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ABSTRACT

Motivation: What constitutes a subtle motif? Intuitively, it
is a motif that is almost indistinguishable, in the statistical
sense, from random motifs. This question has important
practical consequences: consider, for example, a biologist
that is generating a sample of upstream regulatory se-
quences with the goal of finding a regulatory pattern that is
shared by these sequences. If the sequences are too short
then one risks losing some of the regulatory patterns that
are located further upstream. Conversely, if the sequences
are too long, the motif becomes too subtle and one is then
likely to encounter random motifs which are at least as
significant statistically as the regulatory pattern itself. In
practical terms one would like to recognize the sequence
length threshold, or the twilight zone, beyond which the
motifs are in some sense too subtle.

Results: The paper defines the motif twilight zone where
every motif finding algorithm would be exposed to random
motifs which are as significant as the one which is sought.
We also propose an objective tool for evaluating the
performance of subtle motif finding algorithms. Finally
we apply these tools to evaluate the success of our
MULTIPROFILER algorithm to detect subtle motifs.
Contact: keich@cs.ucsd.edu

INTRODUCTION

A biologists looking for (unknown) regulatory signals
faces a number of choices. One of the problems is how
to generate samples of upstream regions for co-regulated
genes of interest. For example, a wrong choice of the
length of the upstream regions in the sample (for a set
of co-regulated genes) may render even the best motif
finding algorithm useless. While generating samples of
upstream regions biologists often tend to choose longer
(up to 2000 bp in expression analysis studies) rather than
shorter regions in order to avoid missing some distant
regulatory elements. However, some regulatory elements
are so subtle (e.g. E. coli promoters) that increasing the
length of the sequences in the sample to over 100 bp
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is bound to introduce random motifs which are at least
as significant as the regulatory element itself (see Vanet
et al. (2000) and Eskin et al. (2002) on difficulties with
finding E. coli promoters in large samples). On the other
hand, reducing the length of the sample may increase the
corruption of the sample (i.e. the number of sequences
without signals) and, once again, may lead to losing the
signal. This dilemma combined with recent algorithmic
advances in finding subtle motifs (Pevzner and Sze, 2000;
Buhler and Tompa, 2001; Keich and Pevzner, 2002) raise
the following question: what is the maximal length of
sample that allows successful detection of a signal of a
given strength, or more generally, what is a subtle motif?

This paper answers this question by defining the twilight
zone in motif finding where every motif finding algorithm
would have difficulties due to the fact that random
motifs start competing with biological motifs. Our new
MULTIPROFILER algorithm (Keich and Pevzner, 2002)
was designed to find particularly subtle motifs even in the
cases when a real motif may be blurred by random motifs.
We analyze the performance of MULTIPROFILER in a
proposed general framework of evaluating the reliability
of subtle motif finders and demonstrate that it is able to
detect motifs that are in the twilight zone and beyond.

We assume that relying on a scoring function, the motif
finder tries to find a motif that is implanted in a sample
generated according to the sample model. In many motif
finding studies the sample, S = {Si, ..., S}, is formed
of n randomly generated sequences of length N. The
motif itself is generated and implanted in accordance with
the motif model. Although much of the discussion in
this section holds more generally, we concentrate on two
consensus based motif models, where the motif consists
of instances which are mutated images of the ‘back-
bone’ pattern P (Stormo, 2000). The first motif model
we consider is the FM model (Pevzner and Sze, 2000)
where each of the n sequences contains one instance of
an ([, k)*-motif, i.e. each instance of the pattern of length
[ contains k positions which are randomly mutated. The
second model is the VM model (Pevzner and Sze, 2000)
where again each sequence contains exactly one instance,
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Fig. 1. log expected number of random motifs versus the total
distance score.

only now each position of the instance is mutated,
independently of all other positions, with probability p.
We mainly discuss the total-distance scoring function’,
but in the context of the FM model we also consider
the ‘sequence-count’ scoring function used by Buhler and
Tompa (2001), where we count the number of sequences
in the sample whose distance to the putative pattern is
greater than k. Note that the total distance of the implanted
motif in the FM model is < nk, while its sequence-count
score is always 0.

Loosely speaking, we consider a motif as subtle if its
score is unremarkable when compared with the scores of
some random motifs present in the same sample. This
raises the question of what is the twilight zone of scores
beyond which we can expect to start seeing random
motifs. Clearly, this threshold depends on the sample
model and on the choice of the motif scoring function. The
sample model determines the distribution of the scores of
random motifs and in particular it determines the expected
number of random motifs at any given score. Generally,
we expect the twilight zone threshold to lie around the
score, for which the expected number of random motifs
that exceed this score, is about 1*. Figures 1 and 2
demonstrate how this threshold can vary with the size of
the sample and with the choice of the scoring function.

In order to determine the ‘subtlety’ of the motif we need
some idea about how the score of the implanted motifs

"The distance between a word W, of length /, and a sequence S is:
d(W,S) = mingegd(W, B), where the minimum is taken over all words
of length / in S, and d(W, B) is the Hamming distance between W and B.
The total distance of W, is d(W) = Zi d(W, S;), where the summation
extends over all the sequences in the sample.

#Clearly, the choice of 1 is somewhat arbitrary, 2 or 1/2 are equally plausible
however 10° or 1079, for example, are dubious choices for defining this
threshold.
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Fig. 2. log expected number of random motifs versus the sequence
count score. The point (x, y) is on the graph if the expected number
of random motifs with a score of x or better (i.e. x or smaller for
both the total distance and sequence count scores) is 10. The two
curves in each of the two figures correspond to sample models of
20 sequences with 1600 and 3000 base pairs (bp) respectively. The
points are connected by lines merely to facilitate visualization. Note
how for the total distance score the onset of the twilight zone shifts
from a score of 80 to 74 when we move from 1600 to 3000 bp
sequences. The analogous shift for the sequence count score is from
4tol.

is distributed (Figure 3 demonstrates how this distribution
varies with the model). Note that in general the score of the
implanted motif varies not only with the particular motif,
generated according to the motif model, but also with the
sample. For example, the total distance score will improve
with good random matches of the pattern.

We call a motif subtle or dim if its median score
lies beyond the twilight zone®. It is interesting to note
the impact of the scoring function on this definition.
Consider for example our FM 1600 challenge problem:
an FM model of, a (15, 4)*-motif implanted in twenty
1600 bp sequences. This motif is dim when viewed
with the total distance score, however, the exact same
motif ‘shines’ quite brightly through the sequence-count
binocular. Indeed, using this score we can extend the
sequence length to over 3000 before this motif becomes
dim (Figure 4).

A more refined gauge of the subtlety of a motif can
be obtained from what we call the subtlety graph (Figure
4). This universally scaled graph is generated by plotting
the distribution of the implanted motif score (Figure 3)
directly against the expected number of random motifs
(Figures 1 and 2). For example, the point (81, 10*!) which
lies on the subtlety graph of the total distance - FM 3000

§ The choice of median is, again, somewhat arbitrary
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Fig. 3. The distribution of the score of implanted motifs. The
point (x, y) is on the graph if y is the probability that the score
of the implanted motif will be x or worse (i.e. x or bigger for
the total distance). The points are connected by lines merely to
facilitate visualization. The two FM models consists of a (15, 4)*-
motif implanted once in each of the 20 sequences with 1600 and
3000 bp. In the VM model the positions of the 15 bp pattern
are mutated independently in each of the 20 instances (implanted
in 1600 bp sequences) with probability 0.3. The location of the
points was calculated as described below and agreed well with
empirical distributions generated from 10 random samples for each
of the three motif models: there were no mismatches, up to the
third decimal digit, among the 1600 long models, while the few
mismatches between the 3000 models were no more than 103
apart.

problem (a (15, 4)*-motif implanted in twenty 3000 bp
sequences) signifies that 81% of the implanted motifs are
cluttered by (roughly) an average of at least 1259 random
motifs whose score is at least as impressive. Note that the
subtlety graph immediately yields whether or not the motif
is dim.

Mathematically, the subtlety graph can be defined as
follows. Let S be the score of the randomly implanted
pattern and let M be the number of random motifs whose
score is S or better (both S and M are random variables).
Then, the subtlety graph essentially yields the distribution
of E[M|S]. Note that while the distribution of M is an even
more refined measurement of motif subtlety, it is typically
much harder to compute than the distribution of E[M|S].

The subtlety graph is closely related to the existing
notion of an ROC (receiver operating characteristic) curve
(e.g. Swets (1988)). ROC graph evaluates a diagnostic
system by plotting the percentage of ‘true positives’ vs.
the percentage of ‘false positives’ as they vary together
according to an adjustable parameter. Let us consider
a perfect algorithm that finds all motifs above score s,
such as an exhaustive pattern driven search (Brazma et
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Fig. 4. Subtlety graphs. The point (x, y) is on the graph if the score
of y percent of the implanted motifs is (on the average) no better
than the score of at least x random motifs. The points are connected
by lines merely to facilitate visualization. The points on the two
sequence-count based graphs are located eitherat y = Qoraty =1
as the score of an FM implanted motif is constant at 0. Since the
medians of all three total distance based examples are in the twilight
zone, all three correspond to dim motifs. Note that the same motif
implanted according to an FM 1600 model is dim under the total
distance score but shines brightly with the sequence-count score.
When the sequences are extended to 3000 bp, the motif is still not
dim with the sequence-count score but is ‘practically lost’ on the
total distance score: about 81% of the implanted motifs are buried by
an average of over 1259 random motifs whose total distance score
is at least as significant. Nevertheless, MULTIPROFILER is equally
likely to detect this motif (over 98% of the time) using either score.

al., 1998), and let us replace the percentage of false
positive in its ROC curve with the expected number of
those. The resulting ‘E-ROC’ curve holds exactly the
same information as does the subtlety graph and there is
a trivial equivalent transformation between the two. The
emphasis, though, is slightly different: the E-ROC graph
readily yields the expected number of random motifs we
will encounter if we want to ensure that x percent of the
implanted motifs will be found. The emphasis, though,
is slightly different: the E-ROC graph readily yields the
expected number of random motifs we will encounter if
we want to ensure that x percent of the implanted motifs
will be found. Note that using the previous definitions of
M and S, the ROC curve essentially corresponds to the
distribution of P(M > 0 | S).

The performance of a motif finder is determined by its
reliability (how well does it find motifs) and its complexity
(at what cost). Clearly, how well an algorithm detects a
motif might vary with the motif-sample model. However,
it also depends on how one defines what constitutes a
detected motif. In particular, when looking for dim motifs
one quickly realizes that perfectly recovering the set of
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instances of a dim motif is a hopeless task due to good
random matches of the pattern (for example, see the
poor ‘average performance coefficient’, or apc, reported
in Buhler (2001)).

Moreover, when we seek dim motifs we are bound to
encounter a non-negligible number of ‘false positives’,
or random motifs which are at least as significant as the
ones we seek. Thus we contend that when evaluating the
reliability of a dim motif finder one should ignore these
false positives. Indeed, the more reliable the finder is, the
more false positives it will pick up. We therefore argue
that the algorithm only fails to detect the motif if it either
completely misses the motif, or if it fails to compute its
score correctly. More succinctly we say the algorithm
detects the motif if it correctly computes its score. For
example, regardless of whether the sequence count or
total distance score is used, MULTIPROFILER (Keich and
Pevzner, 2002) detects the motif in the FM 1600 problem
over 99.4% of the time.

A curious implication of this definition is that a dim
motif is not necessarily one that is difficult to detect; for
example, pattern-driven algorithms that test all 4’ [-letter
patterns are 100% reliable according to our definition, and
for a small / the cost is not too bad. Of course, the end user
might not be able to benefit from this kind of detection;
nevertheless, the motif finder is not the weak link in this
chain.

In the remainder of this paper we provide a case study
of the subtlety analysis of the FM and VM models and
continue to study the costs and reliability analysis of
applying MULTIPROFILER to resolve these models. The
latter part is clearly intended for people who read the
account of MULTIPROFILER provided in the companion
paper (Keich and Pevzner, 2002).

THE SUBTLETY GRAPH
Defining the twilight zone

LetS = {S1, ..., S,} be arandom sample of n sequences
each of which has N independent and uniformly dis-
tributed letters. We first look for the expected number
of words W of length / whose score is m or better (since
our scoring function is the total distance, this is equivalent
to d(W) < m). Clearly, this expectation increases with m.

Let X; = d(W, §;), then X; are independent multino-
mial random variables. The distribution function of X; de-
pends on the overlap structure of W (Guibas and Odlyzko,

1981). Indeed, let Bi] denote the word (of length /) starting
at position j of the ith sequence, and let Yij =dW, Bij ).
Then, since a mismatch between each of the / positions of
Bl.j and W occurs independently of the others with proba-
bility 3/4, Yij are binomial b(/, 3/4) random variables for

any W. Had Yl.j been independent random variables, then

the distribution function of X; = min; Yl.j would have
been readily available:

P(X; > r) = P(mj{yif > r}) =1, P(Y) > r)
= N—I+1
= [Foll, 3/410]" 7,
where Fpln, pl(r) = Y7 (})p*(1 — p)"~* is the prob-
ability that a binomial b[n, p] random variable will be r

or bigger. Of course, Yl.j and Yik are not independent for
|j — k| < [ and the dependency varies with W. Having
said that, since the dependency is rather local we can still
obtain a decent approximation of the distribution function
of X; using the independence assumption (at least for a
‘generic’ W, cf. Table 1). Since, d(W) = ), X; we ob-
tain a readily computable estimate of the distribution of
d(W) for a ‘generic’ word W (Table 2). Assuming that
the overwhelming number of words are generic ones, we
can estimate the expected number of random motifs whose
total distance is not bigger than m by 4'P(d (W) < m).
Figure 1 shows results for sequences of length 1600 and
3000 and the corresponding locations of the twilight zone
threshold. Table 2 demonstrates that the various estimates
of the distribution of d(W) for a generic W are in essential
agreement, thus we are fairly confident in the resulting
estimates of the expectations, albeit more can be done to
quantify this confidence.

Scores of implanted motifs

Let Fy(py denote the distribution function of the total
distance of the implanted motif P. We begin with the
FM model and assume once again that P is ‘generic’
in the sense that we ignore its overlap structure. Clearly,
d(P) < nk (n sequences and exactly k mutations per
instance) but the inequality could be strict due to good

random matches of P. Let Yi] = d(P, Bij ), where Bi]
is the word that starts at position j of the ith sequence,
Si. Let P; denote the instance of P that is implanted in
the ith sequence, and let n; denote the starting position of

that implant. Then, conditional on j = n; (i.e. Bij is the

ith instance, P;), the random variable Y; = k, while its
distribution conditional on j # n; is, as in the random
case, binomial b[/, 3/4]. As in the random sample case,
we are interested in the distribution of X; = d(P, S;) =

min; Yl.j , and we assume that for any fixed i, conditional

on 7;, Yi] are roughly independent (ignoring the overlap).
Under this assumption,

= N—I
P(X: < 1) ~ 1 — [Fpll, 3/41(r + D] r< k’
1 r>k

and as before we can use this estimated distribution
function of X; to approximate the distribution function of
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Table 1. Distribution of the distance to one sequence

Minimal distance to a sequence of length 1600

Pattern 2 3 4 5 6 7 8

aaaaaaaaaaaaaaa 0.001 0.009 0.066 0.288 0.492 0.143 0.002
aaaaaaacccccccce 0.001 0.014 0.109 0.429 0.421 0.026 0.000
gcacggtttcataat 0.001 0.018 0.148 0.552 0.280 0.001 0.000
Randomized pattern 0.001 0.018 0.148 0.549 0.282 0.001 0.000
Theoretical estimate 0.001 0.018 0.148 0.550 0.282 0.001 0.000

The table provides a few examples of the empirical distribution of the minimal distance of a pattern to a random sequence of 1600 bp and contrasts it with the
theoretical estimate obtained as explained in the text. In the ‘randomized pattern’ case we randomly generated a pattern for each randomly generated
sequence. The entries in each line were summarized from 108 randomly generated 1600 bp sequences.

Table 2. The distribution function of the score of random motifs

Total distance

Pattern 80 82 84 86 88 90

aaaaaaaaaaaaaaa 46-10"15 1.1-10713 22.1012 3.9.1011 6.1-1010 83.107Y
aaaaaaacccccecc 1.4-10"1 2.7-10710 461079 6.6-1078 8.0-107 8.0-107°
gcacggtttcataat 12-107° 221078 3.5-1077 45.107° 46-1075 3.8-1074
Randomized pattern 12-107° 221078 341077 43-107° 45.107° 3.7-1074
Theoretical estimate 12-107° 22-1078 3.4-1077 43-107° 45.1073 37-107%
Monte Carlo 1.2-107° 22.108 3.5-1077 4.4.107° 45.1073 3.7-107%

The table provides a sample of empirical values of Fy(w), the distribution function of d(W): the total distance of the word W to a sample of twenty 1600 bp

sequences. In the first three rows W is specific, while the last four rows provide various estimates for the score of a generic W. The first five rows were
computed from the corresponding entries in Table 1 using d(W) = Z'f X;. Notice that a direct Monte Carlo estimate of F, ) is not easy to obtain as the
probabilities we are trying to estimate are as small as 5 - 10~19. Thus to obtain a more direct Monte Carlo estimate of F 4O than the one derived from Table
1 (row 5), we estimated Fd(Wj) for 104 randomly generated words W, and reported F, (W)(m) =y i Fd(W_i) / 10% in row 6. Each such Fd(W_,v) was

computed from the estimated distribution function of X; = d(W, S;) which in turn was evaluated using 4 - 10* random sequences S.

d(P) = Zi X;. Note, however, that unlike in the previous
discussion, the sequences now contain the P;s, and since
there is an overlap between those words and some of
the random words, the X; are no longer independent.
Nevertheless, typically N > [ and the effects of these
weak dependencies should not be of any significance. This
assertion is supported by empirical data as explained in

Figure 3.
With the same deﬁnitions for the VM model, con-
ditional on j = n;, Yi] is binomial b[l, p], while its

distribution conditional on j # #; is binomial b[l, 3/4].
Ignoring the overlap issue we find that P(X; > r) =~
[Fl1,3/41)]" " - Fyll, p)(r), which combined with
d(P) = ), X, yields an estimate of Fy(p) (see Figure 3
for an example).

PERFORMANCE ANALYSIS OF
MULTIPROFILER (FM MODEL)

In analyzing the complexity of MULTIPROFILER we
assume the input to the algorithm consists of a random

sample (generated according to the sample model) without
any motif implanted in it. This simplifies the cost analysis
and moreover, since the fraction of the time the algorithm
spends on the implanted motif itself is typically marginal,
it introduces only a negligible error into the computed
complexity.

The complexity of counting wordlets

Consider first the case where s, the syllable size, equals k,
the wordlet size. In other words, we only look for complete
wordlets, not parts of them. If the distance between the
word B and the reference word A is strictly less than k,
then B does not contain any wordlet that is disjoint (totally
different) from A. Thus, we can restrict our attention to
a shortened list of neighbors, namely to J ; = {B :
k < d(A, B) < «a} (instead of considering J; = {B :
d(A, B) < a}). Recall that « is typically set to 2k for the
FM model. ) )

Let Zi] = d(A, Bl.] ), then Bi] (the wojrd that starts
at position j of S;) contains exactly (Zk') k-wordlets
which are disjoint from A. Thus, the number of (disjoint)
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k-wordlets in the sequence S; that MULTIPROFILER

counts is ZBijEJf ()

. The expectation of this random

variable is
i o
EY () yegjcy =N =1+ > ()put. 3410,
J m=

where Py[n, p](m) is the binomial probability, (") p" (1 —
p)"~ ™, and 1y is the indicator function of the set X.
Since one can show that generating the lists J ; (A) for
all N — [ + 1 reference words can be done in O(N2n) time,
and since the counting itself takes O(1) per wordlet, the
expected complexity of the counting task is given by

o

(n— (N — 1+ 1)2[ 3 ()Pl 3/4]<m)} Lo(1)

m=k

+O(N?n).

In the case of our challenge problem (k = 4, o = 8) the
first term is dominant and it amounts to roughly 1.6 - 108.
Note that explicit costs should be calibrated against the
particular machine the algorithm is running on. For the
case s < k we redefine the neighbors’ listtobe J; = {B €

S; :s < d(A,B) < a}, and with Z/ = d(A, B/), we

note that Bl.j has (Z;j ) (s-)syllables that are disjoint from
(the corresponding syllables of) A. Each such syllable of

BI.J appears in (,lc:‘i,)3k_s wordlets that are disjoint from

A. Thus, Bij contributes 1 to the count of (Zstj )(,i:i)?)k_s
wordlets that are disjoint from A (note that the same
wordlet can receive up to (/;) contributions). The expected
overall complexity of the counting process in this case is
therefore:

o

”Nz[ 2 (D23 Pl 3/4](m)} -0(1)

m=s

This amounts to 4.8 - 10'% in the case of our challenge
problem when we choose s = 2. This is evidently much
higher than in the case s = k = 4. It is exactly this
difference in the ‘fixed costs’ that makes the case s = k
a better choice for our challenge problem when we move
from using one reference sequence to using n reference
sequences.

Computing the score of the modified words

Recall that we compute the score (total distance) of A,
the reference word A modified by the disjoint wordlet y,
provided C(y), the count of y, is B or higher. The cost
of scoring these putative patterns is therefore proportional
toE [ H{y : C(y) = B} ], the expected number of wordlets
whose count reaches 8. For the case s = k, which we

begin with, C(y) counts the number of sequences S; for
which there exists a word B € J; with y C B (i.e. B
contains the wordlet y).

Fix areference word A, and let y be a disjoint k—wordlet:
Then, the probability that y will be part of the word Bi]
and that Bij € J, i.e. of the event Ei'l ={yC Bij eJih
is

P(E)) = 47" Fyll — k. 3/41(« — k), (1)

where Fp[n, p](m) is the binomial distribution with
parameters [n, p] evaluated at m. Assuming that the events

Elj are ‘roughly independent’, we can estimate, p,, the
probability that y is present in J as

j|N71+1 2

pr=PUEH) ~ 1 [1 — P(EY)

Clearly, C(y) is a binomial b[n — 1, p,] random variable.
In particular, P(C(y) > B) = Fpln — 1, prl(B), and
since A has 3F (,l() disjoint wordlets of size k, and there
are N — [ + 1 different reference words,

E[l{y : C(y) = B}
= (N —1+1)-35Q) - Foln — 1, p,1(B). (3)

Now that we know the expected number of words A,
whose score will be computed, we need to determine
the ‘typical’ cost of actually computing d(A,)". A naive
implementation would require O (nNI), however we can
do significantly better than that. Setting ' o > 2k, d(A,)
can be estimated from U; 7; in only O (k| U; Jl|). There
is a price to be paid for this significant saving: @
this estimator of d(A,) might be strictly bigger than its
estimated target. However, it can easily be demonstrated
that if A, = P (which is the major case of concern)

then m = d(A,). In other words, the aforementioned
‘shortcut’ does not affect the reliability of the algorithm
for the FM model discussed here.

Since E[|U; Jil] = (n — D(N =1+ 1) - Fp[l, 3/4](cx)
we are tempted to say that the overall complexity of
computing the scores is of the order of:

[V -34() - Foln = 1. p 1B | - ThnN - Byl 3/41(@)].
“)
This is essentially correct though some explanation is in
order. The problem is that |{y : C(y) > B}| is positively
correlated with | U; J;|, so we cannot simply multiply
the two expectations. However, a large deviation argument
for example can show that the probability that | U; J;|

1 More generally, if ¥ is our adopted scoring function then we should
evaluate the cost of computing /(A ).

I'typically « = 2k is the only reasonable choice for this neighborhood
defining distance

1387



U.Keich and P.A.Pevzner

deviates outside of the interval ((1 —8)E [l Ui Ji |],
(1+¢e)E [| Ui Ji |]) decays exponentially fast (with nN),
so the estimate (4) is indeed valid to first order. We omit
the work spent on ranking the total distance of the patterns
which pass the threshold as this is typically much smaller
than computing the total distance itself.

In order to avoid a notational nightmare we study the
case s < k by way of example with s = 2 < k = 4. That
is, we seek to modify 4-wordlets based on conserved pairs.
For a word B € J ; let C(y, B) denote the number of
syllables of size s (pairs) of the wordlet y that are present
in B. For example, if m of y’s letters are preserved in
B, then C(y, B) = (). Let y be a disjoint wordlet of
the reference word A, and form = 1,2,3,4 let p., =
P(C(y,B) = (%) and B € J}). Then, form =2, 3, 4:

k—m
Pew = D Pilk.1/4,1/4,1/2)(m, j.k —m — j)
=0
Fpll —k,3/4)(a — (k = j)),
where P,[M. p1. pa. p3l(it. iz, ia) = 2= pi! p pf is
the trinomial probability function, and p,, = 1 — p¢, —
Pcy = Pey-

Recall that C(y, S;), the count of y in the sequence
Si, is defined as maxg. 7 C(y, B). For m = 1,2,3,4,

let ¢, = P(C(y, S;) = (%)). Then, using our standard
approximate independence assumption,

N—I+1

qm = [ipc,]N_Hl - [nil pc,] NS
Jj=1 j=1

Form =1,2,3,4,let X,, = |{i : C(y, S;) = (5)}]. Then,
the random vector (X1, X7, X3, X4) has a multinomial
distribution with parameters [n — 1; g1, ¢2, 93, q4], and
since C(y) = 6X4 + 3X3 + X, finding P(C(y) > B) is
now an elementary computation. The rest follows as in (3)
and (4) with Fp[n — 1, p,1(B) replaced by the appropriate
P(C(y) = B).

Motif detection rate

We next study the reliability, or the motif detection
rate starting again with the case s = k. We stress
that the results in this section are independent of the
particular scoring function used. In particular they hold for
the sequence-count scoring function (Buhler and Tompa,
2001).

Assume that the reference word A satisfies d(A, P) =
k. This will be the case, for example, if A coincides with
P1. Let y = y(A), be the correct modification of the
‘mutated’ wordlet of A (Keich and Pevzner, 2002). Let
pw be the probability that y is preserved in P; (i > 2):

pu="P(y C Pi e Jild(A, P) =k = (75)/(1).

Even if one or more of y’s positions are mutated in P;, y
can still be present in J; provided there exists a (random
word) B € J: which ‘preserves’ y. The probability of
such an event was essentially computed in (2) (see also
(1)). Thus,

pr=PC(y, Si\{PDh =1
« N-I
~1— [1 4K E [l — k, 3/4)(a — k)] .
Since the random words are essentially independent of the
P;s, the probability that y will be counted in S; is:
pwr =P(C(y, Si) = 1|ld(A, P) = k)
X pw + (1 = pw)pr.

In the case of our challenge problem, p,, &~ 0.24, p, =~
0.046 and p,,» =~ 0.276. The total number of sequences
in which y is counted, C(y), is therefore essentially a
binomial b[n — 1, py,] random variable, so

pd LP(C(y(A)) = Bld(A, P) = k)
~ Fpln — 1, pyrl(B).
The reason we say essentially binomial, is that there are
some marginal interactions between random words which
overlap the P;s. If N > [ these dependencies should be
negligible.

Let A7 be the jth reference word (assuming S; is
our reference sequence, Al = B'l’ ), and let n denote
the starting position of P;. Let E; = {d(A/, P) =
k,C(y (A7) > B}, ie. E is the event ‘the motif will be
picked up using the reference word A/’. Then,

P(E;|n =m) = P(E;|d(A’, P) = k,n = m)
-P(d(A7, P) = kln = m)
=P(C(y(AY)) > Bld(A7, P) = k)
P(d(A’, P) = kln =m)
B { Pyl1,3/41(k) j #m

(6)

1 j=m

As usual, we assume that given 7, d (A7, P) are essentially
independent random variables. Moreover, we assume that
conditional on d(A/, P) = k, C(y(A/)) are iid random
variables*™, and therefore the events E; are roughly
independent conditional on n = m. Thus, the probability
that using one reference sequence, the algorithm will
detect the pattern P is:

P(UjEj) =P(UjEj|n=m) ~ 1 —I_IjP(E5|n=m)

=1 —[1— Pyll,3/4106) - pal¥ ™" - (1 = pa),
(7)

**For a typical application this is a fairly harmless assumption.
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Table 3. Detection rates: theoretical estimates contrasted with simulations (s = 4)

B - the score computing threshold

0 1 2 3 4 5 6 7 8 9 10
Estimate (1) 1.000 0.998 0.985 0.940 0.839 0.677 0.478 0.288 0.146 0.061 0.021
Observed (1) 1.000 0.998 0.985 0.939 0.836 0.672 0.472 0.283 0.144 0.061 0.021
Estimate (20) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.957 0.721 0.356
Observed (20) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.927 0.676 0.334

The Table contrasts the theoretical estimates of MULTIPROFILER’s motif detection rate (as a function of 8) with empirically obtained data. The motif model
is our FM challenge problem and MULTIPROFILER is set with syllable size s = 4. The empirical distributions were obtained from 100 randomly generated
samples of the model. In parentheses are the numbers of reference sequences used.

Table 4. Detection rates: theoretical estimates contrasted with simulations (s = 2)

B - the score computing threshold

48 51 54 57 60 63 66 69 72 75 78
Estimate (1) 1.000 0.999 0.996 0.984 0.952 0.883 0.768 0.613 0.440 0.280 0.156
Observed (1) 1.000 0.999 0.996 0.984 0.950 0.880 0.763 0.608 0.435 0.275 0.152
Estimate (20) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.966
Observed (20) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.995 0.945

Same caption as for Table 3 only the syllable size MULTIPROFILER uses is s = 2.

where Ej is the complement of the event E;. Table 3
contrasts these estimates with empirical results obtained
by Monte Carlo methods.

We now return to the case s = 2 < k = 4 to find its
detection rate. Suppose that the reference word A satisfies
d(A, P) =k, and let y = y(A) (the correct modification
of A). Let

ky(l—k
(m) (k—m)
—
(&)
As before, the count of (the syllables of) y might increase
due to random words. The probabilities of these events
were essentially computed in (5), with the original g,

replaced with g,, = P(C(y, $;\{P;}) = (5)) and N—I+1
replaced by N — [. Thus,

Pun EP(Cly, P) = (7)) =

m m—1
Pury =PC.$) = (5) = Pu, D _qj +dm Y Pu;-
1 1

essentially a multinomial random vector with parameters
[n — 1 pwr(s Pwrys Pwrs> Pwry)s and since C(y) = 6Y4 +

3Y3 + Y, this yields an effective way to compute py 4
P(C(y) = Bld(A, P) = k). The rest of the computation
is exactly as in (6) and (7) (pg is different though). Table 4
contrasts these estimates with their Monte Carlo obtained
analogs.

Using multiple reference sequences

Our implementation of MULTIPROFILER using, say,
n, reference sequences is a naive one. Thus, for the
same B, the complexity increases by a factor of n,. The
exact detection rate has so far eluded the authors. We
do however have a ‘ballpark’ estimate for that which is
more of an empirical result. The difficulty in finding the
overall detection rate is that the events E; = {signal
was detected using the ith sequence as reference} are not
independent events and the correlations are not at all clear.
However, as extensive Monte Carlo tests indicate, using
the independence assumption, we can obtain somewhat
reasonable estimates of the detection rates we seek. Tables
4 and 3 provide the evidence, and Figure 1 in the
companion paper (Keich and Pevzner, 2002) demonstrates
in this context the advantage of the s = 4 variant over the
s = 2 variant due to the cheaper ‘fixed costs’.

MULTIPROFILER AND THE VM MODEL

Recall that in the VM model each instance of P is
generated by randomly mutating each position at a rate
p. Based on our experience with the FM model, we
chose to use n reference sequences and s = k for
the VM model. Our implementation is a naive one,
essentially enumerating over ‘reasonable’ values of k (k =
0,1,..., K). For each such value of k£ we have to set oy,
the analogue of « in the FM model, and S, the analogue
of B in the FM model. Note that in dealing with the FM
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model it was reasonable to set « = 2k, however this value
will not necessarily be optimal for the VM case. As of
writing this paper given the parameters of the problem
we pick the ‘right’ thresholds by a trial and error process
based on the analysis that follows.

In adapting MULTIPROFILER to the VM model we
had to adjust the way we estimate the score, d(A,), as

it is no longer the case that m = d(A,) when A,
coincides with P; (the section on computing the scone
of the modified words). Other than this comment, the
complexity of the VM variant is the same as that of the
FM variant subject to the obvious necessary summation
over k = 0,..., K. As for the detection rate, we next
evaluate that fairly accurately per one reference sequence.
Then, as in the FM model, assuming signal detections in
different reference sequences are independent, we obtain
cruder estimates of the overall detection rates.

Let A, be a reference word with d(A, P) = k, and let
y (A) be the correct modification of the ‘mutated’ wordlet
of A. Let p,, be the conditional probability that y(A)
will be counted in P;, i.e. that y(A) C P; and that
d(P;, A) < g, given that d(A, P) = k. Then,

pu, =P(C(y(A), Pi) = DId(A, P) =k)
= Pplk, p1(0) - Fpll — k, pl(ok — k).
Let p;, be the probability that y (A) will be detected in the
random word B € \72, given that d(A, P) = k. Then,
pr =P(C(y, B) =1|B # Pi,d(A, P) =k)
= 475 Fy[l — k, 3/4]1(ax — k).

Then,
d
puwr, = P(C(y, Si) = 1|d(A, P) = k)
~ 1= (1= p )N = puy).
Let A/ be the jth reference word (say, A/ = Blj ), and let
Ej = {3k € {0,...,K} : d(AJ, P) = k,C(y(A))) =
Bi}. Then, fork € {0, 1, ..., K},
P(Ej|d(A7, P) = k) = P(C(y(A))) = Bld(A, P) = k)
~ Fb[n -1, pwrk](ﬁk)-
Thus, with n denoting the starting position of Py,
K
P(Ejln =m) =Y P(E;|d(A’, P) =k.,n=m)
k=0
-P(d(A7, P) =kln=m)

K -
= Z Fpln —1, pwrk](ﬂk)
k=0

i) j=m
Poll,3/41k) j#m’

Assuming that given n the events E; are ‘roughly’
independent’, we have:

P(U;Ej) =P(U;Ejln=m) ~ 1 —TI; P(ES|n = m)

=1—(1=PE;In# )"

x (I =P(E;[j =mn).

When applied to the VM 1600 problem (20 sequences
of 1600 bp and p = 0.3), MULTIPROFILER has an
observed detection rate of 98%* at a running time of just
over an hour on a 500 MHz G4.
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