
Appears in SIGGRAPH 2006.

Direct-to-Indirect Transfer for Cinematic Relighting

Milo š Hǎsan∗

Cornell University
Fabio Pellacini

Dartmouth College
Kavita Bala

Cornell University

Figure 1: Two scenes rendered under different lighting configurations, relit at 10-20 fps with multiple bounces of indirect illumination. These
scenes include up to 2.1 million polygons, diffuse and glossy materials and procedural light shaders.

Abstract

This paper presents an interactive GPU-based system for cinematic
relighting with multiple-bounce indirect illumination from a fixed
view-point. We use a deep frame-buffer containing a set of view
samples, whose indirect illumination is recomputed from the direct
illumination on a large set of gather samples, distributed around the
scene. Thisdirect-to-indirect transferis a linear transform which is
particularly large, given the size of the view and gather sets. This
makes it hard to precompute, store and multiply with. We address
this problem by representing the transform as a set of sparse matri-
ces encoded in wavelet space. A hierarchical construction is used
to impose a wavelet basis on the unstructured gather cloud, and an
image-based approach is used to map the sparse matrix computa-
tions to the GPU. We precompute the transfer matrices using a hi-
erarchical algorithm and a variation of photon mapping in less than
three hours on one processor. We achieve high-quality indirect illu-
mination at 10-20 frames per second for complex scenes with over
2 million polygons, with diffuse and glossy materials, and arbitrary
direct lighting models (expressed using shaders). We compute per-
pixel indirect illumination without the need of irradiance caching
or other subsampling techniques.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;
Keywords: relighting, real-time rendering, indirect illumination,
precomputed radiance transfer

1 Introduction

Lighting design in high complexity scenes is often impeded by the
slow performance of rendering algorithms. This is especially true

∗e-mail:{mhasan,kb}@cs.cornell.edu, fabio@cs.darmouth.edu

in the case of cinematic lighting that is characterized by complex
environments, materials and lighting models.

Many relighting algorithms have been presented to increase speed
when recomputing images for static scenes. These algorithms make
different simplifications based on their target application. Cine-
matic quality relighting is usually performed on fixed views while
trying to maintain high geometric complexity and flexible choices
in materials and direct lighting models. While it has been shown
that indirect illumination is desirable in many cinematic lighting
tasks [Tabellion and Lamorlette 2004], current state-of-the-art cin-
ematic relighting algorithms [Pellacini et al. 2005] do not support
indirect illumination.

Figure 1 shows sample images generated with our algorithm. The
main features our system supports are:

• high geometric complexity,
• diffuse and glossy materials (including sharp gloss)
• procedural light shaders, including local effects,
• multiple indirect illumination bounces,
• high resolution (per-pixel) indirect illumination,
• relatively fast precomputation.

On the other hand, our main assumptions are fixed camera and fixed
scene.

We adopt a deep frame-buffer approach for relighting from a fixed
view-point. The key principle of our algorithm is that the indi-
rect illumination on the points in the deep frame-buffer, called view
samples, can be computed by a linear transformation from the direct
illumination on a large set of gather samples, carefully distributed
in the scene. We call thisdirect-to-indirect transfer.

Given the large size of the view and gather cloud, representing, pre-
computing and recomputing the light transfer between these clouds
requires various new techniques. We represent the direct-to-indirect
transfer as a set of sparse matrices in wavelet space, using an algo-
rithm that imposes a wavelet basis on the unstructured gather cloud.
These matrices are then encoded using a sparse matrix representa-
tion particularly efficient for GPUs, which is tailored for our spe-
cific kind of sparsity. We compute the transfer matrices approx-
imately using a hierarchical algorithm and a variation of photon
mapping. The precomputation times are in the order of 3 hours for
our largest scenes.

We tested our algorithm on various scenes, with up to 2.1 million
polygons, diffuse and glossy materials (including sharp gloss), pro-
cedural direct lighting models expressed using arbitrary shaders,

1

Appears in SIGGRAPH 2006.

and four bounces of indirect illumination. In all these cases, our al-
gorithm achieves high-quality rendering at roughly 10 to 20 frames
per second. Note that we compute detailed per-pixel indirect illu-
mination at a 640× 480 resolution without any use of irradiance
caching or other subsampling techniques.

2 Related Work

Relighting engines. Previous work on relighting engines has
mostly dealt with efficient recomputation of direct illumination by
caching visibility and partial shading in deep frame-buffer data
structures. This was pioneered in the G-buffer [Saito and Takahashi
1990] and parameterized ray tracing [Séquin and Smyrl 1989], and
extended in ray trees [Briére and Poulin 1996] to support small vis-
ibility changes. Advances in graphics hardware have allowed new
relighting systems to be built by using GPUs to evaluate direct il-
lumination; some were deployed to major productions [Gershbein
and Hanrahan 2000; Pellacini et al. 2005]. Our work shares the
same approach of caching visibility and shading information in a
deep frame-buffer and evaluating direct illumination on GPUs as in
Lpics [Pellacini et al. 2005]. Simultaneously, Tabellion [Tabellion
and Lamorlette 2004] described the importance of indirect illumi-
nation for cinematic rendering in an off-line context. Our main con-
tribution is to augment these systems with multiple-bounce indirect
illumination at interactive rates.

Precomputed light transfer. Recently, much work has been ded-
icated to relighting scenes under distant illumination [Sloan et al.
2002; Kautz et al. 2002; Ng et al. 2003; Ng et al. 2004; Liu et al.
2004; Wang et al. 2004]. These algorithms precompute and com-
press the transport between distant lights and a set of scene samples,
thus making it possible to recompute the illumination for changes
in lighting. The main limitation of these approaches is that they
only support distant lights. Some could be extended to “mid-range”
lighting by taking more samples and/or computing gradients [Sloan
et al. 2002; Annen et al. 2004]. However, this approximation does
not fully address local lighting, where the lights can be positioned
inside a complex scene. Our approach builds on these approaches
(especially [Ng et al. 2003]), but rather than using distant lights,
we use a set of gather samples distributed in the scene and recom-
pute direct illumination on these samples; this allows for arbitrary
local lighting models. Currently our system does not support envi-
ronment mapping; we discuss a way of removing this limitation in
Section 6.

[Kristensen et al. 2005] precompute and compress indirect illumi-
nation for a fixed set of local lights. When a light is moved, the
indirect solutions from the closest lights are interpolated to relight
the environment. This system can deliver high frame-rates with a
moving camera. The drawbacks of this approach are the large pre-
computation times (probably several days on a single processor),
the limitation to omni-directional point lights, and lower accuracy
due to strong compression. Our approach is complementary to this
system because we focus on supporting flexible direct lighting mod-
els and high geometric complexity, though at the price of a fixed
camera assumption.

Global illumination systems. Some of the standard choices for
rendering global illumination are irradiance caching [Ward et al.
1988] and photon mapping [Jensen 1996]. Lightcuts [Walter et al.
2005] renders complex illumination by renders complex illumina-
tion by converting the problem into many point lights and using
a hierarchical clustering of lights; our approach also gathers light
from point samples and uses a hierarchical clustering. [Wald et al.
2002] present a system based on a fast CPU ray-tracer, which sup-
ports dynamic global illumination including light movement. How-
ever, the system runs on a cluster of many processors to achieve

Symbol Description Data Type Size
nv Number of view samples - -
ng Number of gather samples - -
vi Indirect on view samples RGB nv
gd Direct on gather samples RGB ng
kd Diffuse coefficients RGB nv
kg Glossy coefficients RGB nv
T Full transfer matrix RGB nv×ng
F Final gather matrix RGB nv×ng
Fd Diffuse final gather matrix IR nv×ng
Fg Glossy final gather matrix IR nv×ng
M Multiple bounce matrix RGB ng×ng
W Wavelet projection matrix IR ng×ng
I Identity matrix IR ng×ng

Table 1: Summary of the notation used in the paper. For matrices
and vectors, we also denote the type of each element and the dimen-
sions. In the text, we use aw superscript to denote a matrix (vector)
that has been projected into wavelets.

interactive performance. Several systems cache sparse global illu-
mination samples, allowing for interactive camera and object move-
ment [Walter et al. 1999; Walter et al. 2002; Ward and Simmons
1999; Bala et al. 1999b; Bala et al. 1999a; Dmitriev et al. 2002;
Tole et al. 2002; Bala et al. 2003; Gautron et al. 2005; Dayal et al.
2005; Gautron et al. 2005]. However, light movement in these sys-
tems is not easily handled, since it invalidates most of the cached
samples.

Hierarchical/clustering techniques. Our problem of transport-
ing light from gather samples to view samples could theoretically
be solved by techniques based on hierarchical N-body algorithms.
There is a large body of research on these techniques, starting with
[Hanrahan et al. 1991]. While most of these systems do not target
relighting, they could be adapted by precomputing a set of cluster-
to-cluster links and reusing these when lighting changes. However,
we found that our solution based on Haar wavelets gives higher per-
formance, because it allows for a more efficient GPU implementa-
tion with on-the-fly coefficient culling, and does not require one
iteration per indirect bounce. [Drettakis and Sillion 1997] present
an interesting algorithm for interactive object and light movement
in a radiosity context; however, it probably would not scale to the
demands of cinematic relighting. Wavelet radiosity ([Gortler et al.
1993] and follow-up papers) is another related technique; however,
most of this work is concerned with investigating the feasibility of
higher-order wavelets and not with the performance and complexity
that we focus on.

3 System overview

This section presents the details of the relighting algorithm we are
proposing, illustrated in Figure 2. A summary of the notation used
throughout the paper can be found in Table 1.

3.1 Assumptions

Fixed camera. We adopt a fixed-camera deep frame-buffer ap-
proach for relighting, typical of cinematic relighting algorithms.
This has the advantage of better scalability with geometric com-
plexity and allows us to support arbitrary diffuse and glossy mate-
rials in the indirect computation.

Fast direct lighting. Our algorithm assumes that computing di-
rect illumination from point lights on sampled geometry is fast us-
ing well-known techniques (pixel shaders and shadow mapping),

2

Appears in SIGGRAPH 2006.

Wavelet
Projection

Direct on
View Samples

Direct on
Gather Samples

Direct+Indirect on
Gather Samples

Diffuse Illumination
on View Samples

Indirect on
View Samples

Direct+Indirect on
View Samples

Glossy Illumination
on View Samples

Multi-bounce
Matrix

 Glossy Final
Gather Matrix

Diffuse Final
Gather Matrix

Gather Direct
in Wavelet Space

Gather Direct+Ind.
in Wavelet Space

Wavelet
Projection

* k
d

* k
g

+

+

Figure 2: Overview of our relighting algorithm.

an assumption verified in [Pellacini et al. 2005]. Therefore, our fo-
cus is on recomputing the indirect illumination when a light moves.
Moreover, other techniques apart from point lights could be used
to compute the direct illumination, for example existing PRT tech-
niques. In section 6 we outline a solution for including environment
lighting.

Light paths. Finally, we compute the indirect illumination gener-
ated from thediffuse direct radiance; this obviously restricts the set
of indirect paths that can be handled. Most importantly we do not
capture caustic or caustic-dependent light paths. We believe those
paths could be handled by a separate algorithm; however, this re-
mains for future work.

3.2 Direct-to-Indirect Transfer Formulation

We introduce two sets of points: a setV of view samples, visible
from the view-point, stored in the deep frame-buffer, and a setG of
gather samplesdistributed around the scene. When a light moves,
the direct illumination is recomputed on the view and gather sam-
ples using well-established techniques on the GPU. It is important
to note that our algorithm adopts a point-based approach, rather
than a patch-based one like radiosity. This gives better scalability,
since the number of samples can be much lower than the number of
patches in areas of low importance.

Our problem is reduced to recomputing the vectorvi of indirect
radiances on the view samplesV. Under the assumption of fixed
view-point and light paths given above, this can be done by trans-
ferring the diffuse direct radiance on the gather samples through a
linear transformT to the view samples. We can write this as:

vi = T ·gd (1)

Our goal of high-fidelity, high-resolution indirect illumination re-
quires large view and gather clouds, typicallynv = 640× 480 =
300k andng = 64k. For such resolutions, the matrixT is very large
and difficult to precompute, store and multiply with. Thus, most
of the paper focuses on achieving three goals: first, we want to
find an efficient way of compressing the matrix while maintaining
high quality indirect illumination; second, we want to be able to
efficiently evaluate the transport expressed in the new formulation;
third, we want to keep the precomputation time reasonably short.

To make the storage and multiplication tractable, we project the
lighting (i.e., gd) and the rows of the matrixT into 2D Haar
wavelets. and cull many of the less important wavelet coefficients to
gain sparsity. A similar idea was introduced in [Ng et al. 2003] for

environment map relighting; the main difference in our approach is
that we impose the wavelet basis on an unstructured gather cloud.

The non-trivial problem of precomputing the transfer in reason-
able time is addressed by using a two-pass approach, splitting the
transfer into a lower-precision multi-bounce matrixM and a higher-
precision final gather matrixF, and using wavelets to gain sparsity
in both. In this formulation, we can write

vi = F · (M + I) ·gd (2)

A two-pass idea is common to many practical global illumination
algorithms (photon mapping [Jensen 1996], lightcuts [Walter et al.
2005], irradiance decomposition [Arikan et al. 2005]) and used in
the context of precomputed transfer from an environment map to
subsurface scattering by [Wang et al. 2005].

Algorithm: Figure 2 gives an overview of our approach. When
a light is moved, the direct illumination on gather samplesG is
recomputed using the GPU and projected into the wavelet basis.
The multi-bounce transfer matrixMw (transformed into wavelets
and compressed) transfers this into the indirect illumination on the
gather samples. Another wavelet projection is done, and the high-
resolution final gather matrixFw (also transformed into wavelets
and compressed) is finally applied to transfer the illumination (both
direct and indirect) from the gather cloud to the view cloud. For
better compression, the final gather is actually split into two com-
ponents corresponding to diffuse and glossy transfer. The indirect
illumination is then reconstructed on the view samples by multi-
plying with the diffuse and glossy coefficient of each sample and
combined with the direct illumination on view samples to produce
the final image.

3.3 Wavelet Formulation

One-pass formulation: A general matrix-vector multiplication
can be expressed in wavelet space by projecting each row of the
matrix together with the vector. Formally we can write:

vi = T ·gd = (T ·WT) · (W ·gd) = Tw ·gw
d (3)

To obtain sparsity, the full transport matrix can be approximated
by culling the less important coefficients inTw. This formulation
makes relighting tractable by lowering the data storage and reduc-
ing computation time. Culling less important coefficients can also
be applied to the lighting vector.

Two-pass formulation: We chose to separate the transfer into a
multi-bounce pass and a final gather pass. We further split the final

3

Appears in SIGGRAPH 2006.

gather into diffuse and glossy components. This allows us to reduce
storage requirements, since scalar values (instead of RGB) can now
be used to represent the final gather matrix (which is the dominant
component in terms of storage cost). In other words, the elements
of F are RGB triples, but after separating out the diffuse/glossy
coefficients, the elements of the matrices become single real values.
We can write:

vi = vd
i +vg

i (4)

vd
i = kd ∗ (Fd · (M + I) ·gd) (5)

vg
i = kg ∗ (Fg · (M + I) ·gd) (6)

wherekd andkg are the diffuse and glossy coefficients, * denotes
an element-wise multiplication andFd andFg are the diffuse and
glossy gather matrices with scalar elements.

All matrix data is projected into wavelets and compressed by
culling the least important coefficients; sparse matrix multiplica-
tions are performed after projecting the required vector into wavelet
space. Thus our equations become:

vd
i = kd ∗ (Fw

d ·W · (Mw ·W + I) ·gd) (7)

vg
i = kg ∗ (Fw

g ·W · (Mw ·W + I) ·gd) (8)

3.4 The Structure of the Gather Cloud

One major issue is how to map the point samples of the gather
cloud into wavelets. In environment map relighting systems, the
cube-map faces are natural candidates for 2D wavelet projection.
However, our gather cloudG is, as defined, an unstructured set of
point samples, with no obvious way to impose a 2D Haar wavelet
basis onto it. (The problem does not change substantially by con-
sidering 1D or 3D wavelets; we settled for 2D mostly because it is
amenable to GPU implementation.)

Since we aim at storing the gather data as power-of-2 textures in our
system, the number of gather samples,ng, is always a power of 4.
The problem is to flatten the 4n samples into a 2n×2n array. Let’s
define ablock of the array to be a sub-region of the array of size
2k×2k, starting at coordinates that are multiples of 2k (0≤ k≤ n).
The flattening should be such that blocks of the array contain rea-
sonably similar samples. This makes the Haar wavelet compression
efficient.

We solve this problem by forming acluster hierarchyon top of the
gather cloud. Each cluster is either a leaf with only one sample, or
it has four child clusters of equal size. The top cluster contains all
ng samples. The hierarchy is thus a perfectly balanced quad-tree.
The flattening is implicit in the hierarchy construction, and we can
think of the gather array and the gather hierarchy as equivalent. In
Section 4.2, we describe how the hierarchy is constructed.

3.5 Sparse Matrix-Vector Multiplication

Recall that at relighting time, we recompute the indirect compo-
nent as a sparse matrix-vector multiplication. In the following, we
describe the data arrangement that allows for an efficient GPU im-
plementation of this multiplication.

We introduce animage-basedapproach to computing this multipli-
cation. As noted in [Ng et al. 2003] and other environment-map-
based relighting work, the non-zero elements ingw

d essentially give
the coefficients of “wavelet lights” that approximate the original
(unprojected) lighting vectorgd. Our wavelet lights span the sur-
faces of the scene, instead of corresponding to environment map
blocks. The columns of the matrixTw can be viewed as images
rendered with the corresponding wavelet light having a coefficient

of 1 and all other wavelet lights being off. The multiplication is
performed by accumulating each of these images scaled by the in-
tensity of the corresponding wavelet light. Section 4.4 will describe
how to encode and perform this sparse multiplication efficiently on
a GPU.

Another approach to matrix-vector multiplication is the row-based
one, where elements of the output vector are computed one-by-one
as dot products of matrix rows with the vector. One major benefit
of the image-based formulation is that it can exploit sparsity also
in the vector, not just the matrix: we can skip the accumulation of
images that correspond to wavelet lights of negligible intensity.

Transport-weighted on-the-fly wavelet culling: We cull wavelet
lights that have a small contribution to the final image. In partic-
ular, we ignore wavelet lights where the norm of the intensity of
the wavelet light multiplied by the norm of the corresponding im-
age is less thanε. This “on-the-fly” wavelet culling (also called
“non-linear approximation” in other relighting work) gives a fur-
ther speed-up when small errors are acceptable in the final image.
Note that this type of culling is different from the one used when
precomputing transfer matrices (see section 4.3).

3.6 Multi-sample Antialiasing

Out system performs view antialiasing by supersampling, comput-
ing direct light at higher resolution and then downsampling. We
supersample by a factor of 2 and use a box filter to downsample (al-
beit other filtering/sampling options are easily integrated). Indirect
illumination is always computed per-pixel. To combine direct and
indirect, we upsample the indirect to the direct’s resolution, while
trying to avoid light leaking across edges. We do this by assigning
the closest neighbor (based on normal and position) in a 3x3 region
around the direct sample. This technique is inspired by the edge-
preserving anti-aliasing used in [Bala et al. 2003], except we try to
infer discontinuities from positions and normals instead of finding
them explicitly.

3.7 Comparison with Monte Carlo

The image quality in our algorithm is affected by several factors:
the number of gather samples, their distribution, approximations
made when computing the matrices, etc. However, we found that
the most important factor is the number of preserved wavelet coef-
ficients. Figure 3 shows that for the numbers of coefficients used
in our results (100 for final gather and 40 for multi-bounce) we get
a good visual match to the reference Monte Carlo solution. If we
treat these images as vectors of 640× 480× 3 elements between 0
and 1, the relative error (measured as the norm of the difference di-
vided by the norm of the reference) is 13.6%. However, most of the
difference is on the edges, since our algorithm and the path tracer
have different anti-aliasing algorithms. If we eliminate these pixels
(which account for less than 5% of the image) the relative error is
5.4%.

4 Data Precomputation

Here we describe how we pick the gather samples, how the clus-
ter hierarchy is constructed on top of them, and how the transfer
matrices are precomputed.

4.1 Sampling the Gather Cloud

Choosing gather samples is crucial for the quality of our algorithm.
We use a divide-and-conquer uniform-sampling algorithm for small
box-like scenes, and extend it to importance sampling for larger

4

Appears in SIGGRAPH 2006.

(a) multi-bounce: 8 coeffs (b) multi-bounce: 40 coeffs (c) pure Monte Carlo
final gather: 20 coeffs final gather: 100 coeffs (1 hour on 32 processors)

Figure 3: A scene lit by a sharp spotlight on the floor. The most important factor affecting quality is the number of preserved wavelet
coefficients. Our results use the number of coefficients shown in (b), which is enough to get a close visual match with the reference image
without sacrificing interactive performance.

environments. Thus we take advantage of the fact that given a fixed
view-point there are large differences in how much different parts
of the scene contribute to the final indirect lighting. The concept of
importance was first introduced in [Smits et al. 1992].

Uniform sampling: Assume we are given a set of triangles, and a
budget ofng desired samples. We want a uniform sampling, so that
the expected number of samples on a triangle is proportional to its
area. We split the set of triangles into two subsets of roughly equal
total area by an axis-aligned plane, split our budget accordingly,
and continue recursively.

Eventually we reach one of two cases. Either we only have one tri-
angle left to sample, in which case we sample it uniformly. Or, we
might be left with a budget of one sample; in that case we pick a
triangle randomly (area-weighted) and pick the sample within that
triangle. For each sample, we also store the normal, the area repre-
sented by the sample and the diffuse albedo.

Importance sampling: The basic idea is to compute the impor-
tance of each triangle and make the expected number of samples
of a triangle proportional to the product of its area and importance,
rather than just area. Note that we subdivide large triangles, so that
the importance evaluation is not too coarse for them.

To compute the triangle importances, we use a variation of photon
mapping, where particles are shot from theview samples. A number
of particles with unit energy are shot from every view sample, and
bounced around the scene like in standard photon mapping. To
estimate the importance of a given triangle, a density estimation is
done at a random point of the triangle. We could alternatively just
increase the importance of every triangle that is hit by a particle,
but that tends to miss small triangles completely.

4.2 Gather Hierarchy Construction

As noted in Section 3.4, we build a perfectly balanced quad-tree
of clusters on top of the gather samples. This tree has two func-
tions. First, it defines the flattening of the samples into a gather im-
age amenable for wavelet compression. Second, it is used to speed
up the final gather matrix computation, by allowing us to consider
links to clusters of gather samples instead of linking to every single
gather sample.

We build the tree top-down, by splitting the set of samples into
two equal subsets and continuing recursively. Splitting should be
done so that samples in any one of the two subsets are as similar as
possible.

To split a set of samples, we use an algorithm that iteratively im-

proves the split. The well-known k-means algorithm would repeat
two steps: assign each sample to the partition with the closer cen-
troid, and recompute the centroids. However, this might not split
the set equally. Therefore, we use a simple modification: we com-
pute for each sample the valued(s,c1)−d(s,c2), whered(s,ci) is
the squared distance from the samples to centroidci . This way, a
negative (positive) value implies closeness toc1 (c2). We sort the
samples by this value and use the first and second half of this array
as the new partitioning. We iterate until convergence.

The distance function used above depends both on positions and
normals:

d(s,c) = K2‖ps− pc‖2 +d2‖ns−nc‖2 (9)

whered is the length of the scene bounding-box diagonal. We
found good values ofK to be about 20 to 40. Giving very low
weight to either positions or normals leads to sub-optimal hierar-
chies, with higher error for the same number of preserved wavelet
coefficients.

4.3 Computing the Matrices

Our high-level approach for precomputing each matrix is to com-
pute a row of the dense (unprojected) matrix approximately, project
it into wavelet space, and keep the desired number of the most im-
portant coefficients. For the final gather, a hierarchical algorithm is
used; for the multi-bounce matrix, we use a photon mapping varia-
tion.

Area-weighted wavelet culling. Instead of just keeping coeffi-
cients with highest values, we first weight them by the number
of non-zeros of the corresponding wavelet basis function, i.e. its
“area”. This gives much better results, since the highest-frequency
coefficients (corresponding to the smallest wavelet lights) tend to
also have the highest error.

The diffuse final gather matrix: The elements of the diffuse fi-
nal gather matrixFd are one-bounce diffuse contributions of ev-
ery gather sample to every view sample. These are easy to define
analytically: they depend on the visibility between the view and
the gather sample, their normals, their distance, and the area rep-
resented by the gather sample. This is similar to form factors in
radiosity, except we use point samples instead of patches.

A simple brute-force approach to compute the matrixFw
d would

be to evaluate each row ofFd completely, and wavelet-project the
row. Instead, we use a hierarchical approach similar to N-body
algorithms: if a cluster of gather samples is far enough and/or small
enough, we can compute a link to a random sample in the cluster

5

Appears in SIGGRAPH 2006.

and assume all other links to the rest of the cluster’s samples are the
same.

To decide whether a cluster should be subdivided, we use an ap-
proximate solid angle heuristic: we check ifs2/d2 is greater than a
user-defined threshold, wheres is the cluster bounding-box diago-
nal andd is the distance to the cluster center. We also cull clusters
that are completely behind the view sample.

Elements ofFd are proportional to 1/r2, wherer is the distance
between the corresponding view-gather sample pair. This creates
numerical problems ifr is small (especially at corners). We sim-
ply clamp the values ofFd to be at most 0.1. This leads to some
darkening in the corners; however, in most cases this is not too dis-
tracting. Other systems based on point samples have the same prob-
lem; for further discussion of this issue see [Walter et al. 2005]. (In
patch-based radiosity, analytic form factors can be used to solve this
problem.)

The glossy final gather matrix: Our approach to computeFg
(and Fw

g) is analogous to the diffuse case. There are two differ-
ences. First, the elements will have the value of the glossy BRDF
factored in. Second, we can update the solid angle heuristic to force
more subdivision around the peak of the lobe. (Effectively, the sub-
division threshold will depend on the value of the lobe. Similar
adaptive subdivision is done in [Walter et al. 2005]).

This technique works well for both sharp and wide lobes, and it is
reasonably fast. However, it cannot handle the full range of glossy
light paths, because it misses inter-reflections between glossy sur-
faces. This limitation could be fixed by including inFg multiple
glossy bounces; however, it is not obvious how to precompute these
bounces efficiently, so it remains as an open research problem.

The multiple-bounce matrix: Since the output of the multiple-
bounce pass is not viewed directly, we assume it can be computed
and stored with lower precision. We use a variation of photon map-
ping to compute approximate rows of the matrixM . To getMw, we
project the rows and keep important elements, as before.

We cannot shoot photons from light sources, since we do not know
their position. Therefore, we shoot the photons from the gather
samples themselves. Each gather sample is treated as a Lambertian
emitter (note that we know the area that the sample represents).
Each photon is deposited and bounced at each surface hit point, as
in standard photon mapping. Russian-roulette can be used to get a
theoretically infinite number of bounces; however, in our results we
limit the photon path length to 3.

Additionally, we store with each photon the ID of the gather sam-
ple it originated from. After the shooting and depositing pass is fin-
ished, aK-nearest-photon query is done at every gather sample. For
each samplegi , this set of photons gives us a sparse (non-wavelet)
approximation of thei-th row ofM .

Note thatK should be much higher than the number of preserved
wavelet coefficients; otherwise the matrix is noisy and hard to pack
for GPU multiplication (see below). In our results, we use one mil-
lion photons total, 2000 photons in the nearest photon query, and
40 wavelet coefficients.

4.4 Packing the Matrix Data

We treat each sparse matrix as a set of sparse images corresponding
to wavelet lights, as explained in Section 3.5. Here we show how
we pack these images for efficient GPU evaluation.

The key is to realize that the sparsity of the images is of a special
kind. In particular, the non-zero elements tend to be quite coherent
and localized (especially true for smaller wavelet lights). Because
of the nature of wavelet lights, the only surfaces with a significant
contribution will be those that are quite close to the light, or do not

Diffuse and Glossy
Final Gather Coefficients

for each Wavelet Light

Boxes for
Image-Based Multiply Texture Atlases (smaller scale)

Figure 4: Data layout used to efficiently encode the sparse image-
based multiplication.

see the whole wavelet light due to occlusion.

We exploit this structure by cutting the non-zero parts of an image
into one or more rectangular blocks, trying to minimize waste. We
start by fitting the tightest rectangle around the non-zero elements.
If the waste (i.e., the percentage of zeros in the rectangle) is higher
than a threshold, we find the best split into 2 rectangles (i.e., the
one with lowest waste), and possibly iterate this process recursively.
The waste can be pushed arbitrarily low at the expense of more
splits.

The output of this procedure is a large number of smallblocks(pos-
sibly tens of thousands). The total waste of this algorithm is about
50% with our current settings, but can be pushed arbitrarily low
at the expense of a larger number of smaller blocks. We pack the
blocks into a few 4k× 4k texture atlases to avoid having to manage
a very large number of textures. This is a 2D bin-packing problem,
which is NP-complete in theory; however, simple greedy heuristics
work well. We represent the current empty space in the texture atlas
as a linked list of rectangles. We sort the blocks by height, fit each
block to the first available rectangle in the list, and update the list.
The waste produced in this step is generally less than about 3%.

5 Mapping Computation to GPUs

One goal of our algorithm design was to achieve high-speed re-
lighting completelyon the GPU. Porting the transport algorithms to
GPU gave us a considerable speed-up; we have measured factors of
3 to 9.

Our implementation computes direct illumination on view and
gather samples for each light change. The resulting gather direct,
gd, is then passed through a sequence of transforms and finally re-
constructed in an indirect image. Direct and indirect are then accu-
mulated and resampled for antialiasing. Our system supports mul-
tiple lights by caching the results of all lights but the one that is
currently moving; therefore, having more lights does not decrease
performance.

One of the challenges we found in mapping to the GPU was making
sure our algorithm kept all data in video memory. For this reason,
we quantize normals and diffuse coefficients to 8 bits-per-channel
(bpc), while keeping position and specularity information in 16 bpc.
All transform data, which constitutes the majority of the dataset
size, is also quantized to 8 bits with additional scaling factors stored
for each block. Buffers containing partial results are stored in 16
bpc. We have found no artifacts due to quantization in our tests.

Direct illumination on the view and gather samples is evaluated by
first rendering shadow maps for the current light and then shading
images containing position, normals, diffuse and specular coeffi-

6

Appears in SIGGRAPH 2006.

cients for each sample; arbitrary direct illumination models are ex-
pressed using light shaders written in a high level shading language.
In this respect our algorithm is similar to [Pellacini et al. 2005].
Soft-shadow lights are evaluated by performing multiple passes, re-
computing shadow maps and shading images in each pass, and ac-
cumulating the results. Shadows for omni lights use six shadow
maps arranged in a cube-map. Shadow map computation is accel-
erated by per-object culling.

Image-based transport. Our algorithm computes light transport
as a sequence of 2D Haar wavelet transforms and sparse matrix
multiplications. Wavelet transforms are implemented using a multi-
pass technique where at each pass the image is shrunk by a factor
of 2 and a shader computes the coefficients corresponding to that
level.

Most of the execution time of our algorithm is spent in performing
sparse matrix multiplications. The image-based formulation intro-
duced previously allows us to perform this multiplication very effi-
ciently on the GPU. We draw one camera-aligned quad for each im-
age block in the sparse matrix. Each quad is shaded by multiplying
the matrix elements, corresponding to the current block and stored
in the atlases, by the wavelet light intensity, which is the same for
each element in the block. Image blocks (and thus the correspond-
ing quads) are drawn sorted by the texture atlas they access, to avoid
state changes and shader binding inefficiencies.

Finally, we have implemented wavelet light culling in a vertex
shader. Block norms are computed as a preprocess and sent to the
vertex shader together with the texture containing the wavelet light
intensities. The vertex shader can then send the quad out of the
view if it should be culled. This final piece allows us to perform the
entire algorithm on the GPU and take advantage of wavelet light
culling without any CPU intervention.

Comparison with row-based multiplication. We have also com-
pared the image-based method with a row-based method similar to
[Bolz et al. 2003]. In this case, for each output pixel, a list stores
indices to wavelet lights and their associated coefficients (either one
or three channels).

One advantage of the row-based algorithm is that it can be ap-
plied to almost any kind of sparsity in the matrix, while the image-
based method requires a very specific kind of sparsity. However,
this method has some disadvantages. First, on-the-fly culling is
not possible. Second, the data in this format cannot be quantized
nor packed as well as in the image-based format, which means that
much more GPU memory is needed to achieve the same quality.
Third, the row-based algorithm requires at least one dependent tex-
ture read, decreasing performance further. The image-based algo-
rithm does not use dependent texture reads; RGB weights require
no additional read. A comparison of the two methods for the case
of single channel weights (best for row-based) gave us about 50%
slowdown (compared to non-culled image-based code).

Given its high performance, together with the advantage of on-the-
fly culling and better packing, we believe the image-based formu-
lation is the best alternative for this problem domain.

6 Results

We have tested our algorithm on a 3.2 GHz P4 with 2 GB of RAM
and an NVidia 7800 graphics accelerator with 256 MB of RAM.
Note that we use only one processor for data precomputation. We
show four scenes. Table 2 shows various statistics for our algorithm
running at a video resolution of 640× 480 with per-pixel indirect
illumination and 2× 2 supersampled direct illumination. Images
of each scene, lit by omni lights and spot lights, are presented in
Figure 5; some light configurations show large areas illuminated

Sponza Still Hair Temple
Triangle count 66k 107k 320k 2124k
Final gather preprocess 1.2 hrs 1.3 hrs 2.6 hrs 2.2 hrs
Avg. visibility rays 4164 3863 5159 6754
Final gather size 72 MB 80 MB 100 MB 58 MB
Multi-bounce size 23 MB 19 MB 10 MB 26 MB
Final gather coeffs 100 100 100 100
Multi-bounce coeffs 40 40 20 40
Spot light
FPS range (cull on) 21.3 - 24.9 13.7 - 18.7 18.0 - 24.7 13.8 - 25.8
FPS range (cull off) 13.1 - 15.5 10.9 - 13.0 9.5 - 10.7 11.3 - 13.2
Shadow map rendering 1.4 ms 2.7 ms 3.7ms 4.9 ms
Shading view & gather 3.6 ms 3.5 ms 3.9 ms 3.5 ms
Transform (cull on) 32.9 ms 46.1 ms 27 ms 44.2 ms
Transform (cull off) 62.8 ms 76.4 ms 82.8 ms 56.5 ms
Final filtering 4.7 ms 4.6ms 5 ms 4.9 ms
Omni light
FPS range (cull on) 13.7 - 18.2 11.4 - 13.5 9.7 - 11.5 8.5 - 9.1
FPS range (cull off) 11.3 - 12.2 9.7 - 10.5 8.6 - 10.0 6.7 - 7.5
Shadow map rendering 7.3 ms 11 ms 15.2 ms 47.4 ms
Shading view & gather 10 ms 8.3 ms 12 ms 11.6 ms
Transform (cull on) 44.8 ms 58.2 ms 67.4 ms 47.1 ms
Transform (cull off) 62.7 ms 75.8 ms 83.4 ms 64.2 ms
Final filtering 4.7 ms 4.8 ms 5 ms 5.3 ms

Table 2: Statistics of tested scenes.

exclusively by indirect illumination.

The scenes where chosen to show different degrees of geometric
and material complexity. We have chosen two architectural en-
vironments, Sponza and temple, that display spatially large envi-
ronments and a geometric complexity of 2.1M polygons (temple).
In addition, we tested our algorithm on a hair-ball scene that dis-
plays all its highly detailed geometry directly in the view, and fi-
nally a still-life scene with smooth and sharp glossy objects, de-
tailed bump-maps and plant leaves.

Run-time performance: In all these cases, we were able to com-
pute accurate indirect illumination at interactive rates of roughly
7–15 frames per second without on-the-fly wavelet culling, and
roughly 9–25 frames per second with culling, with almost no per-
ceptible difference. These frame-rates show that our system can
handle scenes with high polygon counts, whether this geometric
complexity is spread over a large volume, such as in the temple
scene, or concentrated in a small one, like in the hair-ball scene.

As seen in Table 2, the run-time of the GPU relighting is domi-
nated by the transfer and occasionally by the shadow map render-
ing. Wavelet culling can be used to increase transfer performance
with no objectionable artifacts. Furthermore, if slight artifacts are
acceptable, additional performance can be gained by more aggres-
sive light culling, providing a speed-quality trade-off. Shadow map
rendering was only accelerated using per-object culling; we believe
further optimizations, including LODs, would speed up this com-
ponent considerably with no loss of visual quality.

Data size: For each of our scenes, we have chosen a 64k gather
cloud, a number we picked as the smallest one that gave us high
quality results. (Note that our choices are limited by the power-of-4
requirement.) The corresponding matrix data sets were culled to
fit in GPU memory after quantization to roughly 100 MB of data
for the two sparse matrices. This is enough for a high-quality solu-
tion; future GPUs with more memory will allow for higher image
resolutions.

Precomputation time: Our system requires modest precomputa-
tion times, in the order of a maximum of 3 hours on one proces-
sor. This time is dominated by the final gather matrix computation,
which took at most 2.6 hours. Note that these timings are linear
in the number of view samples (pixels) – a smaller image would

7

Appears in SIGGRAPH 2006.

Figure 5: Images rendered with our system using omni and spot lights: Sponza, hair ball, temple, still life.

be correspondingly faster. We check about 5000 rays per pixel, a
number comparable to typical load for a high-quality final gather
in ray-tracing settings. All other precomputation (sampling view
and gather clouds, multi-bounce transfer, packing) takes less than
20 minutes.

Lighting effects: The still-life dataset shows that our system can
handle sharp glossy materials, typically problematic in other re-
lighting work, together with high complexity geometric details in
the bump maps as well as the plant leaves. Note that the indirect
illumination is very detailed, since it is computed fully per pixel,
without relying on any kind of subsampling. While the main draw-
back of our solution is the fixed-view limitation, we believe that the
high resolution indirect illumination, together with arbitrary glossy
materials and high geometric complexity justifies our assumption.

Figure 6 shows images generated with arbitrary light shaders: a
light projecting arbitrary images, a colored light modeled after a
widely-used cinematic lighting model [Barzel 1997], and a multi-
sampled soft-shadow light. We have also simulated a sun-sky
model using a distant light for the sun and ambient occlusion for
the sky, useful for outdoor environments. Some of these lights have
high frequency details and many degrees of freedom, which are
problematic in previous approaches but very common in cinematic
lighting. Our system can handle all of these cases, together with
any arbitrary direct illumination algorithm, since it precomputes
the direct-to-indirect transfer itself, rather than trying to interpo-
late a small number of fully precomputed solutions. That would
miss many interesting lighting details in the indirect, like the crisp
reflections and indirect shadows in the still-life scene.

Future work: While this paper did not focus on environment map
lighting, we have prototyped an implementation in our system. The
basic idea is to split the gather cloud into surface samples and envi-
ronment samples. The surface samples are shaded by direct lighting
as usual. The environment samples have their radiance assigned by
a separate shader, which can determine the radiances in an arbitrary
way, e.g. by rotated environment map lookups. This framework
supports a combination of distant and local lighting together with
multiple bounces of indirect illumination.

As future work, we are interested in expanding the kinds of mate-
rials supported by our system, including perfectly specular (reflec-
tion/refraction) and translucent materials exhibiting various degrees
of subsurface scattering.

While we believe our fixed-camera assumption is necessary to han-

dle high-complexity geometry, we are also interested in a moving-
camera system for moderately complex environments, while keep-
ing flexible direct lighting models.

7 Conclusions

We have presented an interactive relighting system aimed at cine-
matic lighting design, which supports multiple-bounce indirect il-
lumination in scenes with high geometric complexity, diffuse and
glossy materials (including sharp gloss), and flexible direct lighting
models expressed using procedural shaders. Our deep frame-buffer
approach uses direct-to-indirect transfer from a set of gather sam-
ples distributed in the scene to the view samples corresponding to
image pixels. Light transfer is represented as a series of sparse
matrix multiplications and encoded in wavelet space after mapping
the gather cloud to the wavelet basis. Multiplication is efficiently
performed on the GPU thanks to an image-based method that also
allows us to cull wavelet lights on the fly. Precomputation times are
kept reasonable by splitting the transfer into two passes and evalu-
ating it using a variation of photon mapping and hierarchical final
gathering.

Acknowledgments

We thank Veronica Sundstedt and Patrick Ledda for the temple
model. We thank Bruce Walter and the Program of Computer
Graphics for support. This work was supported by NSF Grant CCF-
0539996 and a grant from Pixar Animation Studios.

References

ANNEN, T., KAUTZ , J., DURAND, F.,AND SEIDEL, H.-P. 2004. Spherical
harmonic gradients for mid-range illumination. InRendering Techniques
2004 Eurographics Symposium on Rendering, 331–336.

ARIKAN , O., FORSYTH, D. A., AND O’BRIEN, J. F. 2005. Fast and
detailed approximate global illumination by irradiance decomposition.
In Proceedings of SIGGRAPH 2005.

BALA , K., DORSEY, J., AND TELLER, S. 1999. Interactive ray-traced
scene editing using ray segment trees. In10th Eurographics Workshop
on Rendering, 39–52.

8

Appears in SIGGRAPH 2006.

(a) A colored light. (b) Projected textures.

(c) A soft-shadow light. (d) A colored light.

(e) A colored light. (f) A “sun-sky” lighting model.

Figure 6: Images rendered with our system using various light
shaders.

BALA , K., DORSEY, J.,AND TELLER, S. 1999. Radiance interpolants for
accelerated bounded-error ray tracing.ACM Transactions on Graphics
18, 3, 213–256.

BALA , K., WALTER, B., AND GREENBERG, D. 2003. Combining edges
and points for interactive high-quality rendering. InProceedings of SIG-
GRAPH 2003, 631–640.

BARZEL, R. 1997. Lighting controls for computer cinematography.Journal
of Graphics Tools 2, 1, 1–20.

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER, P. 2003. Sparse
matrix solvers on the gpu: conjugate gradients and multigrid.Proceed-
ings of SIGGRAPH 2003, 917–924.

BRIÉRE, N., AND POULIN , P. 1996. Hierarchical view-dependent struc-
tures for interactive scene manipulation. InProceedings of SIGGRAPH
’96, 83–90.

DAYAL , A., WOOLLEY, C., WATSON, B., AND LUEBKE, D. 2005. Adap-
tive frameless rendering. InProceedings of Eurographics Symposium on
Rendering.

DMITRIEV, K., BRABEC, S., MYSZKOWSKI, K., AND SEIDEL, H.-P.
2002. Interactive Global Illumination Using Selective Photon Tracing.
In 13th Eurographics Workshop on Rendering, 25–36.

DRETTAKIS, G., AND SILLION , F. 1997. Interactive Update of Global Illu-
mination Using A Line-Space Hierarchy. InProceedings of SIGGRAPH
’97, 57–64.

GAUTRON, P., KRIVANEK , J., BOUATOUCH, K., AND PATTANAIK , S.
2005. Radiance cache splatting: A gpu-friendly global illumination al-
gorithm. InProceedings of Eurographics Symposium on Rendering.

GERSHBEIN, R., AND HANRAHAN , P. M. 2000. A fast relighting engine
for interactive cinematic lighting design. InProceedings of SIGGRAPH
2000, 353–358.

GORTLER, S. J., SCHRÖDER, P., COHEN, M. F., AND HANRAHAN , P.
1993. Wavelet radiosity. InProceedings of SIGGRAPH ’93, 221–230.

HANRAHAN , P., SALZMAN , D., AND AUPPERLE, L. 1991. A rapid hier-
archical radiosity algorithm.Proceedings of SIGGRAPH ’91, 197–206.

JENSEN, H. W. 1996. Global illumination using photon maps. InProceed-
ings of the Eurographics workshop on Rendering techniques ’96, 21–30.

KAUTZ , J., SLOAN , P.-P.,AND SNYDER, J. 2002. Fast, arbitrary brdf
shading for low-frequency lighting using spherical harmonics. InEGRW
’02: Proceedings of the 13th Eurographics workshop on Rendering,
291–296.

KRISTENSEN, A. W., AKENINE-M ÖLLER, T., AND JENSEN, H. W. 2005.
Precomputed local radiance transfer for real-time lighting design.Pro-
ceedings of SIGGRAPH 2005, 1208–1215.

L IU , X., SLOAN , P.-P. J., SHUM , H.-Y., AND SNYDER, J. 2004. All-
frequency precomputed radiance transfer for glossy objects. InProceed-
ings of Eurographics Symposium on Rendering, 337–344.

NG, R., RAMAMOORTHI , R., AND HANRAHAN , P. 2003. All-frequency
shadows using non-linear wavelet lighting approximation.Proceedings
of SIGGRAPH 2003, 376–381.

NG, R., RAMAMOORTHI , R., AND HANRAHAN , P. 2004. Triple prod-
uct wavelet integrals for all-frequency relighting.Proceedings of SIG-
GRAPH 2004, 477–487.

PELLACINI , F., VIDIM ČE, K., LEFOHN, A., MOHR, A., LEONE, M.,
AND WARREN, J. 2005. Lpics: a hybrid hardware-accelerated relighting
engine for computer cinematography.Proceedings of SIGGRAPH 2005,
464–470.

SAITO , T., AND TAKAHASHI , T. 1990. Comprehensible rendering of 3-d
shapes. InProceedings of SIGGRAPH ’90, 197–206.

SÉQUIN, C. H., AND SMYRL , E. K. 1989. Parameterized ray tracing. In
Proceedings of SIGGRAPH ’89, 307–314.

SLOAN , P.-P., KAUTZ , J., AND SNYDER, J. 2002. Precomputed radi-
ance transfer for real-time rendering in dynamic, low-frequency lighting
environments. InProceedings of SIGGRAPH 2002, 527–536.

SMITS, B. E., ARVO, J. R.,AND SALESIN, D. H. 1992. An importance-
driven radiosity algorithm. InProceedings of SIGGRAPH ’92, 273–282.

TABELLION , E., AND LAMORLETTE, A. 2004. An approximate global
illumination system for computer generated films.Proceedings of SIG-
GRAPH 2005, 469–476.

TOLE, P., PELLACINI , F., WALTER, B., AND GREENBERG, D. P. 2002.
Interactive global illumination in dynamic scenes.Proceedings of SIG-
GRAPH 2002, 537–546.

WALD , I., KOLLIG , T., BENTHIN, C., KELLER, A., AND SLUSALLEK , P.
2002. Interactive Global Illumination. In13th Eurographics Workshop
on Rendering, 15–24.

WALTER, B., DRETTAKIS, G., AND PARKER, S. 1999. Interactive render-
ing using the Render Cache. In10th Eurographics Workshop on Render-
ing, 19–30.

WALTER, B., DRETTAKIS, G., AND GREENBERG, D. 2002. Enhancing
and optimizing the Render Cache. In13th Eurographics Workshop on
Rendering, 37–42.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA , K., DONIKIAN , M.,
AND GREENBERG, D. P. 2005. Lightcuts: A scalable approach to illu-
mination. InProceedings of SIGGRAPH 2005, 1098–1107.

WANG, R., TRAN, J.,AND LUEBKE, D. P. 2004. All-frequency relighting
of non-diffuse objects using separable brdf approximation. InProceed-
ings of Eurographics Symposium on Rendering, 345–354.

WANG, R., TRAN, J., AND LUEBKE, D. 2005. All-frequency interac-
tive relighting of translucent objects with single and multiple scattering.
Proceedings of SIGGRAPH 2005, 1202–1207.

WARD, G., AND SIMMONS, M. 1999. The holodeck ray cache: an interac-
tive rendering system for global illumination in nondiffuse environments.
ACM Transactions on Graphics 18, 4, 361–368.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A ray
tracing solution for diffuse interreflection. InProceedings of SIGGRAPH
’88, 85–92.

9

