
Nominal Kleene Coalgebra

Dexter Kozen1 Konstantinos Mamouras1 Daniela Petrisan2 Alexandra Silva2

1Cornell University 2Radboud University Nijmegen

Abstract. We develop the coalgebraic theory of nominal Kleene alge-
bra, including an alternative language-theoretic semantics, a nominal ex-
tension of the Brzozowski derivative, and a bisimulation-based decision
procedure for the equational theory.

1 Introduction

Nominal Kleene algebra, introduced by Gabbay and Ciancia [12], is an algebraic
formalism for reasoning equationally about imperative programs with statically
scoped allocation and deallocation of resources. The system consists of Kleene
algebra, the algebra of regular expressions, augmented with a binding operator
ν that binds a named resource within a local scope.

Gabbay and Ciancia [12] proposed an axiomatization of the system consisting
of the axioms of Kleene algebra plus six equations capturing the behavior of the
binding operator ν and its interaction with the Kleene algebra operators. They
also defined a family of nominal languages consisting of certain sets of strings
over an infinite alphabet satisfying certain invariance properties and showed
soundness of the axioms over this class of interpretations. Their analysis revealed
some surprising subtleties arising from the non-compositionality of the sequential
composition and iteration operators.

In our previous work [15] we showed that the Gabbay-Ciancia axioms are not
complete for the semantic interpretation of [12], but we identified a slightly wider
class of language models over which they are sound and complete. The proof of
completeness of [15] consisted of several stages of transformations to bring ex-
pressions to a certain normal form. Although the construction was effective, one
of the transformations required the intersection of several regular expressions, an
operation known to produce a double-exponential increase in size in the worst
case [13], thus the construction is unlikely to give a practical decision method.

In this paper, we investigate the coalgebraic theory of nominal Kleene al-
gebra. The motivation for this investigation is to understand the structure of
nominal Kleene algebra from a coalgebraic perspective with an eye toward a
more efficient decision procedure for the equational theory in the style of [4, 5,
22] for Kleene algebra and Kleene algebra with tests.

The paper is organized as follows. In §3 we introduce a new class of language
models consisting of sets of equivalence classes of ν-strings. A ν-string is like a
string, except that it may contain binding operators. Two ν-strings are equiva-
lent if they are provably so under the Gabbay-Ciancia axioms and associativity.

The equivalence classes of ν-strings over a fixed set of variables form a nominal
monoid. These language models are isomorphic to the free language models of
[15], thus giving a new characterization of the free models, but more amenable
for the development of the coalgebraic theory.

In §4 we introduce nominal versions of the semantic and syntactic Brzozowski
derivatives. The derivatives are similar to their non-nominal counterparts, but
extended to handle bound variables in such a way as to be invariant with respect
to α-conversion. The semantic derivative is defined in terms of the new language
model and characterizes the final coalgebra. We conclude the section with a
result that relates the algebraic and coalgebraic structure and establishes the
existence of minimal automata.

In §C we describe a data representation for the efficient calculation of the
Antimirov derivative and give an exponential-space decision procedure. Unfor-
tunately, we are forced to omit this section from this abstract for lack of space.

Related Work The notion of nominal sets goes back to work of Fraenkel and
Mostowski in the early part of the twentieth century. The notion was first applied
in computer science by Gabbay and Pitts [10] (see [21] for a survey).

Recently, there have been many studies involving nominal automata, au-
tomata on infinite alphabets, and regular expressions with binders that are
closely related to the work presented here.

Montanari and Pistore [18–20] and Ferrari et al. [6] develop the theory of
history-dependent (HD) automata, an operational model for process calculi such
as the π-calculus. In these automata, there are mechanisms for explicit allocation
and deallocation of names and for explicitly representing the history of allocated
names.

A closely related model is the family of finite memory automata of Francez
and Kaminski [8, 9]. These are ordinary finite-state automata equipped with a
finite set of registers. At any point in time, each register is either empty or
contains a symbol from an infinite alphabet.

Bojanczyk, Klin, Lasota [3] undertake a comprehensive study of nominal
automata and discuss the relationships between previous models. They consider
nominal sets for arbitrary symmetries. They identify the important notion of
orbit-finiteness as the appropriate analog of finiteness in the non-nominal case
and show that their definitions are equivalent to previous definitions of finite
memory automata [8, 9]. Their paper does not consider the relationship with
regular expressions.

Kurz, Suzuki, Tuosto [16, 17] present a syntax of regular expressions with
binders and consider its relationship with nominal automata. Their syntax in-
cludes operational mechanisms for the dynamic allocation and deallocation of
fresh names and explicit permutations. Their semantics uses a name-independent
combinatorial construct reminiscent of De Bruijn indices.

The most important distinguishing characteristic of our approach is that
both the algebraic and coalgebraic structure are nominal. Our syntax, based on
Kleene algebra with ν-binders as introduced by Gabbay and Ciancia [12], and
our final coalgebra semantics based on nominal sets of ν-strings, both carry a

2

nominal coalgebraic structure given by the syntactic and semantic Brzozowski
derivatives, and the interpretation map is the unique equivariant morphism to
the final coalgebra.

2 Background

This section contains a severely abbreviated review of basic material on Kleene
algebra, nominal sets, and the nominal extension of Kleene algebra (NKA) in-
troduced by Gabbay and Ciancia [12], but prior familiarity with nominal sets,
KA, and coalgebra will be helpful. For a more thorough introduction, the reader
is referred to [11, 21] for nominal sets, to [23] for Kleene (co)algebra, and to [12,
15] for NKA.

Kleene Algebra (KA) is the algebra of regular expressions. A Kleene algebra
(K,+, ·,∗ , 0, 1) is an idempotent semiring with ∗ such that x∗y is the ≤-least z
such that y + xz ≤ z and yx∗ is the ≤-least z such that y + zx ≤ z. Explicitly,

x+ (y + z) = (x+ y) + z x(yz) = (xy)z x+ y = y + x

1x = x1 = x x+ 0 = x+ x = x x0 = 0x = 0

x(y + z) = xy + xz (x+ y)z = xz + yz 1 + xx∗ ≤ x∗

y + xz ≤ z ⇒ x∗y ≤ z y + zx ≤ z ⇒ yx∗ ≤ z 1 + x∗x ≤ x∗

G-Sets A group action of a group G on a set X is a map G×X → X, written
as juxtaposition, such that π(ρx) = (πρ)x and 1x = x for π, ρ ∈ G and x ∈ X.
A G-set is a set X equipped with a group action G×X → X. The orbit of an
element x ∈ X is the set {πx | π ∈ G} ⊆ X. If X and Y are two G-sets, a
function f : X → Y is called equivariant if f ◦ π = π ◦ f for all π ∈ G.

The G-sets and equivariant functions form an elementary topos G-Set with
group action on coproducts, products, and exponentials defined by

π(inx) = in(πx) π(x, y) = (πx, πy) π() = () πf = π ◦ f ◦ π−1. (1)

In particular, for sets, πA = {πx | x ∈ A}. For x ∈ X and A ⊆ X, define

fixx = {π ∈ G | πx = x} FixA =
⋂
x∈A fixx.

Note that FixA and fixA are different: they are the subgroups of G that fix A
pointwise and setwise, respectively.

Nominal Sets Fix a countably infinite set A of atoms and let GA be the
group of all finite permutations of A (permutations generated by transpositions
(a b)). The set A is a GA-set under the group action πa = π(a). If X is another
GA-set, we say that A ⊆ A supports x ∈ X if FixA ⊆ fixx. An element x ∈ X
has finite support if there is a finite set A ⊆ A that supports x. If x has finite
support, then there is a smallest set supporting x, called suppx. We write a#x
and say a is fresh for x if a 6∈ suppx. A nominal set is a GA-set X of which every
element has finite support. The nominal sets and equivariant functions form a
full subcategory Nom of G-Set.

3

Expressions and ν-Strings NKA expressions are given by the grammar

e ::= a ∈ A | e+ e | ee | e∗ | 0 | 1 | νa.e.

The scope of the binding νa in νa.e is e. As a notational convention, we assign
the binding operator νa lower precedence than product but higher precedence
than sum; thus in products, scopes extend as far to the right as possible. For
example, νa.ab νb.ba should be read as νa.(ab νb.(ba)) and not (νa.ab)(νb.ba).
The set of NKA expressions over A is denoted ExpA.

The free variables FV(e) of an expression e are defined as usual, and the group
GA acts on ExpA by permuting the variables in the obvious way. For example,
(a b)νa.b = νb.a. The relation ≡α of α-equivalence on ExpA is defined to be the
least congruence containing the pairs {e ≡α πe | π ∈ Fix FV(e)}. Let [e] denote
the ≡α-congruence class of e.

Lemma 2.1. The ≡α-congruence classes of ExpA form a nominal set with
supp [e] = FV(e), and the function FV is well defined and equivariant on ≡α-
classes.

A ν-string is a string with νa binders; that is, it is an NKA expression with no
occurrence of +, ∗, or 0 modulo multiplicative associativity, and no occurrence
of 1 except to denote the null string, in which case we use ε instead.

x ::= a ∈ Σ | xx | ε | νa.x

The set of ν-strings over A is denoted Aν .

NKA Axioms The axioms proposed by Gabbay and Ciancia [12] are:

νa.(d+ e) = νa.d+ νa.e a#e⇒ νb.e = νa.(a b)e νa.νb.e = νb.νa.e

a#e⇒ (νa.d)e = νa.de a#e⇒ e(νa.d) = νa.ed a#e⇒ νa.e = e.
(2)

Nominal ν-Monoids A nominal ν-monoid over A is a structure (M, ·, 1,A, ν)
with binding operation ν : A×M →M such that
– (M, ·, 1) is a monoid with group action GA × M → M such that M is a

nominal set;
– the operation ν satisfies the axioms (2);
– the monoid operations and ν are equivariant, or equivalently, every π ∈ GA

is an automorphism of M .

Nominal Kleene algebra (NKA) A nominal KA over A is a structure
(K,+, ·,∗ , 0, 1,A, ν) with binding operation ν : A×K → K such that
– (K,+, ·,∗ , 0, 1) is a KA with group action GA × K → K such that K is a

nominal set;
– the operation ν satisfies the axioms (2);
– the KA operations and ν are equivariant in the sense that

π(x+ y) = πx+ πy π(xy) = (πx)(πy) π0 = 0

π(x∗) = (πx)∗ π(νa.x) = ν(πa).(πx) π1 = 1,

or equivalently, every π ∈ GA is an automorphism of K.

4

3 A Nominal Language Model

Let M be a nominal ν-monoid over A. Metasymbols m,n, . . . denote elements of
M . Let ℘M denote the powerset of M . On ℘M , define the KA operations and
group action

A+B = A ∪B AB = {mn | m ∈ A, n ∈ B} A∗ =
⋃
k A

k 0 = ∅
1 = {ε} νa.A = {νa.m | m ∈ A} πA = {πm | m ∈ A}.

(3)

We say that A is uniformly finitely supported if
⋃
m∈A suppm is finite. Let

℘fsM = {A ⊆ M | A is finitely supported}
℘ufsM = {A ⊆ M | A is uniformly finitely supported}.

Lemma 3.2 ([11, Theorem 2.29]). For A ⊆ M , if A is uniformly finitely
supported, then A is finitely supported and suppA =

⋃
m∈A suppm.

The converse is false in general. Both ℘fsM and ℘ufsM are closed under the
operations (3).

Theorem 3.1. The set ℘ufsM with group action and KA operations (3) forms
an NKA.

3.1 Canonical Interpretation over Aν/≡

For x, y ∈ Aν , define x ≡ y if x and y are provably equivalent using the axioms (2)
(omitting the first, which is irrelevant as there is no occurrence of + in ν-strings)
and the axioms of equality and congruence. Let [x] denote the ≡-congruence class
of x and Aν/≡ the ν-monoid of all such congruence classes.

The length of x ∈ Aν is the number of occurrences of symbols of A in x,
excluding binding occurrences νb. If x ≡ y, then x and y have the same length,
and an occurrence of a symbol in x is free iff the corresponding occurrence in y is
free. If both are free, then they are the same symbol. If both are bound, then they
can be different symbols due to α-conversion. If two ν-strings are α-equivalent,
then they are ≡-equivalent.

Henceforth, let M = Aν/≡. The map L : ExpA → ℘M is defined to be the
unique homomorphism such that L(a) = {[a]} for a ∈ A. Explicitly,

L(e1 + e2) = L(e1) ∪ L(e2) L(e1e2) = {mn | m ∈ L(e1), n ∈ L(e2)}
L(e∗) = L(e)∗ =

⋃
k L(e)k L(0) = ∅ L(1) = {ε} (4)

L(a) = {[a]}, a ∈ A L(νa.e) = νa.L(e) = {νa.m | m ∈ L(e)}.
The following lemma guarantees the existence of an equivariant homomor-

phism L : ExpA/≡α → ℘ufsM .

Lemma 3.3. The map L is well defined and equivariant on ≡α-congruence
classes and takes values in ℘ufsM .

The following deconstruction lemma is important for our coalgebraic treat-
ment of §4.

5

Lemma 3.4.
(i) If ax ≡ by, then a = b and x ≡ y.

(ii) If νa.ax ≡ νa.ay, then x ≡ y.

Lemma 3.4(ii) is somewhat delicate. Note that νa.x ≡ νa.y does not imply
x ≡ y in general: we have νb.ab 6≡ νb.ba, but νa.νb.ab ≡ νa.νb.ba by applying
the permutation (a b) and reversing the order of the bindings.

4 Coalgebraic Structure

We will presently define syntactic Brzozowski and Antimirov derivatives on NKA
expressions over A and a corresponding semantic derivative on subsets of M .
These constructs will be seen to comprise coalgebras for a Nom-endofunctor K
defined by

KX = 2×XA × [A]X, (5)

where the nominal set XA consists of finitely supported functions A → X and
[A]X is the abstraction of the nominal set X; see [21] for a detailed account of the
abstraction functor on Nom. We recall here that the nominal set [A]X is defined
as the quotient of A × X by the equivalence relation given by (a, x) ∼ (b, y) if
and only if for any fresh c we have (c a)x = (c b)y. Furthermore, the abstraction
functor [A](−) has a left adjoint A#(−) defined on objects by

A#X = {(a, x) | a#x}.
Hence a K-coalgebra is a tuple of the form (X, obs, cont, contν), where X is

a nominal set and

obs : X → 2 cont : X → XA contν : X → [A]X (6)

are equivariant functions, called the observation and continuation maps, re-
spectively. Using the cartesian closed structure on Nom and the adjunction
A#(−) a [A](−), the continuation maps are in one-to-one correspondence with
maps defined on A×X and A#X respectively.

cont : X → XA

cont[: A×X → X

contν : X → [A]X

cont[ν : A#X → X

To simplify notation, we write

conta : X → X, a ∈ A contνa : {s ∈ X | a#s} → X, a ∈ A (7)

for the uncurried continuation maps obtained by fixing the first argument to
a ∈ A. Intuitively, conta tries to consume a free variable a and contνa tries to
consume a bound variable a bound by νa. We will discuss the intuition behind
these constructs more fully and justify the typing (6) in Example 4.1 below.

It follows from (1) that the equivariance of the structure map (obs, cont, contν)
is equivalent to the properties

contπa ◦ π = π ◦ conta contνπa ◦ π = π ◦ contνa obs ◦ π = obs (8)

for all π ∈ GA.
Henceforth, the term coalgebra refers specifically to coalgebras for the Nom-

functor K in (5).

6

4.1 Semantic Derivative

Let M = Aν/≡. The semantic derivative is defined as a K-coalgebra with carrier
the nominal set ℘fsM :

(ε, δ, δν) : ℘fsM → 2× (℘fsM)A × [A]℘fsM

where

ε(A) =

{
1, ε ∈ A,
0, ε 6∈ A

δa(A) = {m | am ∈ A}, a ∈ A
δνa(A) = {m | νa.am ∈ A}, a ∈ A.

The maps δa and δνa are well defined by Lemma 3.4.

Example 4.1. The a in δa and δνa play very different roles. Intuitively, δa(A)
tries to consume a free variable a at the front of strings in A. For example, for
b 6= a,

– δa({aa, bb}) = {a}
– δa({νb.ab}) = {νb.b}
– δa({νa.ab}) = ∅ (since the first letter of νa.ab is bound).

On the other hand, δνa(A) tries to consume a bound variable at the front of
strings in A and change the remaining variables bound by the same binder to a.
The bound variable need not be a, but it should be possible to change it to a by
α-conversion. For example, for b 6= a,

1. δνa({νa.aa}) = δνa({νb.bb}) = {a} (since νb.bb = νa.aa in Aν/≡)
2. δνa({νa.ab}) = {b}
3. δνa({νa.ba}) = ∅ (since the initial symbol b is not bound)
4. δνa({νb.ba}) = ∅ (since νb.ba 6= νa.am for any m ∈ Aν/≡)
5. δνa({(νa.aa)a}) = ∅ (since (νa.aa)a 6= νa.am for any m ∈ Aν/≡)
6. δνa({(νb.bb)b}) = {ab} (since (νb.bb)b = νa.aab in Aν/≡).

Examples 4 and 5 do not arise in our coalgebraic semantics, since δνa may only
be applied to A for which a is fresh due to the domain restriction in (7). If there
are free occurrences of a, one cannot α-convert to obtain a string of the form
νa.am, since those free occurrences would be captured.

4.2 Brzozowski Derivative

The syntactic Brzozowski derivative is defined inductively on the set of α-
equivalence classes of NKA expressions ExpA/≡α. Like the semantic derivative,
it can also be defined on a broader domain, but also will only make coalgebraic
sense for the domain (6).

(E,D,Dν) : ExpA/≡α → 2× (ExpA/≡α)A × [A](ExpA/≡α)

The continuation maps D and Dν can be further broken down as

Da : ExpA/≡α → ExpA/≡α Dνa : {e ∈ ExpA/≡α | a#e} → ExpA/≡α

7

for a ∈ A. We first define these maps on ExpA, then argue that they are well
defined on ≡α-classes.

E(e1 + e2) = E(e1) + E(e2) E(e1e2) = E(e1)E(e2) E(a) = E(0) = 0

E(1) = E(e∗) = 1 E(νa.e) = E(e)

Da(e1 + e2) = Da(e1) + Da(e2) Da(e1e2) = Da(e1)e2 + E(e1)Da(e2)

Da(e∗) = Da(e)e∗ Da(0) = Da(1) = 0

Da(b) =

{
1, b = a

0, b 6= a
Da(νb.e) =

{
0, b = a

νb.Da(e), b 6= a

Dνa(e1 + e2) = Dνa(e1) + Dνa(e2) Dνa(e1e2) = Dνa(e1)e2 + E(e1)Dνa(e2)

Dνa(e∗) = Dνa(e)e∗ Dνa(νb.e) = νb.Dνa(e) + Da((a b)e), b 6= a

Dνa(0) = Dνa(1) = Dνa(b) = 0

We can also define Dνa(νa.e) = Dνa(νb.(a b)e) for an arbitrary b such that b#e
and b 6= a, although strictly speaking this is not a function, since the choice of b is
not determined. However, the choice of b does not matter, as we are considering
expressions modulo α-equivalence. This will be treated formally in Lemma B.13.

Example 4.2. For b 6= a,
1. Dνa(νb.bb) = νb.Dνa(bb) + Da((a b)bb) = 0 + a = a.
2. Dνa(νa.aa) = Dνa(νb.bb) = a.
3. Dνa(νa.ab) = Dνa(νc.cb) = νc.Dνa(cb) + Da(ab) = 0 + b = b.
4. Dνa(νb.ba) = νb.Dνa(ba) + Da((a b)ba) = 0 + b = b.

Example 4 will not arise in our coalgebraic semantics, since Dνa will only be
applied to e for which a is fresh and the argument has a free variable a.

4.3 Final Coalgebra

The nominal coalgebra (℘fsM, ε, δ, δν) is final among coalgebras for the Nom-
endofunctor K defined in (5). These are the coalgebras (X, obs, cont, contν) for
which X is a nominal set and obs, cont and contν are equivariant. Such a coal-
gebra can be viewed as an automaton with states X, transitions cont and contν ,
and acceptance condition obs. The inputs to the automaton are elements of M .
Starting from a state s ∈ X, an element m ∈ M is accepted if Accept(s,m),
where

Accept(s, ε) = obs(s) (9)

Accept(s, am) = Accept(conta(s),m) (10)

Accept(s, νa.am) = Accept(contνa(s),m), a#s. (11)

Clause (11) requires some explanation. We must choose a representative element
νa.am of the ≡-class such that a is fresh for s, so that contνa(s) will be defined. It
is always possible to find such an a, since the ≡-class is closed under α-conversion
and s has finite support. However, the result is independent of the choice of a,
as shown in part (ii) of the next lemma, so Accept(s, νa.am) is well defined.

8

Lemma 4.5.
(i) The acceptance function is equivariant:

Accept(πs, πm) = π(Accept(s,m)) = Accept(s,m).

(ii) If b#s and c#s, then

Accept(s, νb.bm) = Accept(s, νc.c(b c)m).

We do not explicitly require c#νb.bx in (ii); however, this is a consequence of
(i) and Lemma B.7(v).

The unique coalgebra homomorphism from (X, obs, cont, contν) to the final
coalgebra is just the automata-theoretic language semantics:

Theorem 4.2 (Final coalgebra). The coalgebra (℘fsM, ε, δ, δν) is a final K-
coalgebra. The unique coalgebra homomorphism (X, obs, cont, contν) to the final
coalgebra is given by

LX : (X, obs, cont, contν)→ (℘fsM, ε, δ, δν) LX(s) = {m | Accept(s,m)}.

Moreover, the coalgebra homomorphism LExpA : ExpA/≡α → ℘fsM coincides
with the algebra homomorphism L : ExpA/≡α → ℘fsM defined in (4).

A more standard construction of the final coalgebra computed via the final
sequence of the functor K [1] yields an equivalent presentation based on normal
forms of ν-strings up to α-equivalence. However, this characterization is more
cumbersome algebraically, as it requires explicit α-conversion to define sequential
composition.

4.4 Automata Representation: Half of a Kleene Theorem

In this section we prove a theorem for NKA that relates the algebraic and coal-
gebraic structure. As noted in §4.3, a coalgebra can be regarded as an automaton
acceptor with states X, transitions cont, and acceptance condition obs. The in-
puts to the automaton are elements of M . The state sets are nominal sets and
may be formally infinite, but still may be essentially finite in a sense to be
described next.

Following [3], we define the size of a coalgebra (X, obs, cont) to be the number
of orbits of X under GA, where the orbit of s ∈ X is the set {πs | π ∈ GA}. The
orbit of s is the singleton {s} if supp s = ∅, otherwise it is infinite. The orbits
partition X and determine an equivalence relation. The coalgebra is called orbit-
finite if the total number of orbits is finite.

Lemma 4.6. Let (X, obs, cont) be a coalgebra, s ∈ X, and a ∈ A.
(i) supp (contνa(s)) ⊆ {a} ∪ supp s.

(ii) If a ∈ supp s, then supp (conta(s)) ⊆ supp s.
(iii) If L(s) is uniformly finitely supported and m ∈ L(s), then suppm ⊆ supp s.
(iv) If a#s and L(s) is uniformly finitely supported, then conta(s) is a dead state

(one for which L(s) = ∅).

9

Theorem 4.3 (Half Kleene). For every NKA expression e, there is a coalge-
bra X with designated start state s such that LX(s) = L(e). The coalgebra has
an orbit-finite nondeterministic representation given by the Antimirov represen-
tation of the Brzozowski derivatives of e.

Proof. The desired coalgebra is the subcoalgebra of (ExpA/≡α, E,D) generated
by e. The designated start state is e. That this is correct is immediate from
Theorem 4.2. Orbit-finiteness of the Antimirov representation will follow from
the data representation to be developed in §C.2. ut

It is interesting that the Antimirov derivatives give an orbit-finite representa-
tion, whereas the Brzozowski derivatives do not. A counterexample is given in
Example C.3. The orbit-finite representation is underlying the decision proce-
dure of the equational theory, which we omit here for lack of space. Please see
Appendix C for a full account.

5 Conclusion and Open Problems

In this paper we have explored the coalgebraic theory of nominal Kleene algebra.
We have introduced a new family of semantic models consisting of sets of nom-
inal monoids and extended the coalgebraic structure of Kleene algebra to the
nominal setting using these models. We have developed nominal versions of the
Brzozowski and Antimirov derivatives that accommodate bound variables and
are invariant with respect to α-conversion. We have proved a theorem relating
the algebraic and coalgebraic structure, namely that every expression gives rise
to an equivalent automaton. We have used this relationship to show that the
equational theory can be decided in exponential space and described an efficient
data representation that is amenable to implementation.

This work raises several intriguing questions. Foremost among them is the
complexity of the equational theory. We have given a worst-case exponential-
space decision procedure. On the other hand, the best lower bound we have is
PSPACE-hardness, which follows from the PSPACE-completeness of the equiv-
alence problem for regular expressions [25].

Despite the high complexity of the worst-case upper bound, much like the
bisimulation-based algorithms for other KA-based systems [4, 5, 7, 22], the situ-
ation may not be so bad in practice. To actually attain the worst-case bound
would seem to require highly pathological examples that would be unlikely to
arise in practice. However, only implementation and experimentation can con-
firm or refute this view. This would be an interesting direction for future work.

Theorem 4.3 gives one direction of a Kleene theorem: expressions to au-
tomata. The converse is false, as the following example shows. Consider the
nominal coalgebra with states and group action
– s0(a) for all a ∈ A with π(s0(a)) = s0(πa),
– s1(a, b) for all a, b ∈ A, a 6= b with π(s1(a, b)) = s1(πa, πb), and
– s2 with πs2 = s2.

10

The transitions and observations are

contνb(s0(a)) = s1(a, b) obs(s0(a)) = 1

conta(s1(a, b)) = s0(b) obs(s1(a, b)) = obs(s2) = 0

s0(a)

s1(a, b)

s0(b)

s1(b, a)

νb a

νab

for all a, b ∈ A. All other transitions go to the dead state s2. The set of ν-strings
accepted from state s0(a) is

{ε, νb.ba, νb.ba(νa.ab), νb.ba(νa.ab(νb.ba)), νb.ba(νa.ab(νb.ba(νa.ab))), . . .}

It can be shown using the normal form theorem of [15] that this set is not
represented by any NKA expression, because it requires unbounded ν-depth.

Given that orbit-finite nominal automata are strictly more expressive than
NKA expressions, two questions arise:
1. Can we characterize the subclass of orbit-finite nominal automata that are

equivalent to NKA expressions? We conjecture that they are exactly those
automata accepting sets of ν-strings of bounded ν-depth, although we are
not sure how to characterize this class formally in a way that would lead to
a converse of Theorem 4.3.

2. Can we extend the syntax of expressions to capture sets of unbounded ν-
depth? The answer is yes: It is not difficult to show that orbit-finite nominal
automata are equivalent to orbit-finite systems of right-linear equations. For
example, the system corresponding to the automaton above would be

Xa = ε+ νb.bYab Yab = aXb.

The set accepted by the automaton is the least solution of the system. This
gives a full Kleene theorem, but of course we are now left with the open
question of deriving proof rules for this new calculus and extending the
completeness result of [15].

3. Can we prove a Kleene theorem for the nominal DFA and NFA models of
Bojanczyk, Klin and Lasota [3], exposing the crucial difference that nonde-
terminism introduces in the nominal setting (nominal NFA are strictly more
expressive that DFA)?

4. Can we use the coalgebraic setting to systematically develop a nominal
Chomsky hierarchy and (semi-)decision procedures for different classes of
languages?
The first two questions have an interesting interpretation in terms of the in-

tended application of NKA, which was originally proposed in [12] as a framework
for reasoning about dynamic allocation of resources. However, the ν-operators
in NKA expressions are statically scoped, so static may be the more accurate
adjective. The more expressive automata of [3, 8, 17, 19] and of this paper may
be the more appropriate vehicle for the study of dynamic allocation.

References

1. Jǐŕı Adámek. On final coalgebras of continuous functors. Theor. Comput. Sci.,
294(12):3–29, February 2003.

11

2. C. Allauzen and M. Mohri. A unified construction of the Glushkov, follow, and
Antimirov automata. MFCS 2006, LNCS 4162, 110–121.

3. M. Bojanczyk, B. Klin, and S. Lasota. Automata theory in nominal sets. LMCS
10(3), 2014.

4. F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to con-
gruence. POPL 2013, 457–468.

5. T. Braibant and D. Pous. Deciding Kleene algebras in Coq. LMCS 8(1:16):1–42,
2012.

6. G. L. Ferrari, U. Montanari, E. Tuosto, B. Victor, and K. Yemane. Modelling
fusion calculus using HD-automata. CALCO 2005, LNCS 3629, 142–156.

7. N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson. A coalgebraic decision
procedure for NetKAT. POPL 2015, 343–355.

8. N. Francez and M. Kaminski. Finite-memory automata. TCS 134(2):329–363,
1994.

9. N. Francez and M. Kaminski. An algebraic characterization of deterministic regular
languages over infinite alphabets. TCS 306(1–3):155–175, 2003.

10. M. Gabbay and A. M. Pitts. A new approach to abstract syntax involving binders.
LICS 1999, 214–224.

11. M. Gabbay. Foundations of nominal techniques: logic and semantics of variables
in abstract syntax. Bull. Symbolic Logic, 17(2):161–229, 2011.

12. M. Gabbay and V. Ciancia. Freshness and name-restriction in sets of traces with
names. FoSSaCS 2011, LNCS 6604, 365–380.

13. W. Gelade and F. Neven. Succinctness of the Complement and Intersection of
Regular Expressions. TACS 2008, Dagstuhl LIPIcs 1, 325–336.

14. D. Kozen. On the coalgebraic theory of Kleene algebra with tests. Tech.
Rep. http://hdl.handle.net/1813/10173, Cornell, March 2008.

15. D. Kozen, K. Mamouras, and A. Silva. Completeness and incompleteness in nomi-
nal Kleene algebra. Tech. Rep. http://hdl.handle.net/1813/38143, Cornell, Novem-
ber 2014.

16. A. Kurz, T. Suzuki, and E. Tuosto. A characterisation of languages on infinite
alphabets with nominal regular expressions. IFIP TCS 2012, LNCS 7604, 193–
208.

17. A. Kurz, T. Suzuki, and E. Tuosto. On nominal regular languages with binders.
FoSSaCS 2012, LNCS 7213, 255–269.

18. U. Montanari and M. Pistore. History dependent automata. Tech. Rep. TR-11-98,
Computer Science, Università di Pisa, 1998.

19. U. Montanari and M. Pistore. History-dependent automata: An introduction. SFM
2005, LNCS 3465, 1–28.

20. M. Pistore. History Dependent Automata. PhD thesis, Università di Pisa, 1999.
21. A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, Cambridge

Tracts in Theoretical Computer Science 57, Cambridge University Press, 2013.
22. D. Pous. Symbolic algorithms for language equivalence and Kleene algebra with

tests. POPL 2015, 357–368.
23. A. Silva. Kleene Coalgebra. PhD thesis, Radboud University Nijmegen, 2010.
24. A. Silva. Position automata for Kleene algebra with tests. Scientific Annals of

Computer Science, 22(2):367–394, 2012.
25. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time.

STOC 1973, 1–9.

12

