ y imply that I, y |= q.

In this case we write I |= {p}f{q} and say that I satisfies the Hoare assertion {p}f{q}.
A Hoare assertion is called simple if it is of the form {p}a{q} or {p}X{q}, where a is an
atomic action and X is a program variable.

We will use the letter Φ to denote a finite set of tests, and Ψ to denote a finite set of
simple Hoare assertions. We say that I satisfies such a collection Ψ, and write I |= Ψ, if I
satisfies every Hoare assertion in Ψ. We are concerned here with implications of one of the
following forms:

Φ,Ψ⇒ f ≡ g Φ,Ψ⇒ {p}f{q}

where Φ is a finite set of tests, and Ψ is a finite set of simple Hoare assertions. We call
these formulas simple implications. Implications of the last form in particular are called
simple Hoare implications. An interpretation I satisfies an implication Φ,Ψ ⇒ φ, written
I |= Φ,Ψ⇒ φ, if I |= Φ and I |= Ψ imply that I |= φ. An implication Φ,Ψ⇒ φ is C-valid,
which we denote by Φ,Ψ |=C φ, if every interpretation in C satisfies it. The implication is
said to be valid if it is All -valid, and we denote this simply by Φ,Ψ |= φ.

Remark 15 (Hoare assertions as equations). From the definition of satisfaction we get that
I |= {p}f{q} iff the equation I(p); I(f);∼I(q) = 0 holds. Now, observe that

I(p[f ; q[⊥, id],⊥]) = I(p); I(f ; q[⊥, id]) = I(p); I(f); I(q[⊥, id]) = I(p); I(f);∼I(q).

So, I |= {p}f{q} iff I |= p[f ; q[⊥, id],⊥] ≡ ⊥. This reduces the satisfaction of a Hoare
assertion to the satisfaction of an equation.

4 Simple Implicational Theories

In order to cover practical applications, we augment equations f ≡ g between recursion
schemes with hypotheses Φ (finite set of tests) and Ψ (finite set of simple Hoare assertions).
The main result of this section is that the validity of such an implication Φ,Ψ ⇒ f ≡ g
can be reduced to the validity of a simple equation f◦ ≡ g◦. The reduction can incur an
exponential blow-up in size. The idea of the proof is to replace each atomic action a by a
program a◦ that in some sense encodes the hypotheses Φ and Ψ.

Note 16. Consider an arbitrary implication Φ,Ψ⇒ f ≡ g. Let X be the program variables
that are free in f or g. Define ΨX to be the set that results from Ψ by removing assertions
for variables not in X . Let C be a class of interpretations that satisfies the following closure
property: if I is in C, then I[X 7→ 0SS] is also in C, for any variable X. We can then show
easily that Φ,Ψ⇒ f ≡ g is C-valid iff Φ,ΨX ⇒ f ≡ g is C-valid.

10

a◦ , if α then (a; if (qα ∧
∨

AtΦ) then id else⊥)

else if β then (a; if (qβ ∧
∨

AtΦ) then id else⊥)

else if . . .

else if γ then (a; if (qγ ∧
∨

AtΦ) then id else⊥)

else ⊥,

Figure 2: Encoding the hypotheses Φ and Ψ in the translation a◦ of an atomic action a.

The previous paragraph means that we can restrict attention w.l.o.g. to implications
that do not involve hypotheses for bound variables or for variables that do not appear in
the programs. Now, we also observe that free variables can be turned into atomic actions,
without changing the interpretation in an essential way.

So, for the results of this section we can assume that the implications Φ,Ψ ⇒ f ≡ g
involve hypotheses Ψ only for atomic actions, and additionally f, g are closed (have no free
program variables).

Remark 17. Let Φ be a finite set of tests. We observe that |=
∧

Φ ↔
∨

AtΦ. So, for all
intended purposes, the tests

∧
Φ and

∨
AtΦ can be used interchangeably.

Definition 18 (the (·)◦ transformation). Let Φ and Ψ be finite sets of tests and simple
Hoare assertions (for actions) respectively. We fix an atomic action a. For a Φ-consistent
atom α we define qα to be the conjunct

qα ,
∧
{q | {p}a{q} ∈ Ψ and α ≤ p}.

Intuitively, qα is the test that has to hold, according to the hypotheses Ψ, after executing the
action a from a state that satisfies the atom α. Define a◦ as the case statement of Figure 2,
where the atoms α, β, . . . , γ in the statement are an enumeration of the Φ-consistent atoms.
We will extend the (·)◦ transformation to arbitrary programs. First, define the translation
of the skip program:

id◦ , if (
∨

AtΦ) then id else⊥.

Define the substitution θΦΨ to map every atomic program a to a◦, and the constant id to
id◦. Finallly, for an arbitrary program term f , we put f◦ := θΦΨ(f).

Lemma 19. Let I be an interpretation that satisfies Φ and Ψ. Then, it holds that I(a◦) =
I(a) for an atomic action a. In fact, I(f◦) = I(f) for every program term f .

Let A ⊆ S and f : S S be a nondeterministic function. We say that f is A-restricted
if both the domain and the range of f are contained in A:

f(x) = ∅ for every x ∈ S \A f(x) ⊆ A for every x ∈ A

This means that we can also view f as a nondeterministic function of type f : A A.

Observation 20. Let f, g : S S be nondeterministic functions. Let p be a partial
function that represents a predicate on S, that is, p : S ⇀ S and p ≤ IdS . Consider a
subset A ⊆ S. If f and g are A-restricted, then so are the functions f ; g, f + g, and p; f .

11

Lemma 21 (restriction). Let I be an interpretation, and A be the subset of states that
satisfy

∨
AtΦ. We assume that for every variable X, the function I(X) is A-restricted.

Then, for every program term f , the function I(f◦) is A-restricted.

Theorem 22. Let Φ be a finite set of tests, and Ψ be a finite set of simple Hoare assertions
for actions. Let C be either All or Det . The implication Φ,Ψ ⇒ f ≡ g is C-valid iff the
equation f◦ ≡ g◦ is C-valid.

Proof. For the right-to-left direction, suppose that the equation f◦ ≡ g◦ is C-valid and
consider an interpretation I in C that satisfies Φ and Ψ. We have that I |= f◦ ≡ g◦, that
is, I(f◦) = I(g◦). We have to show that I satisfies f ≡ g. This follows immediately from
Lemma 19, which says that I(f) = I(f◦) = I(g◦) = I(g).

For the left-to-right direction, suppose that Φ,Ψ ⇒ f ≡ g is C-valid and consider an
arbitrary interpretation I in C. We have to show that I(f◦) = I(g◦). As discussed in
Note 16, we can assume w.l.o.g. that the programs f and g have no free program variables,
and that no program variable appears in the hypotheses Ψ. Lemma 21 says that I(f◦) and
I(g◦) remain essentially unchanged if we restrict the state space to the states that satisfy∨

AtΦ. So, w.l.o.g. we can assume from now on that I(
∨

AtΦ) = Id , that is, I satisfies all the
tests in Φ. This means that I(id◦) = I(id) = Id . Now, we want to modify the interpretation
function so that every atomic action a is mapped to the nondeterministic function I(a◦).
We thus define

I ′ = I[a 7→ I(a◦), for every atomic action a].

The interpretation I ′ now satisfies Φ and Ψ by construction of a◦. Since Φ,Ψ⇒ f ≡ g has
been assumed to be C-valid, we get that I ′ satisfies f ≡ g. That is, I ′(f) = I ′(g). By a
straightforward “substitution lemma” we have that

I ′(f) = I[a 7→ I(a◦), for every a](f) = I(f◦)

and similarly that I ′(g) = I(g◦). It follows that I(f◦) = I(g◦). So, the equation f◦ ≡ g◦ is
C-valid.

Corollary 23. The simple implicational theory of nondeterministic MRSs (which include
the choice operation +) is Π0

1-complete.

Proof. Syntactically, the programs that we consider involve both the recursion operation µ
and the nondeterministic choice operation +. Semantically, we consider the class All of all
nondeterministic interpretations. Theorem 22, instantiated with C being All , says that the
simple implicational theory of nondeterministic MRSs can be reduced to their equational
theory. This gives us the desired Π0

1 upper bound. Now, Π0
1-hardness follows trivially from

the known Π0
1-hardness of the equational theory.

Corollary 24. The simple implicational theory of deterministic MRSs (without the +
operation) is decidable. In fact, it is a primitive recursive set.

Proof. Syntactically, we consider programs with µ, but without +. Semantically, we restrict
attention to the class Det of deterministic interpretations. Theorem 22, instantiated with C
being Det , says that the simple implicational theory of deterministic MRSs can be reduced
to their equational theory. The reduction produces an equation of size exponential in the size
of the implication. This is because each atomic program a is replaced by a case statement
a◦ whose size is proportional to the number of atoms in AtΦ. Decidability follows from the

12

result of Sénizergues on the decidability of the language-equivalence problem for DPDAs
[36]. The problems of DPDA equivalence and (strong) equivalence of deterministic MRSs
are interreducible, as shown in [15] and [14]. The primitive recursive upper bound follows
from the result of Stirling [42], which is a strengthening of the decidability result for DPDA
equivalence.

5 Hoare Calculi for Monadic Recursion Schemes

In this section we propose a Hoare-style calculus (Figure 3) which is sound and complete for
the Hoare theory of monadic recursion schemes. The completeness proof will proceed in two
steps. First, we will establish in §6 completeness w.r.t. the class All of all nondeterministic
interpretations. Then, this result will be strengthened in §7 to give us completeness w.r.t.
the class Det of deterministic interpretations.

We define a proof system in Figure 3 with which we derive Hoare implications. We
use the notation Φ,Ψ ` {p}f{q} to mean that the Hoare implication Φ,Ψ ⇒ {p}f{q} is
provable in our system. In the premise of the µ-rule in Figure 3 appears the notation

Ψ[X : {pj}X{qj} for j ∈ K],

which denotes the set that results from Ψ by replacing any Hoare assertions for X by the
assertions {pj}X{qj} for j ∈ K. The index set K is always taken to be finite. We assume
that we have a complete calculus for Boolean logic (see Note 13).

Proposition 25 (soundness). The Hoare-style calculus of Figure 3 is sound for the class
All of all nondeterministic interpretations.

Proof. Verifying that the rules in Figure 3 are sound is completely standard, except possibly
for the µ-rule. So, we will only give the proof for the soundness of the µ-rule. Let Ψ′ denote
the collection of Hoare assertions

Ψ[X : {pj}X{qj} for j ∈ K].

Suppose that Φ,Ψ′ |= {pk}f{qk} for every index k ∈ K. We want to show that

Φ,Ψ |= {p`}µX.f{q`}

for an arbitrary index ` ∈ K. Let I be an interpretation that satisfies the hypotheses Φ and
Ψ. We have to show that I |= {p`}µX.f{q`}. Recall the definition for recursion:

I(µX.f) =
∑
n≥0 τn τ0 = 0SS τn+1 = I[X 7→ τn](f)

The claim is now that

I(pk); τn;∼I(qk) = 0SS for every k ∈ K and n ≥ 0.

The proof is by induction on n. For the base case, it holds that I(pk); τ0;∼I(qk) = 0SS
because τ0 = 0SS . For the induction step assume that I(pk); τn;∼I(qk) = 0SS for every
k ∈ K. Since I |= Ψ, we know that I satisfies all the Hoare assertions in Ψ′ that do not
involve X. Now, notice that for every index k ∈ K:

I(pk); τn;∼I(qk) = 0SS ⇐⇒ I(pk); I[X 7→ τn](X);∼I(qk) = 0SS

⇐⇒ I[X 7→ τn] |= {pk}X{qk}.

13

{p}a{q} in Ψ
(hyp)

Φ,Ψ ` {p}a{q}
{p}X{q} in Ψ

(hyp)
Φ,Ψ ` {p}X{q}

Φ,Ψ ` {p}id{p} (skip)

Φ,Ψ ` {p}⊥{q} (dvrg)

Φ,Ψ ` {p}f{q} Φ,Ψ ` {q}g{r}
(seq)

Φ,Ψ ` {p}f ; g{r}
Φ,Ψ ` {p}f{q} Φ,Ψ ` {p}g{q}

(ch)
Φ,Ψ ` {p}f + g{q}

Φ,Ψ ` {p ∧ q}f{r} Φ,Ψ ` {¬p ∧ q}g{r}
(cond)

Φ,Ψ ` {q}if p then f else g{r}
Φ,Ψ ` {p ∧ r}f{r}

(loop)
Φ,Ψ ` {r}while p do f{r ∧ ¬p}

Φ,Ψ[X : {pj}X{qj} for j ∈ K] ` {pk}f{qk} for every k ∈ K
(rec)

Φ,Ψ ` {p`}µX.f{q`}

Φ ` p′ → p Φ,Ψ ` {p}f{q} Φ ` q → q′
(weak)

Φ,Ψ ` {p′}f{q′}
Φ,Ψ ` {p}f{q1} Φ,Ψ ` {p}f{q2}

(meet)
Φ,Ψ ` {p}f{q1 ∧ q2}

(meet0)
Φ,Ψ ` {p}f{true}

Φ,Ψ ` {p1}f{q} Φ,Ψ ` {p2}f{q}
(join)

Φ,Ψ ` {p1 ∨ p2}f{q}
(join0)

Φ,Ψ ` {false}f{q}

Figure 3: StdHL (Standard Hoare Logic): Proof system for deriving Hoare implications.

It follows that I[X 7→ τn] satisfies Φ and Ψ′, and therefore the premise of the rule gives us
that I[X 7→ τn] |= {pk}f{qk} for every k ∈ K. So, for every k ∈ K:

I[X 7→ τn] |= {pk}f{qk} ⇐⇒ I(pk); I[X 7→ τn](f); I(qk) = 0SS

⇐⇒ I(pk); τn+1;∼I(qk) = 0SS .

Using the claim we have just proved we can show that

I(p`); I(µX.f); I(q`) = I(p`);
(∑

n≥0 τn

)
; I(q`) =

∑
n≥0 I(p`); τn; I(q`) = 0SS .

It follows that I |= {p`}µX.f{q`}, and we are done.

Let us give some intuition for the crucial rule (rec) for recursive procedures. It can be
thought of as corresponding to a proof by induction, where the claim is multi-part. For
the induction step, we argue under the hypotheses Φ and Ψ augmented with the induction
hypothesis: for every j in the finite set K, it holds that {pj}X{qj}. We show that every
part of the claim is preserved:

Φ[X : {pj}X{qj} for j ∈ K] ` {pk}f{qk},

for every k ∈ K. We thus conclude that every part of the claim is satisfied by the recursive
procedure µX.f (under the hypotheses Φ and Ψ). That is, Φ,Ψ ` {p`}µX.f{q`} for every
index ` ∈ K.

14

isEven , if (n = 0) then

out := tt

else // n > 0

n := n− 1; isOdd

isOdd , if (n = 0) then

out := ff

else // n > 0

n := n− 1; isEven

Specification for isEven :

{even(n)}isEven{out = tt}
{¬even(n)}isEven{out 6= tt}

Atomic tests : n = 0
even(n)
out = tt

Atomic actions : n := n− 1
out := tt
out := ff

Hypotheses Φ : n = 0→ even(n)

Hypotheses Ψ : {true}out := tt{out = tt} {n 6= 0 ∧ even(n)}n := n− 1{¬even(n)}
{true}out := ff{out 6= tt} {¬even(n)}n := n− 1{even(n)}

Figure 4: Mutually recursive procedures isEven and isOdd. The program isEven (resp.,
isOdd) returns boolean output tt iff the input value n is even (resp., odd).

5.1 A Simple Example

We will now illustrate the Hoare-style calculus of Figure 3 on the simple example program
of Figure 4, which consists of the mutually recursive procedures isEven and isOdd. The state
space consists of two variables n and out . We think of n as being the input variable, which
takes values over the natural numbers. The variable out is used for storing the output, which
can be either tt or ff. Our verification task is to establish the following Hoare assertions:

{even(n)}isEven{out = tt} {¬even(n)}isEven{out 6= tt}

These assertions constitute the specification for the procedure isEven, and we are asked to
show adherence of isEven to this specification.

The first observation we make is that the claim has to be strengthened, so that the
necessary properties of the procedure isOdd are also taken into account in the proof. Define
the set of simple Hoare assertions Hyp to contain the specification for isEven, as well the
following assertions:

{even(n)}isOdd{out 6= tt} {¬even(n)}isOdd{out = tt}

The above assertions constitute the specification for the procedure isOdd. By the recursion
rule of our Hoare calculus, it suffices to establish the following judgments:

Φ,Ψ,Hyp ` {even(n)}(n = 0)[out := tt, (n := n− 1); isOdd]{out = tt}
Φ,Ψ,Hyp ` {¬even(n)}(n = 0)[out := tt, (n := n− 1); isOdd]{out 6= tt}
Φ,Ψ,Hyp ` {even(n)}(n = 0)[out := ff, (n := n− 1); isEven]{out 6= tt}
Φ,Ψ,Hyp ` {¬even(n)}(n = 0)[out := ff, (n := n− 1); isEven]{out = tt}

Now, we prove the first of the above judgments. We are reasoning under hypotheses Φ, Ψ,
and Hyp. We omit them in the proof below, in order to reduce the notational clutter.

1. n = 0 ∧ even(n)→ true [bool]

15

2. {true}out := tt{out = tt} [in Ψ]

3. {n = 0 ∧ even(n)}out := tt{out = tt} [1, 2, weak]

4. {n 6= 0 ∧ even(n)}n := n− 1{¬even(n)} [in Ψ]

5. {¬even(n)}isOdd{out = tt} [in Hyp]

6. {n 6= 0 ∧ even(n)}(n := n− 1); isOdd{out = tt} [4, 5, seq]

7. {even(n)}(n = 0)[out := tt, (n := n− 1); isOdd]{out = tt} [3, 6, cond]

The proofs for the rest of the obligations are similar and we omit them.

6 First Completeness Theorem

For our first completeness result, we consider the theory of the class All of all nondetermin-
istic interpretations. In order to show that our Hoare calculus (Figure 3) is complete, we
we will construct a “free” nondeterministic interpretation whose theory is exactly the set
of valid (i.e., All -valid) Hoare implications. Such an interpretation is called “free” because
it is free of extra properties: if an implication is satisfied in it, then it is satisfied in every
interpretation.

Let us give an outline of the main ideas for the proof. We consider a finite set Φ of tests,
and a finite set Ψ of simple Hoare assertions. The sets Φ and Ψ contain the hypotheses
under which we want to reason. These hypotheses are meant to constrain the meaning
of the primitive letters (atomic tests and atomic actions). We will see how to construct
a nondeterministic interpretation IΦΨ, which depends on the hypotheses Φ and Ψ. The
interpretation IΦΨ satisfies the following properties:

(1) IΦΨ satisfies every test in Φ and every assertion in Ψ.

(2) For a test p, if IΦΨ |= p then Φ ` p.

(3) For a Hoare assertion {p}f{q}, if IΦΨ |= {p}f{q} then Φ,Ψ ` {p}f{q}.

The existence of such an interpretation, which we call a free interpretation, has as an easy
consequence the completeness of the calculus of Figure 3, as we will see later.

Definition 26 (the free nondeterministic interpretation). Let Φ and Ψ be finite sets of tests
and simple Hoare assertions respectively. We define the free nondeterministic interpretation
IΦΨ (w.r.t. Φ and Ψ) to have AtΦ as state space, and to interpret the tests as IΦ (the free
test interpretation w.r.t. Φ, see Definition 12) does. Moreover, the interpretation IΦΨ(a) :
AtΦ AtΦ of the atomic action a is given by:

IΦΨ(a)(α) , {β ∈ AtΦ | for every {p}a{q} in Ψ. α ≤ p =⇒ β ≤ q}

for every atom α in AtΦ. The program variables X,Y, . . . are interpreted similarly.

We think that the free nondeterministic interpretation IΦΨ encodes an action-labeled
reachability relation on the Φ-consistent atoms AtΦ. If IΦΨ(a) : α 7→ β, we say that the atom
β is reachable from an atom α via the program a (according to the hypotheses of Ψ). This
corresponds to the idea that a state satisfying α can be transformed to a state satisfying
β when the action a is executed. We extend the notion of reachable atoms to arbitrary
programs according to Definition 3. So, the nondeterministic map IΦΨ(f) : AtΦ AtΦ

16

sends an atom α to the set IΦΨ(f)(α) of atoms that are reachable via f . For a conditional
p[f, g], we expand the definition:

IΦΨ(p[f, g])(α) =

{
IΦΨ(f)(α), if α ≤ p
IΦΨ(g)(α), if α ≤ ¬p

for every Φ-consistent atom α.

Lemma 27. The free nondeterministic interpretation IΦΨ satisfies both Φ and Ψ.

Observation 28 (functions AtΦ AtΦ as specifications). Observe that a nondeterministic
function τ : AtΦ AtΦ is a finite object, and we can think of it as a detailed syntactic
specification of the input-output behavior of a program. Intuitively, the function τ specifies
the program X, if the following Hoare assertions are satisfied: {α}X{

∨
τ(α)} for every

Φ-consistent atom α.

Notation 29. Let Φ be a finite set of tests, and Ψ be a finite set of simple Hoare assertions
(of the form {p}a{q} or {p}X{q}). Fix a program variable X and a nondeterministic
function τ : AtΦ AtΦ. We denote by Ψ[X : τ] the set that results from Ψ by removing
all assertions involving X and replacing them by the assertions saying that τ specifies X.
That is, we put the assertions {α}X{

∨
τ(α)} for every α ∈ AtΦ.

It is easy to see that the free nondeterministic interpretation IΦΨ[X:τ] is equal to the
modified free interpretation IΦΨ[X 7→ τ].

Theorem 30 (completeness). Let Φ and Ψ be finite sets of tests and simple Hoare assertions
respectively. For every α ∈ AtΦ and every program f , it holds that

Φ,Ψ ` {α}f{
∨
IΦΨ(f)(α)}.

Proof. We note that the Hoare assertion {α}f{
∨
IΦΨ(f)(α)} is well-formed, because the

set of atoms IΦΨ(f)(α) is finite. The proof proceeds by induction on the structure of the
program term. For the skip program we have that

(skip)
Φ,Ψ ` {α}id{α}

∨
IΦΨ(id)(α) =

∨
{α} = α

(same assertion).
Φ,Ψ ` {α}id{

∨
IΦΨ(id)(α)}

For the always-diverging program ⊥, we have the trivial derivation

(dvrg).
Φ,Ψ ` {α}⊥{

∨
IΦΨ(⊥)(α)}

For an atomic program a, we define Ψ(α, a) to be the following set of postconditions:

Ψ(α, a) , {test q | there is p s.t. {p}a{q} ∈ Ψ and α ≤ p}.

Recall the definition IΦΨ(a)(α) = {β ∈ AtΦ | ∀{p}a{q} ∈ Ψ. α ≤ p⇒ β ≤ q}. We have

IΦΨ(a)(α) = {β ∈ AtΦ | ∀q ∈ Ψ(α, a). β ≤ q} =
⋂
q∈Ψ(α,a){β ∈ AtΦ | β ≤ q}.

Using the fact that Φ |= q ↔
∨
{β ∈ AtΦ | β ≤ q} for every test q, we obtain that

Φ |=
∧

Ψ(α, a)↔
∧
q∈Ψ(α,a) q ↔

∧
q∈Ψ(α,a)

∨
{β ∈ AtΦ | β ≤ q} ↔∨⋂
q∈Ψ(α,a){β ∈ AtΦ | β ≤ q} ↔

∨
IΦΨ(a)(α).

17

In the following derivation, we use iterated applications of the (meet) rule to obtain:

Φ ` α→ p

{p}a{q} in Ψ
(hyp)

Φ,Ψ ` {p}a{q}
(weak)

Φ,Ψ ` {α}a{q}
for every {p}a{q}
in Ψ with α ≤ p

(meet)
(1) Φ,Ψ ` {α}a{

∧
Ψ(α, a)}

(1) Φ `
∧

Ψ(α, a)↔
∨
IΦΨ(a)(α)

(weak)
Φ,Ψ ` {α}a{

∨
IΦΨ(a)(α)}

We handle the base case of a program variable X in an analogous way. We consider now
the case of the composite f ; g. First, we suppose that IΦΨ(f)(α) is empty.∨

IΦΨ(f)(α) =
∨
∅ = false

(I.H.)
Φ,Ψ ` {α}f{false}

(join0)
Φ,Ψ ` {false}g{

∨
IΦΨ(f ; g)(α)}

(seq).
Φ,Ψ ` {α}f ; g{

∨
IΦΨ(f ; g)(α)}

We assume now that IΦΨ(f)(α) is nonempty. For an atom β in IΦΨ(f)(α) we obtain:

(I.H.)
Φ,Ψ ` {β}g{

∨
IΦΨ(g)(β)}

Φ `
∨
IΦΨ(g)(β)→∨⋃
β∈IΦΨ(f)(α) IΦΨ(g)(β)

(weak)
(2) Φ,Ψ ` {β}g{

∨
IΦΨ(f ; g)(α)}

(2)
Φ,Ψ ` {β}g{

∨
IΦΨ(f ; g)(α)}

for every β
in IΦΨ(f)(α)

(join)
(3) Φ,Ψ ` {

∨
IΦΨ(f)(α)}g{

∨
IΦΨ(f ; g)(α)}

(I.H.)
Φ,Ψ ` {α}f{

∨
IΦΨ(f)(α)}

(3)
Φ,Ψ ` {

∨
IΦΨ(f)(α)}g{

∨
IΦΨ(f ; g)(α)}

(seq)
Φ,Ψ ` {α}f ; g{

∨
IΦΨ(f ; g)(α)}

For the case of the conditional p[f, g], we first suppose that α ≤ p. The definition says that
IΦΨ(p[f, g])(α) = IΦΨ(f)(α). We thus get the following derivation:

1. Φ ` p ∧ α→ α [prop.]

2. Φ,Ψ ` {α}f{
∨
IΦΨ(f)(α)} [I.H.]

3. Φ,Ψ ` {p ∧ α}f{
∨
IΦΨ(f)(α)} [1, 2, weak]

4. Φ ` ¬p ∧ α→ false [α ≤ p, prop.]

5. Φ,Ψ ` {false}g{
∨
IΦΨ(f)(α)} [join0]

6. Φ,Ψ ` {¬p ∧ α}g{
∨
IΦΨ(f)(α)} [4, 5, weak]

7. Φ,Ψ ` {α}p[f, g]{
∨
IΦΨ(f)(α)} [3, 6, cond]

8. Φ,Ψ ` {α}p[f, g]{
∨
IΦΨ(p[f, g])(α)} [same as 7]

The case of α ≤ ¬p is handled similarly and we omit it.
For the nondeterministic choice f + g we have: IΦΨ(f + g)(α) = IΦΨ(f)(α)∪ IΦΨ(g)(α).

So, we obtain the following derivation:

1. Φ,Ψ ` {α}f{
∨
IΦΨ(f)(α)} [I.H.]

18

2. Φ `
∨
IΦΨ(f)(α)→

∨
IΦΨ(f + g)(α) [prop.]

3. Φ,Ψ ` {α}f{
∨
IΦΨ(f + g)(α)} [1, 2, weak]

4. Φ,Ψ ` {α}g{
∨
IΦΨ(f + g)(α)} [similar to 3]

5. Φ,Ψ ` {α}f + g{
∨
IΦΨ(f + g)(α)} [3, 4, ch]

For a loop wpf , we recall the characterization of the meaning of loops as fixpoints. Fix
a Φ-consistent atom α. From Observation 4, we have that:

IΦΨ(wpf) = IΦ(p); IΦΨ(f); IΦΨ(wpf) +∼IΦ(p).

Let A = IΦΨ(wpf)(α), and we define the set R of A-safe atoms as follows:

R , {β ∈ AtΦ | IΦΨ(wpf)(β) ⊆ A}.

That is, R is the set of atoms from which we can guarantee the desired postcondition. We
show in the claim below that R is an appropriate loop invariant. In fact, it is the weakest
(largest) loop invariant that we can consider.

Claim 31. Let β be a Φ-consistent atom with β ∈ R. The following hold:

1. Invariance property : If β ≤ p, then IΦΨ(f)(β) ⊆ R.

2. Safety property : If β ≤ ¬p, then β ∈ A.

The second part of the claim says equivalently that {β ∈ R | β ≤ ¬p} ⊆ A.

Proof. We show part (1). For the sake of contradiction, we assume that there is some Φ-
consistent atom γ in IΦΨ(f)(β) with γ /∈ R. Since γ /∈ R, we have that IΦΨ(wpf)(γ) 6⊆ A.
The fixpoint equation then implies that

IΦΨ(wpf)(β) = [IΦΨ(f); IΦΨ(wpf)](β) =
⋃
δ∈IΦΨ(f)(β) IΦΨ(wpf)(δ) 6⊆ A,

because γ ∈ IΦΨ(f)(β) and IΦΨ(wpf)(γ) 6⊆ A. This contradicts the fact that β ∈ R.
For part (2), the fixpoint equation gives us that IΦΨ(wpf)(β) = {β}, because β ≤ ¬p.

Since β ∈ R, we conclude that {β} ⊆ A, i.e., β ∈ A.

From the definition of R, we have immediately that α ∈ R. For every atom β ∈ R with
β ≤ p, we have the following derivation:

1. Φ,Ψ ` {β}f{
∨
IΦΨ(f)(β)} [I.H.]

2. Φ `
∨
IΦΨ(f)(β)→

∨
R [Claim 31(1), prop.]

3. Φ,Ψ ` {β}f{
∨
R} [1, 2, weak]

Using the above derivation, instantiated for every atom β in {β ∈ R | β ≤ p}, we get:

4. Φ ` α→
∨
R [α ∈ R, prop.]

5. Φ,Ψ ` {
∨
{β ∈ R | β ≤ p}}f{

∨
R} [3, for all β ∈ R with β ≤ p, join]

6. Φ ` (
∨
R) ∧ p→

∨
{β ∈ R | β ≤ p} [prop.]

7. Φ,Ψ ` {(
∨
R) ∧ p}f{

∨
R} [5, 6, weak]

8. Φ,Ψ ` {
∨
R}wpf{(

∨
R) ∧ ¬p} [7, loop]

19

9. Φ ` (
∨
R) ∧ ¬p→

∨
A [Claim 31(2), prop.]

10. Φ,Ψ ` {α}wpf{
∨
A} [4, 8, 9, weak]

The last judgment above is the desired Φ,Ψ ` {α}wpf{
∨
IΦΨ(wpf)(α)}.

It remains to consider the case µX.f of recursion. Let γ be an arbitrary Φ-consistent
atom. We want to show that Φ,Ψ ` {γ}µX.f{

∨
τ(γ)}, where τ = IΦΨ(µX.f). Informally,

we strengthen the claim to consider all atoms as preconditions. We put

Ψ′ , Ψ[X : τ] = Ψ[X : {α}X{
∨
τ(α)} for α ∈ AtΦ].

By the (rec) rule for recursion, it suffices to prove that Φ,Ψ′ ` {β}f{
∨
τ(β)} for every

atom β ∈ AtΦ. The fixpoint characterization of recursion in Observation 7 gives us the
equation τ = IΦΨ[X 7→ τ](f). As we have already discussed in Notation 29, it holds that
IΦΨ[X 7→ τ] = IΦΨ[X:τ] = IΦΨ′ . Therefore, τ = IΦΨ′(f). Now,

(I.H.)
Φ,Ψ′ ` {β}f{

∨
IΦΨ′(f)(β)} τ = IΦΨ′(f)

Φ,Ψ′ ` {β}f{
∨
τ(β)}

for every Φ-consistent atom β. This concludes the proof of the theorem.

Most of the technical work for obtaining completeness of the calculus for the Hoare
theory of the class All has been done in Theorem 30. Now, we put everything together and
give several characterizations of the Hoare theory of All .

Corollary 32 (completeness for All). Let Φ be a finite set of tests, and Ψ be a finite set
of simple Hoare assertions. The following are equivalent:

1. Φ,Ψ |= {p}f{q}, which is the same as Φ,Ψ |=All {p}f{q}.

2. IΦΨ |= {p}f{q}. Equivalently, this says that IΦΨ(f)(α) ⊆ {β ∈ AtΦ | β ≤ q} for every
Φ-consistent atom α with α ≤ p.

3. Φ,Ψ ` {p}f{q}.

Proof. The implication (1)⇒ (2) holds because the interpretation IΦΨ satisfies the hypothe-
ses Φ and Ψ (Lemma 27). For the implication (2) ⇒ (3) we have:

Theorem 30
Φ,Ψ ` {α}f{

∨
IΦΨ(f)(α)}

IΦΨ(f)(α) ⊆ {β ∈ AtΦ | β ≤ q}
Φ `

∨
IΦΨ(f)(α)→ q

(weak)
Φ,Ψ ` {α}f{q}

for all
α ∈ AtΦ

with
α ≤ p

(join).
Φ,Ψ ` {

∨
{α ∈ AtΦ | α ≤ p}}f{q}

Since Φ ` p →
∨
{α ∈ AtΦ | α ≤ p}, we conclude by (weak) that Φ,Ψ ` {p}f{q}. Finally,

the implication (3) ⇒ (1) is the soundness result of Proposition 25.

We observe that the proof of completeness goes through essentially unchanged when
we remove arbitrary recursion (with the µ operation) or nondeterministic choice + or both
of them. So, we also obtain completeness results for syntactic fragments of the Hoare
theory (over All) of nondeterministic MRSs. These completeness results are summarized in
Figure 5.

20

syntactic fragment complete Hoare-style calculus

with µ, with + StdHL (calculus of Figure 3)

with µ, without + StdHL without rule (ch)

without µ, with + StdHL without rule (rec)

without µ, without + StdHL without rules (rec) or (ch)

Figure 5: Four completeness results for syntactic restrictions of nondeterministic MRSs.

The completeness results of Theorem 30 and Corollary 32 give us an effective procedure
for the construction of proofs. The free nondeterministic interpretation IΦΨ of Definition 26
is a finite object that can be computed. Then, an inspection of the completeness proof
reveals that it constitutes an algorithm that creates a proof out of IΦΨ.

A remark is in order for the completeness result shown in the third line of Figure 5. This
corollary is closely related to the completeness theorem of Kozen and Tiuryn [31] for the
Propositional Hoare Logic of regular programs. Notice, however, that our setting here is
much more general, because we can also account for mutual recursion. The result of Kozen
of Tiuryn concerns only iteration, not general recursion. Another important difference with
the work [31] is that, in the next section, we will strengthen all the completeness results
listed in Figure 5 to the case of deterministic interpretations. Showing completeness for a
smaller class of interpretations is, of course, a stronger result.

7 Second Completeness Theorem

The completeness theorem of §6 (Corollary 32) is for the Hoare theory of the class All
of all interpretations. A subclass of All that is of particular interest is the class Det of
deterministic interpretations, which interpret the atomic actions and variables as partial
functions. This is a very natural subclass to consider, since we often think of the atomic
programs a, b, . . . as being abstractions of concrete statements, e.g. x := 3 or x := 2 · y + z,
that involve no nondeterminism.

So, the question arises of whether this strictly smaller class of interpretations has the
same Hoare theory as All . We will show in this section that the Hoare theory of Det is in
fact the same as the Hoare theory of All . This is a strengthening of the completeness result
of the previous section, and we need that weaker completeness theorem (Corollary 32) as
part of the proof.

The idea for the proof is the construction of a free deterministic interpretation JΦΨ,
which intuitively carries the same information as the free nondeterministic interpretation
IΦΨ (Definition 26). We can view the construction of JΦΨ as resolving the abstraction non-
determinism of IΦΨ by blowing-up the state space. The hypotheses Ψ allow nondeterminism
in the interpretation of the atomic letters, because the assertion language is abstract and
gives only a partial description of the meaning of the letters. The state space of JΦΨ con-
tains enough states to resolve this abstraction nondeterminism. In some sense, a state of
JΦΨ specifies the future of the computation and resolves the choices.

Definition 33 (the free deterministic interpretation). Fix finite sets Φ and Ψ of tests and
simple Hoare assertions respectively. We define the state space of the free deterministic

21

interpretation for Φ,Ψ to be the set AtΦ
+ of all finite non-empty strings over the set AtΦ

of Φ-consistent atoms. Intuitively, a state α1α2 . . . αn gives us the atom currently satisfied
(α1), as well as the atoms that will be true after each execution of an atomic action. When
the string is a single atom, the computation is expected to terminate. Since the first atom
of a state is meant to indicate the currently satisfied atom, we interpret an atomic test p as
follows:

JΦ(p)(αx) , IΦ(p)(α) · x =

{
{αx}, if α ≤ p;
∅, if α ≤ ¬p.

We need to consider now the interpretation of the atomic actions and of the program vari-
ables. The Hoare assumptions in Ψ restrict the atoms that are reachable via an action a orX.
The free nondeterministic interpretation IΦΨ carries this information. So, IΦΨ(a) : α 7→ β
means that β can be reached from α via a under the restriction that the assumptions Ψ are
satisfied. For an atomic program a we define:

JΦΨ(a)(α) , ∅ JΦΨ(a)(αβx) ,

{
{βx}, if IΦΨ(a) : α 7→ β;

∅, otherwise.

Notice that JΦΨ(a)(α) = ∅, because a single-atom state α signifies that the computation
should have terminated. For a program variable X, we define JΦΨ(X) analogously.

Lemma 34. The free deterministic interpretation JΦΨ satisfies Φ and Ψ.

Definition 35 (strongest postconditions). For a state space S, a nondeterministic function
φ : S S and a predicate P ⊆ S, we define

post(P, φ) ,
⋃
x∈P φ(x) =

⋃
{φ(x) | x ∈ P}.

For the particular case where the state space is a set S = A+ of nonempty strings, for some
nonempty set A, we have that

post(α ·A∗, φ) =
⋃
{φ(αx) | x ∈ A∗},

where α is an element of A.

Definition 36 (agreement for functions). Consider a state space A, and the state space
A+ of non-empty finite words over A. We say that the function φ : A+ A+ agrees with
the function ψ : A A if the following equation holds for every α ∈ A:

post(α ·A∗, φ) = ψ(α) ·A∗,

where A∗ is the set of finite words over A. Intuitively, agreement of φ with ψ says that we
can calculate strongest postconditions for φ using the function ψ instead.

Lemma 37 (agreement). Let A be a state space, and consider the families of nondetermin-
istic functions φi : A+ A+ and ψi : A A. The following hold:

1. If φ1, φ2 agree with ψ1, ψ2 respectively, then φ1;φ2 agrees with φ1;ψ2.

2. If φi agrees with ψi for every i ∈ K, then
∑
i∈K φi agrees with

∑
i∈K ψi.

The index set K above can be of arbitrary cardinality.

22

Definition 38 (agreement for interpretations). Let A be a state space, I be an interpreta-
tion over A, and J be an interpretation over A+. We say that J agrees with I on the test p
if the following holds:

J(p)(αx) = I(p)(α) · x for every state αx ∈ A+.

Equivalently, the equation above says that J, αx |= p iff I, α |= p. For a program term f ,
we say that J agrees with I on f if the function J(f) : A+ A+ agrees with the function
I(f) : A A (Definition 36). Finally, we say that J agrees with I if they agree on every
(atomic) test and on every program term.

Proposition 39 (agreement). Let A be a state space, I be an interpretation over A, and J
be an interpretation over A+. Suppose that J agrees with I on tests, as well as on atomic
actions a and program variables X. Then,

post(α ·A∗, J(f)) = I(f)(α) ·A∗

for every α ∈ A and every program term f . That is, J agrees with I on all programs.

Proof. The proof is by induction on the structure of the program term f . We will only show
here the case µX.f of recursion, which is the most interesting case. We recall the definition
of the interpretation under I and J .

I(µX.f) =
∑
n≥0 σn σ0 = 0AA σn+1 = I[X 7→ σn](f)

J(µX.f) =
∑
n≥0 τn τ0 = 0A+A+ τn+1 = J [X 7→ τn](f)

The types of the recursion approximants are σn : A A and τn : A+ A+. Now, we need
to establish the following auxiliary claim:

Claim 40. For every n ≥ 0, The function τn agrees with σn .

Proof. For the base case n = 0, we observe that 0A+A+ agrees with 0AA. For the step, we
want to show that τn+1 agrees with σn+1. The inner I.H. says that τn agrees with σn, which
implies that the modified interpretations I[X 7→ σn] and J [X 7→ τn] satisfy the assumptions
of the proposition. Then, we invoke the outer I.H. to obtain that J [X 7→ τn] agrees with
I[X 7→ σn] on f . It follows that τn+1 agrees with σn+1, which concludes the proof of the
claim.

Using the above claim gives and Part (2) of Lemma 37, we conclude that J(µX.f) agrees
with I(µX.f).

Theorem 41 (agreement of JΦΨ with IΦΨ). Let Φ and Ψ be finite sets of tests and simple
Hoare assertions respectively. Then, the free deterministic interpretation JΦΨ agrees with
the free nondeterministic interpretation IΦΨ.

Proof. Recall that the state space of IΦΨ is AtΦ (Definition 26), and the state space of JΦΨ

is AtΦ
+ (Definition 33). By virtue of Proposition 39, it suffices to show:

1. JΦΨ agrees with IΦΨ on all (atomic) tests.

2. JΦΨ agrees with IΦΨ on every atomic program a and every program variable X.

23

Obligation (1) is easy to establish: JΦΨ(p)(αx) = IΦΨ(p)(α) · x for every atomic test p, and
every state αx ∈ AtΦ

+, according to Definition 33. Agreement on atomic tests then implies
agreement on all tests. For obligation (2), we consider an arbitrary action a and an atom
α ∈ AtΦ. It holds that:

post(α · AtΦ
∗, JΦΨ(a)) =

⋃
{JΦΨ(a)(αx) | x ∈ AtΦ

∗}
=
⋃
{JΦΨ(a)(αβx) | x ∈ AtΦ

∗}
=
⋃
{{βx} | IΦΨ(a) : α 7→ β, x ∈ AtΦ

∗}
= {βx | IΦΨ(a) : α 7→ β, x ∈ AtΦ

∗}
= {β | IΦΨ(a) : α 7→ β} · AtΦ

∗

= IΦΨ(a)(α) · AtΦ
∗.

So, JΦΨ(a) agrees with IΦΨ(a). The proof is analogous for the case of a variable X.

Corollary 42 (completeness for Det). Let Φ and Ψ be finite sets of tests and simple Hoare
assertions respectively. The following are equivalent:

(1) Φ,Ψ |=Det {p}f{q}.

(2) JΦΨ |= {p}f{q}.

(3) IΦΨ(f)(α) ⊆ {β ∈ AtΦ | β ≤ q} for every atom α ∈ AtΦ with α ≤ p.

(4) Φ,Ψ ` {p}f{q}.

Proof. We show (1) ⇒ (2). JΦΨ is the free deterministic interpretation for Φ, Ψ (see
Definition 33). We know from Lemma 34 that JΦΨ satisfies both Φ and Ψ, and JΦΨ belongs
to the class Det of deterministic interpretations. From the hypothesis Φ,Ψ |=Det {p}f{q}
we then obtain that JΦΨ |= {p}f{q}.

Now, we show (2) ⇒ (3). Let α be a Φ-consistent atom with α ≤ p. In order to show
the containment IΦΨ(f)(α) ⊆ {β ∈ AtΦ | β ≤ q}, we consider an atom β ∈ IΦΨ(f)(α).
In different notation, IΦΨ(f) : α 7→ β. From the “agreement of JΦΨ with IΦΨ” result of
Theorem 41, we get that the function JΦΨ(f) : AtΦ

+ AtΦ
+ agrees with the function

IΦΨ(f) : AtΦ AtΦ. This means that

post(α · AtΦ
∗, JΦΨ(f)) =

⋃
{JΦΨ(f)(αx) | x ∈ AtΦ

∗} = IΦΨ(f)(α) · AtΦ
∗.

Since the atom β is in IΦΨ(f)(α) · At∗, the above equation implies that there exists some
word x ∈ AtΦ

∗ such that β ∈ JΦΨ(f)(αx). That is, JΦΨ(f) : αx 7→ β. Since JΦΨ, αx |= p,
the assumption JΦΨ |= {p}f{q} gives us that JΦΨ, β |= q. It follows that β ≤ q. We have
thus proved the desired containment.

The implication (3) ⇒ (4) has already been proved in Corollary 32. Finally, the im-
plication (4) ⇒ (3) follows from the soundness result of Proposition 25, which establishes
Φ,Ψ |=All {p}f{q}, and the fact that the class Det is contained in All , which gives us the
desired Φ,Ψ |=Det {p}f{q}.

As in §6, the completeness result for the Hoare theory of Det , which is the same as
the Hoare theory of All , extends to syntactic restrictions without µ or without +. So, the
results that are summarized in Figure 5 still apply.

24

8 Complexity of the Hoare theory

We investigate here the computational complexity of the problem µHoare: “Given finite
sets Φ,Ψ of tests and simple Hoare assertions respectively, and a Hoare assertion {p}f{q},
is it the case that Φ,Ψ ` {p}f{q}?”. In order find an algorithmic solution to this prob-
lem, we make use of our completeness theorems. In particular, we consider the auxiliary
characterization of the Hoare theory that they provide in terms of the free nondeterministic
interpretation IΦΨ.

Theorem 43. The problem µHoare is in EXPTIME.

Proof. The statement Φ,Ψ ` {p}f{q} is equivalent to: Φ,Ψ ` {α}f{q} for every atom
α ∈ AtΦ with α ≤ p. It follows that we can restrict attention to Hoare consequences of the
special form {α}f{q}.

As we showed in Corollary 32, the statement Φ,Ψ ` {α}f{q}, where α is an atom in
AtΦ, is equivalent to the containment

IΦΨ(f)(α) ⊆ {β ∈ AtΦ | β ≤ q},

where IΦΨ is the free nondeterministic interpretation (Definition 26). So, the problem
amounts to computing the interpretation IΦΨ(f) : AtΦ AtΦ for arbitrary programs f . We
will give a procedure for computing an explicit representation of IΦΨ(f).

Let k be the number of atomic tests that appear in the input Φ, Ψ, {p}f{q}. The
size N of the set AtΦ of Φ-consistent atoms is bounded above by 2k, which is equal to the
number of all atoms. Given an arbitrary atom α, we can decide in linear time whether α is
Φ-consistent, because we simply check if α satisfies all the tests in Φ. Notice that we can
represent a nondeterministic function AtΦ AtΦ as a AtΦ × AtΦ matrix with entries 0 or
1. With this representation the operation ; corresponds to matrix multiplication. Such a
multiplication takes time O(N3). We define the “if” operation for a test p and matrices σ, τ
as:

p[σ, τ]αβ =

{
σαβ , if α ≤ p
ταβ , if α ≤ ¬p

Computing p[σ, τ] takes time O(N2). Moreover, the sum operation + on matrices is given
by: (σ + τ)αβ = σαβ + ταβ . Computing the sum σ + τ also takes time O(N2). Since while
loops wpf can be encoded using recursion µX.p[f ;X, id] (see Claim 8), we do not need to
deal with them here.

We give a recursive algorithm PS (g, {σa}a, {σX}X) that takes as input a program g, a
finite collection {σa}a of matrices for all the atomic programs, and a finite collection {σX}X
of matrices for all the program variables. We use σ̄ as an abbreviation for {σa}a, {σX}X .
For most of the cases, the algorithm can be described with simple equations:

PS (b, σ̄) , σb PS (id, σ̄) , 1AtΦ PS (g;h, σ̄) , PS (g, σ̄); PS (h, σ̄)

PS (Y, σ̄) , σY PS (⊥, σ̄) , 0AtΦ PS (p[g, h], σ̄) , p[PS (g, σ̄),PS (h, σ̄)]

PS (g + h, σ̄) , PS (g, σ̄) + PS (h, σ̄)

where 0AtΦ is the matrix with 0’s everywhere, and 1AtΦ has 1’s on the diagonal and 0’s
elsewhere. We describe the case µY.g of recursion in a more operational way in Figure 6.

25

PS (µY.g, σ̄) , {
S := 0AtΦ

for t = 1, . . . , N ·N do
newS := PS (g, σ̄[Y 7→ S])
S := newS

return S
}

Figure 6: Definition of the recursive procedure PS (f, σ̄) for the case f = µY.g.

We write σ̄[Y 7→ S] to denote the modification of σ̄ that maps Y to the matrix S. It is
straightforward to see that

PS (f, σ̄) = IΦΨ(f), where σa = IΦΨ(a) and σX = IΦΨ(X).

In the case of recursion we just need to observe that a matrix has N ·N entries and therefore
the fixpoint psΦ(µY.g) is reached within N ·N iterations.

We calculate an exponential upper bound for the running time of the recursive algorithm.
We think of the tree of recursive calls. Let n be the size of the program g. At every recursive
call the size of the program reduces strictly. So, the depth of the tree is bounded above by
n. As far as branching of the tree is concerned, the worst case is when we have recursion.
The branching in that case is N ·N . The time needed to combine the results of the recursive
subtrees is O(N3) (worst case when we have multiplication). So, we have an asymptotic
upper bound N3 · (N ·N)n for the running time of the algorithm. Since N ≤ 2k, we have
a less tight bound (2k)3 · (2k · 2k)n = 23k+2kn, which is exponential in the size of the input.
Calculating the initial values for σ̄ from Φ and Ψ can clearly be done in exponential time.

Theorem 44. The problem µHoare is EXPTIME-hard.

Proof. We show how to encode the computations of polynomial-space bounded alternating
Turing machines [7]. Consider a machine with states Q = Qand ∪ Qor (partitioned into
and-states & or-states), input alphabet Σ, tape alphabet Γ, blank symbol , start state q0,
and transition relation

∆ ⊆ (Q× Γ)× (Q× Γ× {−1, 0,+1}).

A transition 〈(q, a), (q′, b, d)〉 ∈ ∆ says that if the machine is in state q and is scanning the
symbol a, then it spawns a new process with its own copy of the tape in which the state
is set to q′, the symbol b is written over the current position, and the cursor moves by d.
If d = −1 (d = +1) the cursor moves one position to the left (right), and if d = 0 the
cursor stays in the same position. The machine accepts (rejects) if it halts at an and-state
(or-state).

The idea is to simulate the alternating machine with a recursive program, where recursive
calls correspond to the existential and universal branching of the machine. After every
recursive call the tape is restored to exactly what it was before the call. In this way we
simulate parallel branching in which each process has its own copy of the tape. Without
loss of generality we can assume that every computation path halts.

We introduce atomic tests P ai for every tape symbol a and every position i. Intuitively,
P ai is true when the tape has symbol a at position i. The tests∧

i

∨
a P

a
i and

∧
i

∧
a 6=b ¬(P ai ∧ P bj)

26

Y [q, i, a] , write b1 at i; // write b1 at current position

X[q1, i+ d1]; // spawn first child process

write a at i; // restore tape

if A then { // first process accepted

write b2 at i; // write b2 at current position

X[q2, i+ d2]; // spawn second child process

write a at i; // restore tape

// result = A

} else { // first process rejected

id // propagate failure upwards
}

Figure 7: Encoding universal branching with recursive calls.

say that every position is associated with a unique symbol. The atomic test A is used for
returning the result of each recursive call. The test A is true iff the machine accepts. We
introduce program variables X[q, i] for every state q and every position i. We think of X[q, i]
as the procedure corresponding to the machine being in state q and at position i. Similarly,
we introduce the variables Y [q, i, a], where q, i have the same interpretation as before and a
corresponds to the currently scanned symbol. So, we define X[q, i] as a case statement that
invokes the appropriate Y [q, i, a]:

X[q, i] , if P ai then Y [q, i, a]

else if P bi then Y [q, i, b]

else . . .

We introduce atomic programs accept and reject that set the test A to true and false respec-
tively. Moreover, they leave all other tests unchanged. So, we want to take the following
assumptions:

{true}accept{A} {true}reject{¬A}
{P ai }accept{P ai } {P ai }reject{P ai }

where i ranges over all positions and a over all tape symbols. Now, if (q, a) has no ∆-
successor and q is an and-state we define Y [q, i, a] , accept. Similarly, if (q, a) has no
∆-successor and q is an or-state we define Y [q, i, a] , reject. Suppose that q is an and-state
and that (q, a) has exactly two ∆-successors:

(q, a)∆(q1, b1, d1) and (q, a)∆(q2, b2, d2).

We define the procedure Y [q, i, a] as shown in Figure 7. If q is an or-state with (q, a) having
exactly two ∆-successors (q1, b1, d1) and (q2, b2, d2), the procedure Y [q, i, a] is defined analo-
gously (see Figure 8). The generalization to more than two ∆-successors is straightforward.
The atomic program ‘write b at i’ writes the symbol b at the position i of the tape and leaves
everything else unchanged. We can express this with the following assumptions:

{true}write b at i{P bi } {A}write b at i{A}
{P ai }write b at i{P ai } (for all a 6= b) {¬A}write b at i{¬A}

27

Y [q, i, a] , write b1 at i; // write b1 at current position

X[q1, i+ d1]; // spawn first child process

write a at i; // restore tape

if (¬A) then { // first process rejected

write b2 at i; // write b2 at current position

X[q2, i+ d2]; // spawn second child process

write a at i; // restore tape

// result = A

} else { // first process accepted

id // propagate success upwards
}

Figure 8: Encoding existential branching with recursive calls.

syntactic fragment complexity of Hoare theory

with µ, with + EXPTIME-complete [32]

with µ, without + EXPTIME-complete [32]

without µ, with + PSPACE-complete [27]

without µ, without + PSPACE-complete [27]

Figure 9: Complexity of the Hoare theory for several syntactic fragments.

For input string x1x2 · · ·xn we define the test start , which encodes the initial tape, as

start =P x1
1 ∧ · · · ∧ P xn

n ∧ Pn+1 ∧ · · · ∧ Pπ(n),

where π(n) is the polynomial that gives the space bound of the machine. We have given a
collection of mutually recursive functions X[q, i] and Y [q, i, a]. This can be turned into a
program term using the µ-operator in the standard way. Since the space is bounded by a
polynomial π(n), there are polynomially many positions i. So, the size of the program is
polynomial in the size of the machine. Finally, the claim is that the machine accepts the
input string x1x2 . . . xn iff

Φ,Ψ ` {start}X[q0, 1]{A},

where Φ is the collection of our assumptions for the atomic tests, and Ψ is the collection of
assumptions for the atomic programs. Showing this claim involves using the characterization
of the Hoare theory in terms of IΦΨ (Corollary 32).

The proof of the EXPTIME upper bound accounts for program schemes that involve the
recursion µ and the nondeterministic choice + operations. For the lower bound of EXPTIME-
hardness, however, the presented encoding does not use the + operation. We thus obtain
EXPTIME-completeness for the +-free fragment as well. See Figure 9. The first two results
for EXPTIME-completeness are proved here and in the conference version of the present
work [32]. The two last results were presented in [27, 28, 8].

28

9 Summary & Conclusion

In conclusion, we reiterate the remark that reasoning about mutually recursive programs
presents some fundamental difficulties. We encounter this difficulty even at the abstract
propositional level: the equational theory of CFGs is Π0

1-complete, and therefore it is not
amenable to an effective axiomatization. On the positive side, the equational theory of
deterministic MRSs is decidable, but the best known algorithm for deciding this theory is
nonelementary.

In order to accommodate program verification applications, we need to reason under
hypotheses that capture useful properties of the domain of computation. Towards this end,
we showed that the simple implicational theory of MRSs, which allows hypotheses of the
form {p}a{q}, reduces to their equational theory. The reduction incurs an exponential
blow-up.

In search of more computationally manageable fragments, we considered the class of
properties that can be expressed as Hoare assertions {p}f{q} under extra hypotheses. For
this subclass of properties, we saw that we can also handle nondeterminism without increas-
ing the complexity or complicating the axiomatization.

We investigated the propositional Hoare theory of deterministic and nondeterministic
MRSs, and we obtained sound and complete Hoare-style calculi. Our completeness results
are unconditional (not relative completeness in the sense of Cook [9]). We believe that the
proposed axiomatization is intuitive, and it lends itself both to the manual and automatic
construction of proofs.

Finally, the Hoare theory of MRSs was shown to be EXPTIME-complete. This implies, in
particular, that the proofs of valid Hoare implications can also be constructed in exponential
time.

Building on ideas of the present work, the propositional Hoare theory of dual nonde-
terminism is investigated in [33]. An abstract programming language with while loops is
considered, where two different kinds of nondeterminism are allowed: angelic and demonic.
In this setting, the meaning of a program is a game between the angel and the demon,
where the angel tries to satisfy the specification and the demon tries to falsify it. Two
unconditional completeness results are obtained for the so-called weak and strong Hoare
theory of dual nondeterminism. The computational complexity of the Hoare theory is in-
vestigated using operational models that correspond to safety games. Finally, a sound and
complete Hoare-style calculus for synthesizing angelic strategies is presented. This provides
a deductive approach for the synthesis of programs.

References

[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter
Kozen, Cole Schlesinger, and David Walker. NetKAT: Semantic foundations for net-
works. In Proceedings of the 41st annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2014), pages 113–126, 2014.

[2] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey – Part I. ACM Transactions
on Programming Languages and Systems (TOPLAS), 3(4):431–483, 1981.

[3] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey – Part II: Nondeterminism.
Theoretical Computer Science, 28(1):83–109, 1983.

29

[4] Stanislav Böhm and Stefan Göller. Language equivalence of deterministic real-time one-
counter automata is NL-complete. In Mathematical Foundations of Computer Science
(MFCS 2011), pages 194–205. 2011.

[5] Stanislav Böhm, Stefan Göller, and Petr Jančar. Equivalence of deterministic one-
counter automata is NL-complete. In Proceedings of the 45th Annual ACM Symposium
on Theory of Computing (STOC ’13), pages 131–140, 2013.

[6] Stanislav Böhm, Stefan Göller, and Petr Jancar. Equivalence of deterministic one-
counter automata is NL-complete. CoRR, abs/1301.2181, 2013.

[7] Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal
of the Association for Computing Machinery, 28(1):114–133, 1981.

[8] Ernie Cohen and Dexter Kozen. A note on the complexity of propositional Hoare logic.
ACM Transactions on Computational Logic, 1(1):171–174, 2000.

[9] Stephen A. Cook. Soundness and completeness of an axiom system for program verifi-
cation. SIAM Journal on Computing, 7(1):70–90, 1978.

[10] Martin Davis. Computability and Unsolvability. Dover Publications, 1982.

[11] Michael J. Fischer and Richard E. Ladner. Propositional modal logic of programs. In
Proceedings of the Ninth Annual ACM Symposium on Theory of Computing (STOC
’77), pages 286–294, 1977.

[12] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences, 18:194–211, 1979.

[13] Robert W. Floyd. Assigning meanings to programs. In Mathematical Aspects of Com-
puter Science, Proceedings of AMS Symposium in Applied Mathematics, volume 19,
pages 19–32, 1967.

[14] Emily P. Friedman. Equivalence problems for deterministic context-free languages and
monadic recursion schemes. Journal of Computer and System Sciences, 14(3):344–359,
1977.

[15] Stephen J. Garland and David C. Luckham. Program schemes, recursion schemes, and
formal languages. Journal of Computer and System Sciences, 7(2):119–160, 1973.

[16] Seymour Ginsburg and Sheila Greibach. Deterministic context free languages. Infor-
mation and Control, 9(6):620–648, 1966.

[17] Niels Bjørn Bugge Grathwohl, Fritz Henglein, and Dexter Kozen. Infinitary axiomati-
zation of the equational theory of context-free languages. EPTCS, 126:44–55, 2013.

[18] Niels Bjørn Bugge Grathwohl, Dexter Kozen, and Konstantinos Mamouras. KAT + B!
In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), CSL-LICS ’14, pages 44:1–44:10, 2014.

[19] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000.

30

[20] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–580,583, 1969.

[21] Petr Jančar. A short decidability proof for DPDA language equivalence via first-order
grammars. CoRR, abs/1010.4760, 2011.

[22] Petr Jančar. Decidability of DPDA language equivalence via first-order grammars. In
Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science (LICS
2012), pages 415–424, 2012.

[23] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. In Proceedings of Sixth Annual IEEE Symposium on Logic in Computer Science
(LICS ’91), pages 214–225, 1991.

[24] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Information and Computation, 110(2):366–390, 1994.

[25] Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages
and Systems, 19(3):427–443, May 1997.

[26] Dexter Kozen. Typed Kleene algebra. Technical report, Cornell University, 1998.

[27] Dexter Kozen. On Hoare logic and Kleene algebra with tests. In Proceedings of the
14th Symposium on Logic in Computer Science (LICS 1999), pages 167–172, 1999.

[28] Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Transactions on
Computational Logic, 1(1):60–76, 2000.

[29] Dexter Kozen and Konstantinos Mamouras. Kleene algebra with products and iteration
theories. In Proceedings of the 22nd EACSL Annual Conference on Computer Science
Logic (CSL 2013), pages 415–431, 2013.

[30] Dexter Kozen and Konstantinos Mamouras. Kleene algebra with equations. In Proceed-
ings of the 41st International Colloquium on Automata, Languages and Programming
(ICALP 2014), pages 280–292, 2014.

[31] Dexter Kozen and Jerzy Tiuryn. On the completeness of propositional Hoare logic.
Information Sciences, 139(3-4):187–195, 2001.

[32] Konstantinos Mamouras. On the Hoare theory of monadic recursion schemes. In
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS), CSL-LICS ’14, pages 69:1–69:10, 2014.

[33] Konstantinos Mamouras. Synthesis of strategies and the Hoare logic of angelic nonde-
terminism. 2014. To be presented at FoSSaCS 2015, London, UK.

[34] Emil L. Post. Recursive unsolvability of a problem of Thue. The Journal of Symbolic
Logic, 12(1):1–11, 1947.

[35] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proceedings of
the 17th IEEE Annual Symposium on Foundations of Computer Science (FOCS 1976),
pages 109–121, 1976.

31

[36] Géraud Sénizergues. The equivalence problem for deterministic pushdown automata is
decidable. In Proceedings of the 24th International Colloquium on Automata, Languages
and Programming (ICALP ’97), pages 671–681. Springer, 1997.

[37] Géraud Sénizergues. L(A) = L(B)? Decidability results from complete formal systems.
Theoretical Computer Science, 251(12):1–166, 2001.

[38] Géraud Sénizergues. L(A) = L(B)? A simplified decidability proof. Theoretical Com-
puter Science, 281(1):555–608, 2002.

[39] Géraud Sénizergues. The equivalence problem for t-turn DPDA is Co-NP. In Proceed-
ings of the 30th International Colloquium on Automata, Languages and Programming
(ICALP 2003), pages 478–489, 2003.

[40] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 2nd
edition, 2005.

[41] Colin Stirling. Decidability of DPDA equivalence. Theoretical Computer Science, 255(1-
2):1–31, 2001.

[42] Colin Stirling. Deciding DPDA equivalence is primitive recursive. In Proceedings of
the 29th International Colloquium on Automata, Languages and Programming (ICALP
2002), pages 821–832. Springer, 2002.

[43] Glynn Winskel. The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge, MA, USA, 1993.

32

