Storing and Accessing Live Mashup Content in the Cloud

Krzysztof Ostrowski
Cornell University
lthaca, NY 14853, USA
krzys@cs.cornell.edu

ABSTRACT

Today’sRich Internet Application (RIA) technologies such as Ajax,
Flex, or Silverlight, are designed around the client-sepagadigm
and cannot easily take advantage of replication, publifisaribe,
or peer-to-peer mechanisms for better scalability or respeness.
This is particularly true of storage: content is typicalgrgisted in
data centers and consumed via web services. We propdeela
pointed channel (CC) abstraction as an alternative model for storing
and accessing content. CCs are architecture-agnosticcoloéd be
implemented as web services, but also as replicated stateimes
running over peer-to-peer multicast protocols. They camdessly
span across the data center boundaries, or live at the etigg afe

a more natural way of consuming streaming content. CCs caa st
hierarchical documents with hyperlinks to other CCs, ttuumfng
aweb of interconnected CCs: alive scalable informatiocsptd/e
discuss the advantages of the new abstraction, challengesss,
and the way it fits within the existing models for RIA develogmh

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications; D.2.11 [Software Engineering:
Software Architectures-Bata abstraction; E.2 [Data]: Data Stor-
age Representationg-inked representations; H.3.5 Information
Storage and Retrieva): On-line Information Services-Bata shar-
ing

General Terms

Design, Languages, Standardization

Keywords

Scalability, Distributed Storage, Rich Internet Applioat Cloud
Computing, Edge Computing, Peer-to-Peer, Hyperlink

1. INTRODUCTION

Rich Internet Applications (RIAs) and Web 2.@nashups are cur-
rently the most visible realizations of the cloud computogcept.
In a nutshell, the idea is to run a sophisticated user interall) —

Permission to make digital or hard copies of all or part o§ twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

LADIS’09 Big Sky, MT, USA

Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Ken Birman
Cornell University
Ithaca, NY 14853, USA
ken@cs.cornell.edu

directly in the client’s browser — through which users camipa-
late information stored outside of their personal compuerthe
cloud; typically on servers in data centers). The core distirtgos
features include the ability timteractively modify live information
stored in the networlkshare it with others in real time, andombine
content from multiple sources. A number of technologiegeting
this model have emerged, such as Ajax, Sun’s JavaFx, Adabe Fl
and AIR, Microsoft Silverlight, and most recently, GooglaVe.
Depite the wide range of available RIA platforms, nearlyeaH
isting technologies follow the same pattern of working veigtia. A
typical RIA consists of three key components. First, a risarun-
terface created in a markup language such as plain HTML, XAML
(in Silverlight), or MXML (in Flex), and compiled into an HTM
page. Second, a set of SOAP or RE8& services (WS) at a data
center that deliver content on demand (viartpiest-response pat-
tern). Third, scripts in a language such as JavaScript (J&)t@on-
Script (AS), embedded in the Ul markup language, and runining
the client’'s browser. The scripts provide a link betweenuhand
the WS backend. Typically, they initiate asynchronous W ¢a
fetch content. The response triggers an appropriate callibethe
script, and usually takes the form of an XML document. Thépscr
deserializes the XML document, and uses DOM or a similar-tech
nology to navigate to indidivial Ul components (such as Betda
form or cells in a table) to populate them with the receivedtent.
The latter is done by calling Ul components’ setter/gettetirads.
The approach just described has several disadvantages.itfe
awkward to use for streaming content or asynchronous uputate
tification from server to the clients. Although there exethnolo-
gies that provide this functionality, we are not aware of aigely-
adopted and consistent standards. Most RIAs poll for ugdate-
chronously, which is inefficient and non-scalable. Theessiems
in part from the fact that the security model in the browsersdioot
allow listening on sockets; hence, even though SOAP WSsstipp
asynchronous callbacks, using them can be problematito yis-
play alive content in real-time, updates should be pushed to clients
continuously, as asynchronous streams (not unlike videBkash).
Second, although scripting logic could be sophisticatsdally
it deals with the mundane task of moving data back and fogl ¢
ing WSs, calling Ul setter and getter methods, etc. As novede,
from a logical perspective, Ul components in RIAs as wellresrt
backend WSs produce and consume streams of updates, yed they
forced into a PUT / GET interface, effectively leaving it t&Apro-
grammers to implement the missing streaming behavior mignua
Switching to streaming interfaces could reduce the codimgén.
Finally, the established approach is incompatible withicagion
and peer-to-peer protocols, which eliminates many typssaifib-
le architectures that one might wish to use at the backeret-tBe
peer connectivity could offload the server, reduce latemcgnable

RIAs to work when clients are partitioned from data centeusnot
from one-another (e.g. in military and search and rescueesites).
The existing collaboration model assumes that all datarsigied
at the data center and all updated are routed through a tesvar.
One reason why the existing RIA frameworks offer poor suppor
for replication is that theequest-response and PUT / GET patterns
do not map in any obvious way to multicast send, receive, tatd s
transfer operations. Another problem is that in the existirodel,
resources are identified by URIs that function as addre$sans,
which data can be retrieved. Unlike server-hosted ressueceol-
laborative peer-to-peer session might not have a URI in talu
sense, and the data that lives in that P2P session does sbaexi
any particular location; rather, it would exist as a coli@cf repli-
cas distributed among a dynamically changing set of ppsitis.
Our main point is that it would be convenient to be able tottReP
collaboration sessions aentent in the same way as content stored
in data centers, and embed them as parts of RIAs and mashups.
This motivates our approach, which is to replace the exjgiat-
tern of accessing content in RIAs and mashups witheakpointed
channel (CC) abstraction described in Section 2.1, and to use this
abstraction uniformly at all levels from the Ul to the stosdsack-
end. We propose to abandon ttigent-server, reguest-response,
PUT / GET style of data access, and treat CCs as the basicfunit o
storage, and the default way of accessing it. We have impitede
this approach as a part of olive distributed objects (LO) platform
([1]), and used it in classroom setting. We found CCs to bauarah
abstraction (and free of the limitations discussed earlier

2. CHANNELS

2.1 Definition, Semantics, and Examples

A checkpointed channel (CC) is defined as a set pfoxies, soft-
ware components that run on multiple nodes distributedsacitee
network (Figure 1). Each proxy can have a private local sas
proxies may communicate with each other, e.g., executestarioe
of some distributed protocol; in this case, each proxy wdnddin
instance of the distributed protocol stack. The proxies aiay not
communicate at all. Proxies interact with local applicattompo-
nents via standardized event-bashdnnel interface (Figure 2).

The interface between application components and CC moxie
consists of five types of events. Evenitialize (T checkpoint) is
the first event that an application component (A) receives abn-
necting to a proxy of the channel. The valreckpoint of type T
contained in this event represents thate that A should initialize
itself with; this is analogous tetate transfer in group communica-
tion. Followinginitialize, component4 receives from its channel
proxy a sequence ofpdate(7y; update) events. Eachpdateevent
carries an incremental update of tye that A should apply to its
local replica of the application staté. can also request updates by
issuing evensubmit_update(Ty update) to the channel proxy. Its
request may not be immediately satisfied; typically, upslatd be
coordinated and ordered across the channel (we discudatitis
If the request is satisfied, all of the channel’'s proxieseasudate
events to deliver this update to their local application ponents.
Finally, A might occasionally receive evergquest_checkpoinf);
with this, A’s local proxy is requesting that provide a checkpoint
of its local state A responds witltheckpoint{7 checkpoint). The
channel’s proxies use this interface to obtain checkpaiatessary
to initialize new application components joining the chelnProx-
ies may not request checkpoints if they maintain replicab®@fp-
plication state internally (in general, we make no suchmagsion).

Formally, letT be the set of all possible checkpoints (applica-
tion states), lef; be the set of all possible updates in this channel,

checkpointed
channel

proxy

software
on node;

s

channel ... ;
interfaces network msgs

application
component

Figure 1: A checkpointed channel (CC) spans multiple locations
across the network: it consists of a set of communicatingrox-
ies (here P1, P», and Ps). Internal local states of CC'’s proxies,
and protocols that run between them, are encapsulated in the
CC,; the latter interacts with application components viaevents
exchanged through standardized instances shown on Figure 2

channel’s [initialize(Tc checkpoint) channel<T¢ Ty>

imported < update(Ty update) N e

interface | request_checkpoint() Chan”e.!_ o
proxy .

asynchronous

'
*,
I
'
H
.
.
0y
kY

m_(communication with the proxies
T of a checkpointed channel
application channel’'s

component submit_update(T, update) exported
checkpoint(Tc checkpoint) interface

Figure 2: Interfaces exported and imported by a CC are mod-
eled after the APIs exposed by group communication systems.

and giveru € Ty, letF, : Tc — T¢ be a function that transforms
any checkpoint (state) into one that results from applyipdatew.
If A receives from its proxy initial checkpoing € T followed by
a sequence of updates, . . . u, € Ty, we say that after all of these
updatesA hasreached statec, = Fu,, (Fu, _, (... Fus(co)...)),
and if A subsequently receives a checkpoint request, it must report
¢, in its checkpointevent. It should be noted that when we men-
tion A’s application state, we mean a state associated with tiea giv
channel. In generald might be connected to multiple channels; it
would then exchange different parts of its state with eachern.
Note there are no explicit acknowledgements in this mode¢ T
receipt of anupdate matching an earlier request serves as a posi-
tive acknowledgement. There is no need for negative acletye-
ments; we assume that channels are reliable: if an updateittet
by A can't be acceptedd’s local proxy disconnects itself from.
All interaction with a proxy occurs between a pairafnnectand
disconnectevents. Each connection with a channel’s proxy initia-
tes a new interactive session, entirely independent frenpést.
Although in general, the semantics of channels one might wan
to use in practice might vary, our discussion in this papeuses
on one particular class of channels: reliable and totatiged. We
assume that all updates delivered viadpelate event by any of the
proxies come from the same totally ordered sequence #-, . . .,
and that each proxy delivers to the connected componenttzd in
checkpointc,, (as defined earlier) followed by a contiguous (finite
or infinite) sequence of updat@$ 1, un+2, Un+s - .., for somen
(perhaps different for different proxies). We further assume that
every pair of components that never disconnect from theixips
eventually reaches the same states (in the sense definied)eard
that all updates they submit are eventually includediinus,
Based on the discussion so far, we can of think of each CC as an
entity that has state, much in the same sense as a variabfgadn a

gramming language: each application componénthat interacts web service-......¢ membership service

with such channel (through its local proxy;) observes (a part of) channel

the same linear sequence of values. The only differencefiim- channel (memb:‘)\?.«"‘

terface: instead of explicéiet andget (or PUT and GET) requests, R
channel

characteristic of the traditional client-server apprqaste now has
to think in terms of asynchronous updates and checkpoints.

In the context of RIA and mashups, we are particularly irgtre
in channels that hold structured content. We defingMh channel
to be a CC in which the checkpointss T¢ are well-formed XML
documents, and updates= Ty are a standardized set of edits that
can be performed against such documents (the exact refaisen Figure 3: Left: CC based on a web service. Updates translatet
of these does not concern us here). By further restrictiagrétid SOAP or REST requests, and changes are detected by callbacks
types of checkpoints, one could distinguish XHTML, RSS, XBM or via polling. Right: CC based on a reliable multicast protocol
MXML, and other classes of channels that hold structuredestn with state transfer. Updates/checkpoints flow directly betveen

such as a particular class of Java/.NET objects serialitedkiML. channel proxies. An internalmembership channel (also a CC in
RIAs and mashups built in our prototype platform typicatlyalve our approach) is used to byQ’s proxies to achieve consistency.
a hierarchy of XML CCs, in which individual CCs store diffete

parts of a hierarchical document. This is discussed in Se&i2. memb. service T T Yersistence

To conclude this section, let's look at example architezguhat
fit the CC abstraction. The simplest type of a CC is one based on
a back-end SOAP or REST web service, RSS feed, or other<lient

layer
channel aye

(mem b)

server protocol (Figure 3, left). Hersybmit_updateevents might channel
translate to SOAP calls or POST requests, wheneitiglize and (data) ™ -+, persistence
updatemight be triggered after synchronous GET, web sevice call- ./ manager
backs (if supported), or RSS natifications. One issue withdbe- - ;

4—

Y
[)
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
.
.
U

nario is that for many content sources, such as RESTful WSS, R e e L
and ATOM feeds, there is no obvious way to distinguish betwee = Sl .Jnirastructure nodes ___ o
checkpoints and updates. One solution would be for proxXidiseo
channel to repeatedly fetch content and issheckpoint events
instead of updates. Another, more expensive, would be fotigs
to compare subsequent checkpoints and generate incrémpnta
dates; this may be feasible for RSS feeds and other XML seurce
where updates might be as simple as inserting items to actiole
In the long run, we believe it necessary to extend the exjatieb
standards to support asynchronaheckpoint / update semantics.
Another example of a CC would be an instance of a reliable mul-
ticast protocol or a replicate state machine (Figure 3tyigbhan-
nel events map in a straightforward manner to multicastsséate
transfers. Proxies of the CC that carries d&lat Figure 3) might
need to use an extermakmbership serviceto discover one-another
and obtain a consistent view of the membership of their group
the actual data (checkpoints and updates) would travedttiirbe-
tween the clients’ machines. Membership information cao ake

represented as a channel: checkpoints in this case may toefir- 2.2 Embedding Channels in Applications
bership views, and updates to individual joins and leavéw an- In Section 1, we postulated replacing PUT / GET interfaces fo

g;ethn;et(rencairisr::gslr(]jfirsatzsljrsi(:grr?ecr:rzégztsr;iezggp:f glje%té e)ugIILeEv“i)-/ data access consistently throughout the RIA, includingihayer.
i que : Y ' o Accordingly, in our prototype platform all Ul componentsch as
ate the issue with NATs and firewalls blocking peer-to-pesfic, . .
the membership service could act as a STUN or rendezvousrserv text boxes, panels, and 3D objects, expose interfaces o
The main roFl):JIem with the “pure” P2P multicast scenario & th tary to those exposed by the CCs: they consume eveitialize,
P . P L update, andrequest_checkpoint and unless read-only, they issue
the state can be retained for only as long as there existglising bmi d dcheckooint Thus. i latf Ul
the CC. Once the last client closes its browser window, atbinces submit_upadateandcheckpoint Thus, in our platform, Ul com-
) o e ponents bindlirectly to their channel proxies, without the need to
of components that held application state and their assataox- . - . L ;
ies are terminated. at which point all updates are perm write any scripting logic to manually move data. This is retiée in
! P P permiyriest. the structure of our XML markup language (an analogue to XAML

matically instantate proxis of e channel on nfraduceservers 21 MXML). Typicall, chanmel specifcation s passed digas
y P a parameter of a Ul component (compare Figure 5, lines 6-98).

(Figure 4). The role of these servers would be to ensure tmés When parsing our XML document, the client runtime instaeta

number of state replicas always stay active. The numbermroése I d their ch | ios f hei d
could be adjusted based on the channel’s fault-toleranegsnend a .Ullcomponents and t €Ir channet proxies from t elr XMI: €
scriptions and connects their endpoints to initiate comoation

e can easiy magine combinations of these schemes. For ex PEUWEE them. Once a channel proxy obtains the nialghwok
ample, instead of using infrastructure servers for pemist, prox- itissues the_nltlallze event, at which point the Ul compon_ent con-
ies COlil|d use reliable multicast when their number grO\AgEI‘ aand nectedtoit |s_enabled, and can accept further updates oirse.

If the connection between the Ul an the channel proxy bretdsya

Figure 4: Persistence in peer-to-peer settings could be aigved
by automatically joining infrastructure servers to the channel.

fall back to the client-server scheme and route all updaresigh a
centralized service when their number falls below a thrieshthe
analysis of such scenarios is beyond the scope of this paper.

For use in our target environment, it's important that thea®c
straction be scalable. In past work [11], we proved thatgfrop-
erties, such as reliable atomic delivery, can be implententthout
reliance on a single global membership service, and we gezpa
hierarchical architecture that instead uses a large nuofii@rde-
pendent) membership services that control portions of ¢heark.
Hence at least in theory, it is possible to implement CCs With-
dreds of thousands of members.

point, the Ul element is disabled and the entire processtanted.

The fact that data consumers bind directly to channels has a n
table consequence: each CC stores the complete data Se¢dequ
display and update the given Ul component. This raises aiques
aboutcontainers (such as panels, tables, grids, lists, and compound
documents) that display Ul components embedded in themulagho
the container channel also carry data associated with alsneen-
bedded in it, or should those elements be bound to separate ch
nels? The answer is not obvious. The established practieéAn
is a mixture of the two: hierarchical content is first shippedhe
client as a single HTML document, and then JavaScript (J&esl
to dynamically pull updates to the individual elements & fpiage,
and update them individually via DOM. One could argue that th
more dynamic and personalized the content is, the more tvan
geous it would be for performance reasons to store eachfudata
in a separate channel, pull it on demand, and assemble otight ¢
machine based on user’s viewing preferences or local seskite.
Furthermore, different Ul components might display datdnwlif-
ferent update patterns, security, privacy, or reliabititpperties. It
would be desirable to back each component with the type af-cha
nel that best matches its characteristics. This is the medeised.
In our platform, the container channé? on Figure 6) stores all in-
formation necessary to create and initialize embedded oopgs
(B, C, andD) and proxies of their channel§(, R1, andS1), but
it does not include content to fill the embedded componentis; wi
each of these loads its content individually from its prvelhannel.

Our approach could raise concerns. First, it complicatesldp-
ment and deployment: instead of working with a single doautime
the web designer now commits content into multiple indepaind
CCs. In practice, it may be necessary for developer’s chatmglee
atomic across channels and possible to preview, rollbadlaadit.
Since channels might be heterogeneous, this would regtieac
ing distributed commit protocols to also work across chésine

The second concern is scalability: the model presentedéwis
to a large number of distinct channels, and in the sort ofbolta-
tive scenarios, where channels might be physically impteatkas
instances of reliable multicast, this can incur high ovatheHow-
ever, note that the users who access a container channabwillly
also access the channels of embedded elements, so in praetit
observe setinclusion and other similarities between $eisars ac-
cessing different channels; one can potentially use thasortize
overhead, e.g., via some form of channeling/clustering. [13

At this point, one might pose a question: now that we elingédat
the need for scripts to manually fetch data from remote ssuand
feed it to the UI, whashould be the primary use of script embedded
in the XML markup (if any)? Experiences with our platform sug
gest two important uses. First, channel management: mdictt ef
in web development focuses on delivering personalizedecinin
our framework, this means fetching data only from chanrteds t
match the user’s physical location, viewing perspectivefile, etc.
Second, distributed coordination: some applications tmgled to
lock a portion of data before changing it, synchronize viesoss
clients, vote, compare, or otherwise aggregate their ;joutieter-
mine the course of action. We believe that in collaborativei-e
ronments, coordination logic is an integral part of the eattand
naturally fits as a script embedded in XML markups such asethos
on Figure 5 much in the same way JS fits in HTML. We're currently
working on a scripting language designed with such embeddin
mind that can concisely express many types of distributeddio
nation using a small set of generic language primitives]([[id]).

To conclude, we'd like to point to a possible use of CCs as a way
of storing personalized user profile and session state.yoR#AS
achieve this viaookies. small files stored on user’s local machines

01: <?xml version="1.0" encoding="utf-16"?>
02: <Object xsi:type="ReferenceObject" id="e3eal6f4">

03: <Parameter id="Background Color">
04: <Value xsi:type="xsd:string">YellowGreen</Value>
05: </Parameter>

06: <Parameter id="Channel">

07: <Value xsi:type="ReferenceObject" id="c71e88e7">
08: <Parameter id="CheckpointClass">

09: <Value xsi:type="ValueClass" id="982130e4" />
10: </Parameter>

11: <Parameter id="MessageClass">

12: <Value xsi:type="ValueClass" id="982130e4" />
13: </Parameter>

97. </Value>

98: </Parameter>

99: </Object>

Figure 5: An example document in our markup language (sim-
plified). Code in lines 2-99 describes a visual component;g,
a panel. Component type is determined by arid in line 2, and
two parametersBackground Color and Channel are specified in
lines 3-5 and 6-98, respectively. The latter parameter desbes
the CC that stores information about all items contained on he
panel; for example, it may refer to a built-in channel template,
again by specifying theid (line 7), and parameters (lines 8-96).

channel “p” <+—

Ul component
rendering ™.

‘Ref

channel “Q”

channel “R”

UI element

Figure 6: In a document with three embedded elements, there
are four proxies that supply content (one for the document, ad
one for each embedded element) from four different channels
Content stored in channel P takes the form of an XML docu-
ment with three sections similar to those on Figure 5, allowig
the browser to create components3, C', and D with their em-
bedded proxies. Content displayed by3, C, and D is not stored
in P, however; it is stored separately in channel€), R, and S.
Sections denoted aRef<X> are references. XML-serialized in-
structions for creating Ul components, channel proxies, &t

Ref<R>

Ref<D>

channel “S”

1 Ref<S§>

channel
proxy

XML a’ocument

mashup stored in channel “P”

and attached to client-server requests; servers use thesg¢late
client's HTTP requests with profiles stored in centralizaththases.
The problem is that cookies are associated with a partiselatice
provider, and don’t work across domains. In a mashup withgela
number of components delivering content from different/jiers,
each component tracks user profile and session state separat

We propose to use CCs as containers for user profiles and local
session state, replicated and shared among different nes;tdon-
tent providers, and mashup components in the same way haultip
users can share a collaboratively edited document. Thisevgy,
if the user moves an avatar on a Google map, the location ehang
could be propagated across the CC carrying the user’s s
file to other components that may display weather infornmeftiom
Yahoo! and data from the National Census Bureau, and caese th
to update their contents accordingly, so that informatimsented
by different parts of the mashup stays synchronized evergtinthe
components displaying it may have come from different piexs.

2.3 Addressing and Linking To Channels Distributed Asynchronous Collections (DAC) [5] pioneetbe

A natural question at this point is: how to identify CCs, amwvh ~ idea of embedding reliable multicast in a programming |agguas
should a browser on a client machine translate a CC ideritiea a general-purpose storage abstraction. Our work is largsfyred
running proxy? One approach would be to identify a CC by a URI, by DAC, but poses a different set of technical challengesd k-
just like other resources on the Web, download its code viaiyT ~ ferentscenarios (RIAs vs. Java) and the type of contenicfsired,
load it into the process, and run it in the same way we run dgtscr hyper-linked mashups vs. Java objects), among other factor
and Java applets. The advantage of this solution is its &itypla BAST [6] pioneered the use of protocols as components within
major disadvantage is that it lacks flexibility. In some sméws, we &N object-oriented environment. Our platform uses a btawkap-
might prefer to override the name resolution process justriiged ~ Proach to composition motivated by intended use in mastwips;
with a more secure version that involves mutual autheritioabr reas BAST used a language-centric approach based on areit
construct the channel proxy’s distributed protocol staiffleidntly The emergence of massively multicore hardware and large com
depending on a user’s physical location or network charities. putational clusters operating on Web-scale data setsespanwave
Another issue is that it creates a dependency on clienesariras- interest in languages and architectures that supportnsingaand
tructure. During disconnected operation, one might wisspanta- ~ data flow programming [8], [9]. Our proposal to structure Viieb
neously initiate a peer-to-peer collaboration sessiohawit having cess and RIA programming around streaming APIs fits thigitren
access to the server on which the channel code is stored. As pointed our earlier, our approach may lead to a large numbe

We adopted a different model: CCs themselves are mashups, de Of CCs. Few existing replication protocols are designed:aesin
scribed in the same XML markup language as the Ul (Figure 5). this dimension, but several optimization techniques haestpro-
CC specification expressed in XML, calledaference, can identify posed recently that can amortize per-channel overheadbilispel
a CC with an identifier and a URL, but it can also describe the CC Subscribe overlays [3], [13]. Solving the problem for releamul-
explicitly as a mashup of components that represent sinppéeo- ticast may pose a bigger challenge.
col layers, as an instance of some template with parametersn

4. REFERENCES

our model, references play the role analogous to identjfienses, - Cr 3))
addresses, or pointers: each reference contains enowghation [1] Live Distributed Objectshttp://liveobjects.cs.cornell.edu/.
[2] C.Blake and R. Rodrigues. High availability, scalable

about the CC'’s protocol stack for the browser to constraqtribxy.

Following this approach, we can represent hyperlinks aisard
Ul components with embedded CC specifications (just like¢tan
Figure 5); except that instead of activating and connectrits CC
proxy to fetch content, a hyperlink component waits for teeris
action. Once clicked, it passes the embedded channel netete
the browser. The Ul component that represents the browsetowi
then connects to the channel to retrieve content, much isahee

way a regular browser would load content from the HTTP addres

specified in an ordinary hyperlink and fill its entire windovithwit.
Following this approach further, we replaced the HTTP proto
with the CC interfaces, and URIs/URLs with CC referencesun
platform, instead of typing a URL or clicking on a link to dolwad
static content, the user clicks on a CC reference, causmpttal
browser to create the CC’s proxy, connect to it, and stapiaysng
dynamic content stored in the CC. Clicking on hyperlinks ethb

storage, dynamic peer networks: pick titOTOS, 2003.

[3] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg.

Constructing scalable overlays for pub/sub with many ®pic
problems, algorithms, and evaluatid*ODC, 2007.

[4] K. Edwards, M. Spreitzer, D. Terry, and M. Theimer.

Designing and implementing asynchronous collaborative
applications with bayouJIST, 1997.

[5] P. Eugster, R. Guerraoui, and J. Sventek. Distributed

asynchronous collections: Abstractions for publish/stibe
interaction. ECOOP, 2000.

[6] B. Garbinato and R. Guerraoui. Flexible protocol

composition in bast.CDCS, 1998.

[7] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. [abte,

distributed data structures for internet service consonc
OSDI, 2000.

ded on the displayed page would cause the browser to navigate
other channels, as described earlier. Instead of browsregudar
client-server Web, the user browses a Web of hyperlinked CCs
As mentioned earlier, we have a working implementation ef th
CC paradigm [1], and students at Cornell have been usingtivio
years. However, the techniques we described could jusisily ba
incorporated into Silverlight, or any other modern RIA franork.

3. RELATED WORK

Due to limited space, this section is limited; more comptete- [11]
erage of related work can be found in the first author’s diasen.

Croquet [12] pioneered the use of replication to store Vigieb
content; their system was based on two-phase commit. Siynita
most distributed storage architectures developed in thedeade,
such as Bayou [4], DDS [7], and Antiquity [15], content in Guet
was stored on server replicas. In contrast, we propose tizcatp
content directly on the clients nodes and treat clients afidstruc-
ture nodes symmetrically, as channel members. Most rdssarc
believe in storage consolidation in big data centers [14]palieve
that the ever-increasing power of home users’ computensboed
with data center scalability limits, will eventually revehis trend,
although as several researchers have pointed out [2],dhefinits
to how much one can store in scenarios with high churn.

[8] J. Gummaraju, J. Coburn, Y. Turner, and M. Rosenblum.
Streamware: programming general-purpose multicore
processors using streamsSPLOS, 2008.

[9] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processingS GMOD, 2008.

[10] K. Ostrowski, K. Birman, and D. Dolev. Programming Live

Distributed Objects with Distributed Data FlowSornell

University Tech Report. http:/hdl.handle.net/1813/12766.

K. Ostrowski, K. Birman, D. Dolev, and C. Sakoda.

Implementing reliable event streams in large systems via

distributed data flows and recursive delegatidBBS, 2009.

[12] D. Smith, A. Kay, A. Raab, and D. Reed. Croquet: a
collaboration system architectui@5, 2003.

[13] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky.
Hierarchical clustering of message flows in a multicast data
dissemination systenPDCS, 2005.

[14] A. Veitch, E. Riedel, S. Towers, and J. Wilkes. Towartts g
bal storage management and data placenk&tOS, 2001.

[15] H. Weatherspoon, P. Eaton, B.-G. Chun, and J. Kubianwi
Antiquity: exploiting a secure log for wide-area distribdt
storage EuroSys, 2007.

