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Abstract

Wrapper-based feature selection is attractive be-
cause wrapper methods are able to optimize the fea-
tures they select to the specific learning algorithm.
Unfortunately, wrapper methods are prohibitively
expensive to use with neural nets. We present an
internal wrapper feature selection method for Cas-
cade Correlation (C2) nets called C2FS that is 2-
3 orders of magnitude faster than external wrapper
feature selection. This new internal wrapper feature
selection method selects features at the same time
hidden units are being added to the growing C2 net
architecture. Experiments with five test problems
show that C2FS feature selection usually improves
accuracy and squared error while dramatically re-
ducing the number of features needed for good per-
formance. Comparison to feature selection via an
information theoretic ordering on features (gain ra-
tio) shows that C2FS usually yields better perfor-
mance and always uses substantially fewer features.

1. Background

Many learning problems have extraneous features that are
not helpful to the learned classifier. When there are many ex-
traneous features, learning generally becomes harder, as the
model is likely to find spurious relationships between extra-
neous features and the training outputs that do not generalize
well. Feature selection is one way to avoid this. A com-
mon approach to feature selection is to use a wrapper method
[Kittler, 1978][Kohavi and John, 1997] to find a subset of
features that yields good performance with the specific learn-
ing method. Feature selection wrapper methods usually hold
aside some training cases to use as a feature selection set, and
try to find a subset of features for which the learning method
performs best on that held-out feature selection set.

One common wrapper method is greedy forward stepwise
feature selection [Kittler, 1978] in which features are added
to the feature set one at a time. To determine which feature
to add at each step, a model is trained adding each unused
feature one at a time to the feature set selected previously.
The feature that provides the best performance on the held-
out feature selection set is added to the set. The major draw-
back to this method is that it requires training many models.
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If there are M features, as many as M (M —1)/2 models must
be trained. This can be prohibitively expensive with learning
methods such as neural networks.

Training an artificial neural net with even one fully-
connected hidden layer of modest size typically takes about
1-100 minutes on a modern workstation for problems with
10-1000 input dimensions and 1k-100k training cases. As-
suming it takes 10 minutes on average to train a neural net
on a problem with 100 features, forward stepwise selection
will run for 34 days if most of the 100 features are needed,
and will still run for 13 days if only 20 of the 100 features
are needed. We recently attempted forward stepwise feature
selection on a problem with 240 input features and were only
able to select the first 30 features in 2 months of computation
on a small cluster of computers working in parallel.

Heuristic methods other than stepwise selection have been
used to try to determine the most relevant features for neural
network learning [Leray and Gallinari, 1998]. Some of these
methods attempt to determine which features to use before
training the network [Setiono and Liu, 1996]. Other meth-
ods modify the neural network after it has been trained using
all features [van de Laar et al., 1999][LeCun et al., 1990].
While these heuristic methods usually yield better models
than those trained using all features, they often are not as ef-
fective as wrapper-based feature selection at finding small,
near-optimal subsets of features.

In this paper we present C2FS, an internal wrapper fea-
ture selection method that combines forward stepwise selec-
tion with the Cascade Correlation (C2)[Fahlman and Lebiere,
1990] method for incrementally constructing networks. Nets
trained with C2FS usually generalize better than C2 nets
trained with all features, and train much faster than using a
wrapper method with the C2 algorithm. On five test prob-
lems with 54-240 input features, C2FS needed less than 10%
of the available features. Moreover, C2FS found significantly
smaller feature sets than could be obtained with an informa-
tion theoretic ordering of the attributes using gain ratio.

2. TheC2FSAlgorithm

2.1 TheCascade Corréation Algorithm

The Cascade Correlation (C2) algorithm [Fahlman and
Lebiere, 1990] is an alternative to the more common fixed
topography networks that are commonly used. In a C2 neu-
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1: C2FS Network Topography. The first frame shows the state of the network after a single hidden unit has been added, with
the inputs on the bottom, and the outputs on the top. The next two frames then show the network after the second and third
hidden units have been added, respectively. Notice that each time a new hidden unit is added, a feature is added also.

ral network, there is a layer for the inputs, and a layer for the
outputs. However, rather than a fixed number of hidden layers
and hidden units, hidden units are added one at a time to the
network, each hidden unit forming a new layer in the growing
cascade architecture. Each hidden unit is given an incoming
edge from each input node and each previous hidden unit, and
an outgoing edge to each output node. After each hidden unit
is added, a round of training occurs during which the edge
weights are adjusted.

2.2 Combining C2with FS

In previous work Schetinin [Schetinin, 2003] combined
feature selection with C2 by ordering features in an initial-
ization step, and then adding a single feature and a single
hidden unit during each iteration of C2. In Schetinin’s work,
features are ordered by training univariate neural nets with
single input features and then sorting by performance. Dur-
ing each iteration of the their algorithm, a single hidden unit
and input feature is added, and a new round of training oc-
currs. The new hidden unit is discarded if it does not improve
performance.

C2FSis similar in that it adds a new hidden unit, and poten-
tially uses a new feature, at each iteration. However, the for-
ward stepwise selection C2FS uses to determine which fea-
tures to add differs considerably from the heuristic used by
Schetinin. It is based upon a combination of forward feature
selection and the C2 network topography. Instead of using an
external wrapper, however, the feature selection step is moved
inside the training algorithm, creating an ’internal wrapper’
method.

Pseudocode in Algorithm 1 presents a high-level version of
the C2FS algorithm. It starts with a totally unconnected neu-
ral network. The network contains NS nodes for the inputs,
and OUT S nodes for the outputs, but no hidden units, or con-
nections between nodes. During the first iteration of C2FS,
a single hidden unit is added, along with an edge from a sin-
gle input node to that hidden unit and edges from the hidden
unit to each of the output nodes. Next, the edge weights are

trained using standard backpropagation of errors. Backprop-
agation is done on the training set, and the early stopping set
is used to determine when to stop training the edge weights.
The C2FS algorithm repeats this process for each of the INS
inputs independently, training NS separate networks. From
these networks, C2FS selects the one that gives the lowest
RMSE on the feature selection set, and discards the rest.

In subsequent iterations, C2FS continues to add more hid-
den units, and potentially more input features, to the C2 net-
work. It starts each iteration with the network selected from
the previous iteration, preserving the edge weights trained
during that iteration. C2FS then repeats the process of train-
ing INS networks, each of which has a single additional hid-
den unit with an incoming edge from one input node, incom-
ing edges from all previous hidden nodes, and outgoing edges
to all output nodes. As before, C2FS selects the network that
performs best on the feature selection set after training, dis-
cards the inferior networks, and moves on to the next iter-
ation. In each iteration, C2FS can add connections from a
new input feature. However, C2FS may also add new hidden
units without using new features — it is possible for new hid-
den units to connect only to previous hidden units and input
features. Because of this, growing a large C2FS net does not
require using many input features.

Like most neural net feature selection methods, C2FS
needs data for training, regularization (early stopping), and
feature selection. Because dividing the train data into three
distinct sets would often make each subset quite small, fea-
ture selection may be done using the same data used for early
stopping. In our experiments, we use the same data for early
stopping and feature selection.

3. Data Sets

To evaluate the performance of C2FS, we selected 5 prob-
lems that each have a moderately large number of features.
Two of the problems are from the UC Irvine machine learn-
ing repository [Blake and Merz, 1998], two were used in the
2004 KDD-CUP [Caruana and Joachims, 2004], and the fifth



initialize network prev
for k = 0 to MAX HI DDEN
net wor k best = NULL
foreach i nput i
network new = prev with an additional
add edge from node i
add edges from each hidden unit

hi dden unit added

to the new hidden unit
in main to the new hidden unit

add edges fromthe new hidden unit to each output node

trai n( new)

i f(best == NULL or RMBE(new) < RVBE(best))
best = new
end
end
prev = best

end

Algorithm 1: The C2FS Algorithm Combines Feature Selection with the C2 Algorithm’s Candidate Unit Installation Step.

is a medical risk prediction data set we are working with.

DNA Splice-Junction

This is a problem from the UCI repository. The data set
contains 2000 cases, which we randomly split into training,
early stopping, and test sets containing 667, 666 and 667
cases, respectively. We repeatedly sample the data set this
way to generate 10 trials. The problem consists of 60 inputs,
each representing a single nucleotide, and 3 output classes.
We encode each of the 60 inputs, which have values of A, C,
G and T, as 4 boolean inputs, exactly one of which is true.
Similarly, we encode the 3 possible output classes (IE, El and
neither) as 3 boolean outputs. In this data set, 25% are IE,
25% are El, and the remaining 50% are neither IE nor EI.

Forest Cover Type

This problem is also from the UCI repository, and contains
a total of 581012 test cases. To be consistent with prior work
[Caruana et al., 2004], we use training sets containing only
4000 samples, and use only 1000 samples for the early stop-
ping sets (which also is used for feature selection). Each case
has 54 inputs and 7 boolean outputs, where each output rep-
resents a single forest cover type. Prior to running any ex-
periments with this data set, we scale each input so that the
largest input value is 1, and the smallest input value is 0.

Protein Homology

This problem, from the 2004 KDD-CUP, requires that a
model predict whether or not two proteins are homologous
based upon 74 comparisons between the two proteins. Each
test case is formed by the comparison of two proteins and
there is a single output which is 1 if the two proteins are ho-
mologous, and 0 otherwise. The data set has 285,409 test
cases, only 2608 (0.91%) of which are homologous proteins.
Again, we scale all of the inputs so they are between 0 and 1.
We then randomly generate training, early stopping, and test
sets with sizes 70,000, 70,000, and 145,409, respectively.

Quantum Physics

This is the second problem from the 2004 KDD-CUP, and
contains 78 inputs, with a single boolean output. We use
training, early stopping and test sets with 4000, 1000, and

5000 cases, respectively, which were randomly drawn from
the full data set. This problem is well balanced, with 49%
positive class, and 51% negative class.

Pneumonia

This problem requires models to predict the probability of
a poor outcome (e.g., cardiac failure) in a pneumonia patient
based on 192 different measures of patient health (blood pres-
sure, temperature, etc.). There are a total of 2287 test cases,
261 (11.4%) of which have poor outcomes. Our training,
early stopping and test sets contain 762, 762, and 763 cases
respectively.

4. Experimental Results

We ran 10 trials using C2 and the new feature selection
algorithm C2FS on each of the five problems. We compare
the performance of C2 and C2FS by looking at the squared
error and accuracy of the models on the final test sets. We also
examine how many features are used by the feature selection
models.

41 C2

For each problem we ran 10 trials with C2. After C2 in-
serts each new hidden unit, the network is trained until per-
formance on the early stopping set stops improving, at which
point a new hidden unit is added. With C2, each new hidden
unit is connected to all input features.

42 C2FS

The C2FS algorithm was run using the same train, early
stopping (also used for feature selection), and final test sets
as C2. For each problem set, we used the same learning rates
and other parameters for both C2 and C2FS.

4.3 Comparison of C2and C2FS

As shown in Table 1 and Table 2, C2FS performs signif-
icantly better than C2 on 3 of the 5 problems (DNA Splice
Junction, Forest Cover Type, and Quantum Physics) with
p < 0.01. On the Pneumonia problem C2FS performs
slightly better than C2, but not significantly (p = 0.187).




1: Comparison of C2 and C2FS using t-Test for 10 trials. Each value is the average over 10
independent trials. Bold entries indicate differences that are different at p = 0.05. p values are

also shown.

Data Set Root-Mean-Squared-Error ACCURACY

Cc2 C2FS p-value c2 C2FS p-value
DNA Splice-Junction | 0.2120 | 0.1667 0.000 0.9187 | 0.9525 0.000
Forest Cover Type 0.2249 0.2218 0.004 0.7585 0.7680 0.012
Quantum Physics 0.4374 | 0.4319 0.001 0.7040 | 0.7058 0.500
Pneumonia 0.2987 | 0.2920 0.187 0.8898 | 0.8932 0.358
Protein Homology 0.0489 0.0499 0.132 0.9974 | 0.9972 0.094

2: Comparison of C2 and C2FS using Sign Test. Columns show how many of the 10 trials each
model performed best on. Again bold entries show differences that are significant at p = 0.05.

Data Set Root-Mean-Squared-Error ACCURACY

C2 C2FS p-value c2 C2FS p-value
DNA Splice-Junction 0 10 0.002 0 10 0.002
Forest Cover Type 1 9 0.021 1 9 0.021
Quantum Physics 0 10 0.002 4 6 0.754
Pneumonia 3 7 0.344 5 5 1.000
Protein Homology 8 2 0.109 8 2 0.109

| Sumoveralltrials | 12] 38 | [ 18] 32 | |

On the Protein Homology problem, C2FS performs slightly
worse than C2, but again not significantly (p = 0.132).

The pneumonia problem presents an interesting challenge
for C2FS. The data set is small (only 762 cases in the train
and early stopping sets), there are many features (192), and
the problem is imbalanced (only 11.4% positive class). Be-
cause of this it is relatively easy to overfit by picking features
that improve performance on the training and feature selec-
tion sets, but which do not help on the independent test data.

Figure 2 shows the RMSE of the models on the final test
sets as hidden units are added. Each plot shows the aver-
age across the 10 trials. Lower RMSE indicates better per-
formance. Notice that C2 sometimes does better than C2FS
when there are only a few hidden units because it is able to
use all of the features from the beginning. Since C2FS can
use no more features than it has hidden units, it must always
add a few hidden units before it can do as well as C2.

On average, C2FS yields moderate performance gains
when compared to C2. More impressively though, it does
so using only 5-15 of the 54-240 features. The mean number
of features used by the C2FS nets are summarized in Table 4.
On average, C2FS uses less than 10% of the available fea-
tures.

4.4 Comparing C2FSto Feature Selection Using
Gain Ratio

The results in the previous section indicate that C2FS does
a good job at training C2 nets that need few features. On
average, C2FS uses less than 10% of the available features,
and yet outperforms C2 nets trained on all features on 4 (only
3 significantly) of the 5 test problems.

We also wanted to compare the features selected by C2FS
with features selected using a simpler method: ordering fea-

4: Mean number of features required by C2FS and C2FSGR.
Each value is the average number of features required when
the RMSE of the model stops improving. Models are evalu-
ated separately in each trial, and then the mean is computed
over the 10 trials.

Data Set Tot # Feats | C2FS | C2FSGR | p-value
DNA 240 | 141 49.7 | 0.000
Forest 541 21.8 37.1| 0.000
Quantum 78 7.4 52.6 0.000
Pneumonia 192 29 179 | 0.000
Protein 74 6.9 41.7 | 0.000
| Mean | 127.6 | 10.62 | 39.8 | |

tures by gain ratio. We ran a second set of experiments using
essentially the C2FS algorithm, but rather than picking the
features with the internal wrapper method discussed previ-
ously, we used gain ratio to order the features. This results in
an algorithm very similar to Schetinin’s method [Schetinin,
2003] because ordering features by gain ratio yields a very
similar ordering to Schetinin’s method of sorting features by
performance in univariate models. It differs from their algo-
rithm in that we add features (and hidden units) according
to the ordering, regardless of their impact on performance,
while [Schetinin, 2003] only adds features that improve per-
formance. In practice, however, this makes little difference —
in our experiments adding a few new features to C2FS nets
rarely causes performance to decrease.

Gain ratio is commonly used as a splitting criterion in de-
cision tree induction. It is defined whenever a data set is split
into two or more subsets. The more a split helps create sub-
sets with homogeneous classes, the better the gain ratio. Gain
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2: Each graphs shows the comparison of the C2 and C2FS architectures on one data set. The graphs are all generated by taking

the average RMSE over 10 independent trials.

3: Comparison of C2FS and C2FSGR using t-Test over 10 independent trials.

Data Set Root-Mean-Squared-Error ACCURACY
C2FSGR C2FS | p-value | C2FSGR C2FS | p-value
DNA Splice-Junction 0.1672 | 0.1667 0.956 0.9526 | 0.9525 0.806
Forest Cover Type 0.2254 | 0.2218 0.003 0.7564 | 0.7680 0.000
Quantum Physics 0.4322 | 0.4319 0.123 0.7048 | 0.7058 0.371
Pneumonia 0.2883 | 0.2920 0.447 0.8932 | 0.8978 0.215
Protein Homology 0.0506 | 0.0499 0.305 0.9972 | 0.9972 0.611

ratio is information gain divided by a correction term to com-
pensate for split arity that eliminates the bias of information
gain toward high-arity splits[Quinlan, 1986].

GainRatio(S, A) = %S’é)
Z —l!}(N)
i€A
Gain(S, A) = Entropy(S) — ZpiEntropy(Si)
i€A

where S; represents the the i*" subset of the split, p; repre-
sents the fraction of the data in S that goes into .S;, and A is
the set of values for the attribute. Most of our attributes are
low arity, or continuous (on which we do binary splits), so the
difference between gain ratio and information gain is not that
significant for these data sets.

For each of the 10 trials, we calculated the gain ratio of each
feature on the union of the training and early stopping sets.
For each variable, we considered all possible split points, and
chose the best one. We then ran the C2FS algorithm, but in-
stead of trying each feature during each iteration and picking
the best one, we simply installed the next feature as dictated
by the gain ratio ordering.

As shown in Table 3, C2FS does significantly better than
C2FSGR on one of the problems — Forest Cover Type. On

the other four problems it is not significantly different from
C2FSGR. Figure 3 shows the average RMSE performance
over the ten trials for C2FS and C2FSGR on the five prob-
lems. In every graph, C2FS improves faster than C2FSGR
when there are few features, and then levels off earlier. This
indicates that, in each case, it is picking the most important
features better than C2FSGR.

Table 4 shows the average number of features used by mod-
els trained with C2FS and C2FSGR. The graphs in Figure 3
plateau as the number of features increases. To calculate the
statistics in Table 4, we look at each of the 10 trials indepen-
dently, and find the smallest number of features that yields
peak performance. As the table shows, C2FS reaches peak
performance using four times fewer features on average than
C2FSGR. From the results in Tables 3 and 4 and Figure 3 we
conclude that on average C2FS yields generalization perfor-
mance that is somewhat better than C2FSGR, and is able to
yield this performance using one-fourth as many features.

On the protein homology problem (the only problem where
C2FS is not better than C2), C2FSGR also performs worse
than C2. Comparing C2FS to C2FSGR on the protein ho-
mology problem, we see that C2FS does better. This leads
us to believe that C2FS is learning a good ordering on the
features for this problem, but for some reason this ordering
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3: Each graphs shows the comparison of the C2FSGR and C2FS methodologies for the various data sets. Each graph is
generated by taking the average RMSE over 10 independent trials.

is not yielding improvements in performance over C2 models
trained with all input features.

5. Conclusion

C2FS is an internal wrapper feature selection method that
adds feature selection to the candidate (hidden) unit training
procedure of the C2 algorithm. This internal wrapper ap-
proach is 2-3 orders of magnitude more efficient than external
wrapper methods for feature selection. Without an approach
like this, wrapper methods on neural nets are infeasible. On 3
of 5 test problems, C2FS clearly outperforms C2 nets trained
with all available features, and yields performance compara-
ble to C2 on the other 2 problems. On average, across the
five test problems, nets trained with C2FS use less than 10%
of the available features. When compared to an alternate ap-
proach for combining feature selection with C2 nets — order-
ing features by gain ratio — C2FS still yields somewhat better
generalization performance, and is able to find nets that use
one fourth as many features. On the one problem where C2FS
does not perform better than C2 using all features (the protein
homology problem), C2FS still outperforms C2FSGR.
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