
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 1

Heterogeneous Subsurface Scattering
Using the Finite Element Method

Adam Arbree, Bruce Walter, and Kavita Bala

Abstract—Materials with visually important heterogeneous subsurface scattering, including marble, skin, leaves, and minerals, are
common in the real world. However, general, accurate and efficient rendering of these materials is an open problem. In this paper,
we describe a finite element (FE) solution of the heterogeneous diffusion equation (DE) that solves this problem. Our algorithm is
the first to use the FE method to solve the difficult problem of heterogeneous subsurface rendering. To create our algorithm, we
make two contributions. First, we correct previous work and derive an accurate and complete heterogeneous diffusion formulation.
This formulation has two key elements: an accurate model of the reduced intensity (RI) source, the diffusive source boundary
condition (DSBC), and its associated render query function. Second, we solve this formulation accurately and efficiently using the
FE method. Using there results, we can render subsurface scattering with a simple four step algorithm. To demonstrate that our
algorithm is simultaneously general, accurate and efficient, we test its performance on a series of difficult scenes. For a wide
range of materials and geometry, it produces, in minutes, images that nearly match path traced references, that required hours.

Index Terms—subsurface scattering, finite element method, diffusion equation, diffusive source boundary condition

F

1 INTRODUCTION
The subsurface scattering of light creates the distinctive
appearance of many ubiquitous materials, such as
marble, skin, minerals and leaves. However, because of
the complexity of the scattering within these materials,
efficient and accurate subsurface rendering is challeng-
ing and previous approaches have limitations. Monte
Carlo (MC) algorithms [20], [26], [38] accurately solve
the general subsurface rendering problem but their
hours-per-image cost makes them impractical for most
applications; algorithms using the dipole diffusion
bidirectional surface scattering reflectance distribution
function (BSSRDF) [27] are fast, even real-time, but can
only model homogeneously scattering materials; and,
though capture and re-render systems [12], [16], [18],
[37] can quickly generate high-quality images, they
can only redisplay captured material models.

Because of the limitations of these methods, current
research seeks an improved result: an efficient and ac-
curate rendering algorithm for general heterogeneous
materials. In this paper, we achieve this result by using
a finite element (FE) algorithm to compute the solution
to the heterogeneous diffusion equation (DE). However,
creating our solution required two contributions to
previous work:
• a complete and correct rendering formulation for

the heterogeneous diffusion problem; and
• a general FE algorithm that solves this problem

efficiently.
Our contributions strike a balance between perfor-
mance and accuracy. By solving an approximate scat-

• Authors are with Cornell University, Ithaca, NY 14853.
E-mail: {arbree,bjw,kb}@graphics.cornell.edu

tering model, we ensure efficiency but, by carefully se-
lecting this approximation and by using the FE method,
we preserve accuracy. As a result, in a few minutes, our
algorithm produces images (see Figure 1, top row) that
nearly match path-traced references which required
hours of computation (see Figure 1 difference images,
top right). Moreover, because our algorithm is a general
solution, it can reproduce a wide range of difficult
subsurface effects. For example, it can render complex
high-frequency aggregates, such as marble (see Figure
1, bottom left); the sharp edges between regions of
smooth, noise-free translucency (see Figure 1, bottom
center); and, even in a challenging scene lit entirely
by subsurface illumination, the complex, structured
and high-resolution subsurface detail found in many
natural materials (see Figure 1, bottom right).

Our contributions address two gaps found in previ-
ous discussions of heterogeneous subsurface rendering.
First, we correctly derive our heterogeneous diffusion
formulation with an accurate model of the reduced
intensity (RI) source, the diffusive source boundary
condition (DSBC), and its corresponding render query
function. Because we derive the DSBC and the query
function from first principles, we are able to correct
the errors found in previous discussions [39], [47]
and produce a heterogeneous diffusion formulation
suitable for high quality rendering applications. Sec-
ond, though FE algorithms are used for a wide range
of mathematical problems, our algorithm improves
upon the quality of previous subsurface renderers by
introducing the FE method for rendering subsurface
scattering.

In particular, our FE algorithm significantly extends
the two recent works most closely related to our own.
First, we show that our FE solution improves the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 2

1x Difference

FE Algorithm (4m 26s) Path Tracing (3h 51m 43s) 4x Difference

Bunny Buddha Geode

Fig. 1: Our new finite element (FE) algorithm for heterogeneous subsurface scattering can reproduce a wide range of materials in arbitrary
geometry. Our results (see Dragon results; top row) are nearly identical to path traced references (see black difference image; top right) but
render in a few minutes instead of a few hours. Our new algorithm can (see marble Bunny; left) model complex aggregate materials; (see
checkerboard Buddha; middle right) capture sharp detail in heterogeneous material properties while still ensuring noise-free translucency in
smooth regions; and (see back-lit Geode; right) scale well to detailed, high-frequency materials even in the difficult case when all illumination
passes through the medium.

ambitious and heterogeneous capture, modeling and
rendering system recently created by Wang et al. [47].
Though their algorithm performs excellently for their
re-render application, we demonstrate that the quality
of their results depends on their capture optimization
correcting rendering errors. For non-captured materi-
als, their finite difference (FD) rendering algorithm
is less accurate and its dependence on PolyGrid
[43] meshes places effective limits on the scattering
geometry. In contrast, our new algorithm produces
high quality images of many materials. Moreover,
because our FE solution supports fast, off-the-shelf
meshing algorithms and intelligent adaptive mesh
refinement, we can achieve these results quickly in
a wide range of scattering geometries..

Second, we extend similar, but much more limited,
FE results discussed in previous work in medical
imaging [39]. Though this work also discusses a FE
solution to the DE, it omits the details necessary to
create a useful heterogeneous rendering algorithm. The
authors only consider a simplified FE solution in a 2D
homogeneous disk and, because of this simple test and
the different requirements of their imaging application,
they conclude that their formulation cannot be used
for a wide range of materials and geometry. However,
we find the opposite result for the rendering problem.

By using an improved 3D FE solution tailored for
rendering, we can achieve high-quality results in a
wide range of difficult scenes.

The rest of this paper describes and tests our new
heterogeneous subsurface rendering algorithm. First,
in the next section, we review previous work on
subsurface scattering. Second, in Section 3, we describe
our new contributions and rendering algorithm. Af-
terward, Section 4 reviews diffusion theory to prepare
for Sections 5, 6 and 7 that build on this theory to
derive our algorithm. Then, in Section 8, we review
the details of our implementation and in Section 9 we
compare this implementation to previous solutions.
Finally, in Section 10, we conclude with limitations
and future work.

2 PREVIOUS WORK

Due to the breadth of research on subsurface rendering,
a complete review lies beyond the scope of this paper.
This section quickly reviews most previous work in
three broad categories: Monte Carlo (MC) algorithms,
dipole diffusion algorithms and capture and re-render
systems. Afterward, the two algorithms most closely
related to our problem, general heterogeneous subsur-
face rendering, are reviewed in more detail.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 3

2.1 Monte Carlo Algorithms
By directly simulating basic scattering physics, MC
rendering algorithms, including path tracing [20], [26],
[38], photon mapping [13], [25] and Metropolis sam-
pling [36], can generate individual photons paths in the
scattering material. With sufficiently many paths, they
can produce images of arbitrary accuracy; however,
even for homogeneous materials, this simulation is
generally considered impractical and heterogeneous
materials are yet more expensive (for example, our
path-traced references required many CPU/days of
computation, see Section 9.4).

2.2 Dipole Diffusion Algorithms
Because of the high cost of MC renderers, practical
subsurface algorithms are approximate. Jensen et al.
[27] introduced the first such approximation: the dipole
diffusion bidirectional surface scattering reflectance
distribution function (BSSRDF). The dipole diffusion
BSSRDF is derived from an analytic scattering ap-
proximation [23], [29] that, though fast, limits both
the BSSRDF’s quality [32] and fundamentally restricts
it to homogeneous materials (though an artificial
heterogeneous appearance can be created with textures
[31], [44]). However, because it is easy to implement
and inexpensive, the dipole diffusion BSSRDF has
been widely used. It was first used to accelerate MC
algorithms [24], [27] and then several papers extended
these algorithms to improve their quality [7], [10], [11],
[32]. Recently, the dipole diffusion BSSRDF has been
used to create real-time algorithms [5], [6], [8], [21],
[22], [31], [33], [34]; included in precomputed radiance
transfer systems [41], [48]; and scaled to large scenes
using a Light cuts based algorithm [2], [46].

2.3 Capture and Re-render Systems
Capture and re-render systems—both for general sub-
surface scattering materials [18], [37] and specifically
for human skin [12], [16]—compute specialized mate-
rial models from photographs of a physical scattering
object. After this capture computation, the internal
model can be warped into new geometry and re-
rendered. Because these models are computed from
real photographs, the re-rendered images have high
quality. However, though these systems can capture
both homogeneous and heterogeneous materials, these
systems can only redisplay their captured models. They
cannot render general heterogeneous materials.

2.4 Heterogeneous Algorithms
To address the limitations of the categories above,
we present our general heterogeneous rendering algo-
rithm. This algorithm computes subsurface scattering
by numerically solving the diffusion equation (DE).
Though Stam [42] first suggested this approach and
Haber et al. [19] later developed numerical solver

for homogeneous materials, only two works have
discussed the general heterogeneous problem: the
finite difference (FD) solver recently introduced by
Wang et al. [47] and the work by Schweiger et al. [39]
in the medical imaging field of optical tomography
(OT).

2.4.1 Finite Difference Algorithm
As part of an impressive, capture and re-rendering
system, Wang et al. [47] developed an interactive, FD
algorithm for solving the heterogeneous DE. Their goal
was the interactive editing of captured material grids
and, for this task, their algorithm is excellent. However,
as a general, high quality solution, we have found
that their FD algorithm has several limitations (see
Section 9.5 for a detailed discussion and a comparison
to our results). Foremost, errors in their DE formulation
can result in incorrect solutions. These errors went
unnoticed in their original work because their capture
computation corrects for them by altering the captured
material parameters1.

However, even if we correct their algorithm using
our formulation, two additional limitations remain.
First, the FD algorithm requires that a PolyGrid [43]
be constructed in the scattering geometry. As noted by
the authors, this is a difficult process that can require
hand optimization to avoid errors. Second, their FD
solution—especially with the additional approxima-
tions required to achieve interactive performance—has
approximation errors. Most importantly, the deforma-
tion of the FD algorithm’s PolyGrid cannot be exactly
modeled in their solver. Therefore, large deformations
result in rendering errors or, for some materials, the
divergence of the iterative solution.

2.4.2 Optical Tomography
Outside of computer graphics, the medical imaging
field of OT also develops algorithms for numerically
solving the DE. On one hand, OT tackles the same
problem addressed by Wang et al. [47]: given a series
of photographs of human tissue lit by visible light,
determine the scattering properties of the tissue (see
[17], [30] for a review of the state-of-the-art). On the
other hand, the OT problem is significantly different
than the rendering problem. OT applications are less
concerned with efficiency, need solutions in much
smaller regions than a whole image and consider
only materials within the smaller range of scattering
parameters found in human tissue.

However, one work [39] discusses, among several
others, a DE problem formulation similar to ours and
they consider solving this formulation using the finite
element (FE) method. But, though their discussion in-
troduces topics similar to ours, it also omits the details

1. Before writing this paper, we discussed this issue with Wang
et al. [47] and they kindly acknowledged that these corrections do
occur (see Section 9.5 and [3], [47]).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 4

necessary to create a useful rendering algorithm. They
do not explore heterogeneous scattering in arbitrary
objects and compute only a simplified finite element
solution in a 2D homogeneous disk. Because of this
simple test, they cannot determine if their formulation
is accurate or efficient for a wide range of materials
and geometry. Finally, because they address a different
problem, their equations lack two elements essential
in our rendering solution: a boundary Fresnel term
and a rendering query function that converts the final
solution into radiance.

3 ALGORITHM

Our algorithm improves upon all previous subsurface
renderers. Our results are nearly as accurate as Monte
Carlo (MC) images, but much less expensive and,
unlike both dipole diffusion algorithms and capture
and re-render systems, our algorithm can quickly
reproduce a broad range of heterogeneous materials.
We achieve these results using a finite element (FE)
algorithm for solving the heterogeneous diffusion
equation (DE). Though the FE method has been used in
a wide range of applications spanning many fields, our
method is the first to solve subsurface scattering with
the FE method. Because of the specific requirements
of the rendering problem, our solution must be careful
formulated to ensure accurate results. Unfortunately
when developing our solution, we found errors in pre-
vious diffusion formulations [39], [47] that we correct
in the discussion below (see also [3]). In addition, we
further extend the 2D FE solution discussed Schweiger
et al. [39] by describing a complete 3D heterogeneous
FE solution tailored to the rendering problem. The
produce of our careful and tailored derivations is a
fast, accurate, and general FE subsurface rendering
algorithm.

3.1 Overview of Key Results
This final algorithm is defined by three key results: the
diffusive source boundary condition (DSBC), the finite
element diffusion equation (FEDE) and the render
query function.

Result #1: Diffusive Source Boundary Condition
Our algorithm approximates subsurface scattering
using the DE. This approximation has three com-
ponents: the DE itself that approximates scattering
in the interior of the scattering volume; a boundary
condition (BC) that approximates solution’s bound-
ary behavior; and a reduced intensity (RI) source
model that approximates the radiance entering the
scattering media. Most previous work presents these
three components in a unified formulation based on
the approximations that derive the dipole diffusion
algorithm [27]. However, for general heterogeneous
problems, we demonstrate that the RI source model
used in this formulation, the embedded source model

[11], is both inaccurate and inefficient. To address
these limitations, Section 5 derives our first key result:
the DSBC (see Equation (14)). The DSBC combines
an accurate BC approximation with an improved RI
source model to produce a high-quality heterogeneous
subsurface scattering approximation.

Result #2: Finite Element Diffusion Equation
Next, in Section 6, we solve this approximation ac-
curately using the FE method. This solution has two
steps. First, the scattering domain is discretized into a
mesh that, by construction, implicitly defines a finite
basis for functions in the scattering domain. Second,
we discretize the constraints of the DE and DSBC
using this basis. The result is a large matrix equation
whose solution is the coefficient vector of the best
approximation, in this basis, of the final subsurface
scattering solution. This matrix equation is our second
key result, the FEDE (see Equation (21)) .

Result #3: Render Query Function
Finally, we describe how to compute exitant subsurface
radiance, the quantity needed for rendering, from this
solution. Because of the approximations of the DE,
DSBC and their FE solution, this query function must
be carefully constructed to ensure accuracy. Section 7
describes these issues and derives our final key result,
the render query function (see Equation (24)).

3.2 Finite Element Rendering Algorithm
Using these results, subsurface rendering is a four-step
process:

Step 1: Mesh the scattering volume
Step 2: Construct the FEDE for that mesh
Step 3: Solve the resulting linear system
Step 4: Compute radiance using the query function

Moreover, because of the generality of our FE solution,
this basic algorithm is not only simple, but adaptable.
Though in Section 8 we describe the specific details of
our full implementation, without change to its basic
structure, it can be altered to fit the problem at hand
or to incorporate existing tools. Many mesh types
can be used—allowing fast meshing algorithms (see
Section 8.1) and adaptive refinement (see Section 8.5)—
without change to the assembly of the FEDE in Step 2
(see Section 8.2 and Figure 6 for the pseudocode of a
general algorithm) and, once the FEDE is assembled,
the solution can be computed with almost any matrix
algorithm.

4 REVIEW OF DIFFUSION THEORY

Before we derive our algorithm, we review some
elements of diffusion theory. Our algorithm uses the
diffusion equation (DE) to approximate the exact
scattering model, the volumetric radiance transfer
equation (VRTE). But the basic approximation of the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 5

Ω = Scattering volume
∂Ω = Boundary of Ω

L(x, ~ω) = Radiance leaving x in ~ω

Ld(x, ~ω) = Diffusive radiance
φ(x) = Radiant fluence
~E(x) = Vector irradiance

Q(x, ~ω) = Emittance of the media
Qri(x) = Reduced intensity source
Q0(x) = 0th moment of Q(x, ~ω)

p(~ω, ~ω′) = Scattering phase function
µ = Mean cosine of p(~ω, ~ω′)

σa(x) = Absorption coefficient
σs(x) = Scattering coefficient
σt(x) = Total extinction coefficient
σtr(x) = Reduced extinction coefficient
κd(x) = Diffusion coefficient
η = Relative index of refraction

Fr(η, ~ω) = Fresnel reflectance
Ft(η, ~ω) = Fresnel transmittance
Fdr(η) = Average Fresnel reflectance
Fdt(η) = Average Fresnel transmittance
A(η) = Fresnel boundary term

Γs(x) = Incoming external flux
Γin

d (x) = Inward solution flux
Γref

d (x) = Boundary reflected flux
H = Arbitrary function space
θ = Arbitrary function in H
βi = ith basis function
F = Finite element matrix

D,M, S = Components of F

~r = Finite element right hand side
~q,~g = Components of ~r
~a = Finite element solution vector

Fig. 2: Summary of notation used throughout the paper.

DE, the diffusion approximation (DA), forces two
further approximations: the reduced intensity (RI)
source model and the boundary condition (BC) [23].
Because our first key result, the diffusive source
boundary condition (DSBC), provides these secondary
approximations, we prepare for this discussion by
introducing them here.

4.1 Volumetric Radiative Transfer Equation

The light scattered within a randomly scattering
medium is defined by three functions that specify the
probability of photon interactions2. The absorption and
scattering coefficients, σa(x) and σs(x) respectively,
give the the number of photons scattered and absorbed
per unit distance and the phase function p(~ω, ~ω′)
specifies the probability that a scattered photon leaves
~ω into ~ω′. Given these three functions, the VRTE defines
the differential radiance L(x, ~ω) in the medium leaving
x in direction ~ω [23]

Volumetric Radiative Transfer Equation

(~ω · ~∇)L(x, ~ω) = σs(x)
∫
4π

p(~ω, ~ω′)L(x, ~ω′) d~ω

− σt(x)L(x, ~ω) +Q(x, ~ω) (1)

where σt(x) = σa(x) + σs(x) and Q(x, ~ω) is the light
source function.

4.2 The Diffusion Equation

To derive the DE, one makes the DA. The DA approxi-
mates the VRTE’s solution by a simpler function with a
near isotropic angular distribution: a linear expansion
in the 0th and 1st angular moments of the radiance:
the scalar fluence φ(x) and the vector irradiance ~E(x)
respectively.

Diffusion Approximation

L(x, ~ω) =
1

4π
φ(x) +

3
4π

~E(x) · ~ω (2)

2. Figure 2 summarizes the notation used in this paper.

where

φ(x) =
∫
4π

L(x, ~ω) d~ω and ~E(x) =
∫
4π

L(x, ~ω) · ~ω d~ω

Though, its an involved process (see Ishimaru [23] for
the details), essentially the substitution of Equation (2)
into Equation (1) yields the:

Diffusion Equation

−~∇ · (κd(x)~∇φ(x)) + σa(x)φ(x) = Q0(x) +Qri(x) (3)

This substitution introduces three new quantities. Two,
κd(x) and Q0(x), are simply redefinitions of the input
parameters:

κd =
1

3
[
(1− µ)σs + σa

] and Q0(x) =
∫
4π

Q(x, ~ω) d~ω

However, the third term, the RI source Qri(x) is the
first of the two secondary approximations required by
the DA.

4.3 Reduced Intensity Source
The RI source is necessary because sufficiently near
the boundary incoming radiance violates the DA3.
Far from the boundary, the DA’s required isotropy
is naturally ensured because any radiance deep in the
material will have randomly scattered many times
smoothing away any initial angular properties. How-
ever, sufficiently near the boundary, some radiance will
not yet have scattered and this radiance can be highly
anisotropic. Since this anisotropy can cause approxima-
tion errors, this yet-to-be-scattered radiance is removed
from the diffusion problem and the DA is applied only
to the remaining diffusive radiance Ld(x, ~ω). However,
this radiance cannot be neglected entirely and, to
account for its removal, the DE’s derivation introduces
a new artificial source function, the RI source Qri(x),
that supplies any diffusive radiance that would have

3. A similar problem also occurs near sources embedded in the
medium. However, since these sources rarely occur in physical
scenes and, because analytic RI source models exist for many of
light source geometries [15], [23], we review only the boundary case
here.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 6

been generated before removal [23]. Unfortunately, an
exact photon-by-photon RI source computation would
erase the efficiency originally gained by using the DE
to model bulk scattering and, as a practical matter, the
RI source model must be approximated.

4.4 Boundary Condition
Besides the RI source model, the DA requires a second
approximation. For finite domains, the DE requires a
BC. With the introduction of the RI source, the DE
was restricted to only the diffusive radiance. Since by
definition this radiance must have scattered at least
once, the physical BC requires that Ld(x, ~ω) be zero
along all incoming directions.

∀(~n · ~ω) < 0, Ld(x, ~ω) = 0 (4)

However, this condition is discontinuous between
incoming and outgoing directions and, since this dis-
continuity violates the DA, a DA-compatible approxi-
mate condition must be used instead. Previous work
has already described an accurate BC approximation
derived from boundary Fresnel effects [15], [23]. We
discuss this approximation in Section 5.4 as part of
the derivation of the DSBC.

5 DIFFUSIVE SOURCE
BOUNDARY CONDITION

The boundary condition (BC) and reduced intensity
(RI) source model approximations strongly affect the
diffusion solution on the boundary of the scattering do-
main. Because only the boundary is visible in an image,
these approximations effectively determine the quality
of the final rendering algorithm. In our heterogeneous
application, where fine boundary material detail must
be accurately modeled, these approximations must be
as accurate as possible.

In this section, we demonstrate that the RI source
model used by previous dipole algorithms, the embed-
ded source model, is both inefficient and inaccurate.
To address these issues, this section discusses our first
key result, the diffusive source boundary condition
(DSBC), that replaces the embedded approximation.

5.1 Embedded Source Model
The embedded source model (Figure 3(a)) is derived
from an analytic RI source model for a collimated beam
incident on a homogeneous, semi-infinite slab. For this
problem, the RI source can be approximated by a series
of omni-directional point sources embedded inside the
the medium. For arbitrary problems, the surface is
divided into patches. By locally approximating each
patch by an instance of the homogeneous slab problem,
the collection of patches can be converted into a large
collection of point sources that approximate the RI
source throughout arbitrary regions of the scattering
volume [11].

Embedded
Source

(a)

Boundary
Source

(b)

Fig. 3: Two methods of approximating the reduced intensity source
Qri(x). The embedded source model (a) approximates Qri(x) with
point sources while our model, the boundary source model (b),
approximates the source as a diffusive flux arriving at the boundary.

10-4

10-3

10-2

10-1

100

101

102

 5 10 15 20 25 30 35 40 45

Lo
g

E
xi

ta
nt

 R
ad

ia
nc

e
Distance (Mean Free Paths)

critical region

Exact
Boundary

Embedded

Fig. 4: Comparison of the boundary and embedded source models
(top) and their error (bottom) for a collimated beam incident on a semi-
infinite slab of homogeneous materials: exact solution (solid red),
diffusive source boundary condition (dotted green) and embedded
source model (dashed blue).

5.2 Boundary Source Model

Unlike the embedded source model, the DSBC (Figure
3(b)) does not create a volumetric representation of
the RI source. Instead, the DSBC is a 2D surface
source model. Because of scattering and absorption,
the RI source decays exponentially and, due to this
rapid falloff, almost all of the power of the RI source
power lies close the boundary. Therefore, it is a small
approximation to represent the true RI source by its
2D projection onto the boundary. This projection is
modelled as a isotropic diffusive flux that arrives at
the boundary.

5.3 Limitations of the Embedded Source Model

In heterogeneous problems, the embedded source
model has two drawbacks. Foremost, the embedded
source approximation is less accurate. To demonstrate
this result, we compare both models for the canonical
example of a infinitesimal, collimated beam normally
incident on a semi-infinite, homogeneously scattering
slab. Because it is derived from this example, the
embedded source model is maximally accurate for
this configuration. In contrast, this example is poorly
approximated by the DSBC: a directed, collimated
beam cannot be well represented by an isotropic dif-
fuse flux. Since this example compares the embedded
model’s best case to worst case for the DSBC, we can

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 7

Internal Inward Flux

n

x

Γin
d (x)

=

Internal Reflected Flux

n

x

Γref
d (x)

+

External Refracted Flux

n

Γs(x)

Fig. 5: Diagrams illustrating the three components of the diffusive
source boundary condition (DSBC) (Equation (14)). The condition
forces Γin

d (x), the internal inward flux at the boundary, to be equal to
the sum of Γref

d (x), the internal flux reflected at the boundary, and
Γs(x) the exterior light refracted into the material.

use its surprising result—both methods are equally
accurate—to predict the relative performance of the
two methods across a wide range of scenes.

In Figure 4 we plot, outward from the point of
incidence of the beam, a reference embedded solution,
our FE solution using the DSBC4 and an exact Monte
Carlo (MC) result. Unfortunately, both near and far
from the incident source, both methods have errors.
However, these errors result from the breakdown of
the diffusion approximation (DA) not the RI source
model. In the critical middle region (between 5 and
25 mean free paths) where the DA is accurate, both
source methods closely approximate the true result.
Since in other more complex scenes the accuracy of
the embedded source model will only degrade and
the quality of the DSBC will only improve, we can
conclude that the DSBC is the more accurate choice
overall.

Though improved accuracy is already a compelling
argument for the DSBC, the embedded source model
has a second drawback: increased cost. Because the
embedded source model is volumetric, it depends
on both the incoming illumination as well as the
heterogeneous material properties near the boundary.
This added material dependence increases cost. In
complex heterogeneous materials, even if the incident
illumination is smooth, the embedded source model
must densely sample regions with high-frequency
material detail. In contrast, because its computation
is independent of the boundary material properties,
the DSBC need only sample the smooth incident
illumination function.

5.4 Derivation of DSBC

Given these advantages, the DSBC is the clear choice
for our heterogeneous diffusion problem. To derive5

the DSBC we augment the Fresnel boundary condition
discussed in previous work [23] with a new term to

4. The semi-infinite slab is replaced with a cube 100 mean free
paths along each edge and the infinitesimally thin beam is replaced
by a spot 0.2 mean free paths in diameter.

5. Though previous work has mentioned equations similar to the
DSBC [39], [47], we review the full derivation here because these
works omit derivations and contain errors.

model diffusive boundary flux representing the RI
source and then apply the DA to the resulting equation.

5.4.1 Fresnel Boundary Condition

Regardless of the RI source model, the diffusion
BC should model Fresnel interface effects. At every
boundary point x, the basic condition forces the net
inward flux of the solution Γin

d (x) to equal the total
flux of internal radiance reflected back inward by the
Fresnel interface Γref

d (x).

Γin
d (x) = Γref

d (x) (5)

Using Figures 5(a) and 5(b) as guides, these fluxes
can be computed by integrating over the small blue
arrows in each figure6.

Γin
d (x) =

∫
(~n·~ω)<0

Ld(x, ~ω)(−~n · ~ω) d~ω (6)

Γref
d (x) = Fdr(η)

∫
(~n·~ω)<0

Ld(x,−~ω)(−~n · ~ω) d~ω (7)

In Equation (7), we approximate total reflected internal
flux by scaling the total internal flux by Fdr(η), the
average Fresnel reflection coefficient.

5.4.2 Reduced Intensity Flux

Next, the RI source is added by augmenting the basic
condition with a third term.

Γin
d (x) = Γref

d (x) + Γs(x) (8)

The new term Γs(x) approximates the RI source from
the integrated surface radiance refracted into the
material at x.

Γs(x) = e−
σa(x)
σs(x)

∫
(~n·~ω)>0

Ft(η, ~ω)L(x,−~ω)(~n · ~ω) d~ω (9)

In Equation (9), the exponential term approximates
the absorption that has occurred as refracted radiance
traveled in the medium before scattering and becoming
part of the RI source.

5.4.3 Substitution of the Diffusion Approximation

Next, using an identity from previous work [23],∫
(~s·~ω)>0

Ld(x, ~ω)(~s · ~ω) d~ω =

1
4

[
φ(x)− 2κd(x)(~s · ~∇)φ(x)

]
(10)

6. When creating these expressions, one must be careful to use a
consistent definition of ~ω and ~n to ensure that resulting boundary
condition has the correct signs. To be consistent throughout this
section, we have chosen to always: define ~n as pointing out of the
material and define ~ω as pointing away from x.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 8

we can express Equations (6) and (7) in terms of fluence
by substituting the DA (Equation (2)) for Ld(x, ~ω) and
simplifying.

Γin
d (x) = 1

4

[
φ(x) + 2κd(x)(~n · ~∇)φ(x)

]
(11)

Γref
d (x) = 1

4Fdr(η)
[
φ(x)− 2κd(x)(~n · ~∇)φ(x)

]
(12)

Finally, substituting Equations (11) and (12) into
Equation (8) and then using the average Fresnel
transmission ratio A(η)

A(η) =
1 + Fdr(η)
1− Fdr(η)

(13)

to simplify the resulting expression yields

Result 1: Diffusive Source Boundary Condition

φ(x) + 2A(η)κd(x)(~n · ~∇)φ(x) =
4

Fdt(η)
Γs(x) (14)

6 FINITE ELEMENT DIFFUSION EQUATION

In the last section, we derived the diffusive source
boundary condition (DSBC) to complete the approx-
imation of our heterogeneous scattering problem. In
this section, we solve this problem using the finite
element (FE) method. The result is our second key
result: the finite element diffusion equation (FEDE).

6.1 Overview
The derivation of our FE solution is the same for
any 2nd-order partial differential equation (PDE), such
as the diffusion equation (DE), and has two steps.
The first step converts the PDE into a new problem,
its weak form. Given a space of functions H, the
weak form defines an optimization problem over all
functions in H. This problem’s optimal function, the
weak solution, is a generalized solution of the original
PDE: either it is the PDE’s exact solution or it is that
solution’s closest approximation in H. In the second
step, one assumes that H was constructed from the
span of a finite basis (see Section 8.1 for an example).
Then, given this basis, the coefficients of the weak
solution can be expressed as the solution vector of a
linear system. This linear system is the FE solution to
the original PDE.

All FE solutions have three important properties
[1], [14], [35]. First, if all the PDE’s coefficients are
bounded and have bounded derivatives7, then the FE
matrix is positive definite and always has a solution.
Second, the components of the FE matrix are non-zero
only when the support of the basis functions overlaps.
If the basis functions are spatially compact (as most

7. This condition is stronger than necessary. It is sufficient for the
coefficients to lie in a 1st-order Sobolev space but the introduction
of these spaces is beyond the scope of this discussion. See [14] and
[1] for a full treatment.

common bases are), then the FE system is sparse and
can be computed efficiently. Third, the FE solution is
the optimal approximation (as measured by the L2

norm) in the given basis to the PDE’s true solution.
Together these three properties ensure that the FE
solution is both accurate and efficient.

In the rest of this section, we derive the FE solution
to the DE, the FEDE. Our derivation is similar to the
general elliptic weak form [14] but we tailor the general
form specifically to the diffusion problem. To make the
equations in this derivation more compact, we omit,
in any term, both the independent spatial variable x
and the index of refraction variable η.

6.2 Weak Form

First we derive the weak form of the DE. In this step,
let H be an arbitrary space of functions and let θ be
any function in H. Then multiply Equation (3) by θ
and integrate over the scattering domain Ω.

−
∫
Ω

(~∇ · (κd(x)~∇φ(x)))θ dx+
∫
Ω

σaφθ dx =
∫
Ω

Q0θ dx

(15)
By definition the left hand side of the weak form must
be a bilinear functional over the functions φ and θ.
To achieve this, transform Equation (15) in two steps.
First use the

Divergence Theorem∫
Ω

~∇u · v dx =
∫
∂Ω

u(v · ~n) ds−
∫
Ω

u(~∇ · v) dx (16)

to integrate the first term by parts.

∫
Ω

κd~∇φ · ~∇θ dx−
∫
∂Ω

κd(~n · ~∇)φθ ds

+
∫
Ω

σaφθ dx =
∫
Ω

Q0θ dx (17)

Second use the DSBC (Equation (14)) to eliminate the
gradient term in Equation (17). This yields the

Diffusion Weak Form

Find φ such that ∀ θ ∈ H,∫
Ω

κd~∇φ · ~∇θ dx+
∫
Ω

σaφθ dx+
1

2A

∫
∂Ω

φθ ds

=
∫
Ω

Q0θ dx+
2

AFdt

∫
∂Ω

Γsθ ds (18)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 9

6.3 Matrix Equation
To finish the derivation, we convert Equation (18) into
a linear system. First, assume that H has a finite basis:

B(x) =
{
β0(x), β1(x), . . . , βn−1(x)

}
Given this basis, the weak form is equivalent to
ensuring that Equation (18) only hold for each βi ∈ B.
If n = |B|, then this is a system of n equations for φ.∫

Ω

κd~∇φ · ~∇βi dx+
∫
Ω

σaφβi dx+
1

2A

∫
∂Ω

φβi ds

=
∫
Ω

Q0βi dx+
2
AF

∫
∂Ω

Γsβi ds ∀βi ∈ B (19)

Next, since φ ∈ H, there exist some constants ai such
that

φ =
n−1∑
i=0

aiβi. (20)

Expanding φ in Equation (19) using Equation (20) re-
sults in an system of linear equations for the solution’s
coefficient vector ~a. This linear system is

Result 2: Finite Element Diffusion Equation

F~a = (D + M + S)~a = (~q + ~g) =~r (21)

where

Dij =
∫
Ω

κd~∇βi · ~∇βj dx ~qi =
∫
Ω

Q0βi dx

Mij =
∫
Ω

σaβiβj dx ~gi =
2

AFdt

∫
∂Ω

Γsβi ds

Sij =
1

2A

∫
∂Ω

βiβj ds

7 QUERY FUNCTION

Finally, to finish the derivation of our finite element
(FE) subsurface rendering algorithm, we derive our
third key result: the render query function. This func-
tion converts the fluence solution of the finite element
diffusion equation (FEDE) into exitant subsurface
radiance. Due to the approximations of the diffusion
equation (DE) and its FE solution, an accurate query
function must address two computational issues.

First, as the isotropy condition of the diffusion
approximation (DA) breaks down, the DE solution
can begin to contain erroneous angular variation. To
avoid these errors, this variation must be averaged.
Since, as the DA becomes more accurate, the true
solution and the average solution converge [23], this
averaging tends to remove artifacts without consider-
ably increasing overall error. Second, as part of our FE
solution, the fluence φ(x) was projected onto a finite

mesh basis. Since for most bases this projection is a
more accurate approximation of φ(x) than its gradient
is an approximation of ~∇φ, accurate query functions
should not compute fluence gradients.

Together the above issues define our query function.
To smooth the erroneous angular variation, the ini-
tial query averages the subsurface radiance refracted
outward from the scattering material.

L(x, ~ω) =
Ft(η, ~ω)

π

∫
(~n·~ω)>0

Ld(x, ~ω)(~ω · ~n) d~ω (22)

Next, this initial radiance query is converted to a
fluence query by substituting DA (Equation (2)) and
simplifying with Equation (10).

L(x, ~ω) =
Ft(η, ~ω)

4π

[
φ(x)− 2κd(x)(~n · ~∇)φ(x)

]
(23)

Finally, we use the diffusive source boundary condition
(DSBC) (Equation (14)) to remove the less accurate the
gradient term yielding:

Result 3: Query Function

L(x, ~ω) =
Ft(η, ~ω)

4π
×(1 +

1
A(η)

)
φ(x)− 4

Fdt(η)A(η)
Γs(x)

 (24)

8 IMPLEMENTATION

In the last three sections, we derived the three key
results that underlay the basic four-step finite element
(FE) rendering algorithm described in Section 3. This
section reviews several implementation details that
ensure the algorithm’s performance and quality.

8.1 Tetrahedral Mesh Basis

For our FE basis, we chose a piecewise-linear basis on a
tetrahedral mesh. To construct this basis, we associate
each mesh vertex with a basis function. Each basis
function equals one at its associated vertex and linearly
decreases to zero across the one ring of tetrahedra
that include this vertex. Elsewhere, the basis function
equals zero. The 2D analog of these functions are
commonly called “tent" basis functions. We chose
to use tetrahedral cells, rather than hexahedral cells
like Wang et al. [47], because there are many, well-
studied algorithms for quickly generating high-quality,
tetrahedral meshes within a triangular surface mesh.
For other cell types, this is a more difficult problem.
For our examples, we used Tetgen [40] to generate our
meshes.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 10

SparseMatrix f_mat;
Vector r_vec;

matrix.zero();
rhs.zero();
foreach Tet t in mesh {
foreach QuadPt pt in Tet {
foreach Basis i in Tet {
foreach Basis j in Tet {
f_mat[i,j] +=

pt.wt * Kd(pt) * dot(grad(i,pt),(grad(j,pt)));
f_mat[i,j] +=

pt.wt * sigA(pt) * value(i,pt) * value(j,pt);
}
r_vec[i] += pt.wt * src(pt) * value(i,pt);

}}

foreach Face f of Tet {
if(f on boundary) {
foreach QuadPt pt on f {
foreach Basis i in Tet {

foreach Basis j in Tet {
f_mat[i,j] +=
(0.5/A) * pt.wt * value(i,pt) * value(j,pt);

}
r_vec[i] +=
(2/A) * pt.wt * gamma(pt) * value(i,pt);

}}}}}

Fig. 6: Pseudo-code for the assembly algorithm. Here Kd(pt),
sigA(pt), src(pt) and gamma(pt) are functions that return the
values of κd(x), σa(x), Q0(x) and Γs(x) respectively. The functions
grad(i,pt) and value(i,pt) return the gradient and value respec-
tively of the ith basis function. Finally, dot computes a dot product
and pt.wt is the weight of the quadrature point.

8.2 Assembly of Finite Element Matrix

Given a tetrahedral mesh of the domain, the finite
element diffusion equation (FEDE) (Equation (21)) can
be written as a sum of integrals over the tetrahedra
volumes and faces. For example, if T is the set of all
tetrahedra and Ωt is the volume of tetrahedron t, an
entry in Dij (see Equation (21)) can be written as

Dij =
∑
t∈T

∫
Ωt

κd~∇βi · ~∇βj dx (25)

However, the terms in this sum are only non-zero if the
supports of βi and βj overlap. For our piecewise-linear
basis, this happens only if vertices i and j are part
of the same tetrahedron. Given this restricted domain
of integration, the assembly of Equation (21) can be
expressed as a loop over all tetrahedra. Further, we
compute integrals like Equation (25) using quadrature.
In this case, computing each integral term reduces to
computing the sum of the values of the integrand at
a series of quadrature points. Our results in Section
9 use 2nd order 3D Gaussian quadrature. When using
quadrature, the general assembly algorithm reduces
by a small set of nested loops over tetrahedra, quadra-
ture points and basis functions (see Figure 6 for the
complete pseudo-code).

8.3 Material and Source Projection

During the assembly process, the scattering parameters,
κd(x) and σa(x), and the source functions, Γs(x)
and Q0(x), are sampled onto a regular spacing of
quadrature points. If these terms have sufficiently high
frequencies this sampling will cause aliasing that is
visible in the solution. To avoid these errors, the source
and material terms are first projected onto the FE basis
and then sampled. For our piecewise linear basis, this
projection corresponds to sampling the functions at
the vertices of the tetrahedral mesh and interpolating
within each cell.

8.4 Solving the Linear System

To solve the FEDE, any sparse matrix algorithm could
be used but our implementation uses the conjugate
gradient algorithm with the symmetric successive over-
relaxation (SSOR) preconditioner. As mentioned in
Section 6.1, if the material coefficients and source
functions are bounded and have bounded derivatives,
this solution exists. However, if these conditions are
violated, the derivatives required to construct the
FEDE may not exist or the FEDE matrix may be
singular. Additionally, using quadrature to construct
the FEDE could result in a singular equation even if the
exactly computed system would have been invertible.
Conveniently, using the pre-projection discussed above
avoids both of these issues. However, even without
projection, in all our tests of the prototype, including
tests with discontinuous material and source functions,
our conjugate gradient solver converged.

8.5 Adaptive Mesh Refinement

To ensure accuracy across as range of scales, our
implementation uses adaptive mesh refinement to
capture subsurface detail. However, to support this
refinement we must address two important issues:
non-conforming meshes and refinement heuristics.

8.5.1 Non-conforming Meshes

Adaptively refining a mesh creates T-junction vertices
when neighboring tetrahedra have differing levels of
refinement. These vertices are problematic because,
when present, the span of the resulting basis contains
discontinuous functions. These discontinuous func-
tions violate implicit assumptions required to use the
divergence theorem (see Equation (17)) to derive the
weak form. When T-junctions are present, continuity
must be imposed by constraining the coefficients of the
t-junction basis functions. Creating and enforcing these
constraints is a complex, but solved, problem in FE
analysis beyond the scope of this paper (for the details
of a complete implementation see [4]). However FE
tools exist that create these constraints automatically.
Our implementation uses LibMesh [28].

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 11

8.5.2 Refinement Heuristics
To refine our meshes, we implemented two simple
refinement heuristics. Before the FEDE is assembled,
our implementation initially refines the mesh using
the following conditions, once each, in order:

1) all tetrahedra visible from the camera; and then
2) all tetrahedra with large changes in the material

coefficients.
To choose the tetrahedra in the second condition, σa(x)
and σs(x) are computed at all the vertices of the
mesh. Then, for each tetrahedron, the largest relative
difference among all pairs of vertices is determined.
All tetrahedra with a local difference greater than one
deviation above the mean are refined.

We considered a third condition that, similar to
the material refinement condition, would refine cells
along shadow edges. However, even for scenes with
point sources, this condition did not increase accuracy.
Subsurface scattering naturally blurs all shadow edges
slightly. After both of the above conditions were
applied, the surface tetrahedra were already suffi-
ciently small to capture these blurred edges accurately.
However, our algorithm supports arbitrary refinement
and, if necessary, new refinement heuristics could be
trivially implemented.

8.6 Single Scattering
Finally, single scattering—light that scatters exactly
once in the medium—is usually poorly modeled by
the diffusion equation (DE). As noted in previous
work [27], accuracy can be improved if the single
scattering is simulated more accurately [20] and the
diffusion solver is used only for the remaining multiple
scattering. To account for the removal of the single
scattering in our subsurface computation, we subtract
the total power of the single scattering component from
the total power of the reduced intensity (RI) source.

9 RESULTS

This section demonstrates that our finite element algo-
rithm is an efficient and accurate rendering method for
general heterogeneous subsurface scattering problems.
The analysis in this section assesses the results of the
new renderer on a set of four distinct test scenes. This
section has five parts. The first two describe the test
scenes and the details of the rendering computation.
The last three sections use these results to highlight the
advantages of the new renderer. Section 9.3 itemizes
the costs of the finite element (FE) algorithm and notes
that the new algorithm adds at most 3 minutes to
rendering cost; Section 9.4 demonstrates that the test
images are nearly identical to exact images produced
with a Monte Carlo (MC) path tracer; and Section 9.5
discusses the improvements the new algorithm makes
over the most advanced previous method, Wang et al.
[47].

Model Initial Tets Time† Refined Tets Time†

Bunny 427,918 40.8s 427,918 0s
Dragon 375,919 59.5s 1,084,599 73s
Buddha 429,158 79.0s 1,369,965 103s
Geode 849,763 60.0s 1,317,804 103s

(a) Mesh sizes, generation cost and refinement cost. Costs
range from 40-123 seconds.

Model
Base Costs FE Costs

Total
Source Surface Assembly Solve†

Bunny 4s 32s 9s 5s 50s
Dragon 28s 59s 35s 71s 193s
Buddha 29s 40s 44s 137s 250s
Geode 152s 108s 38s 88s 386s

(b) Rendering costs by model and category. Rendering times vary
from 1 to 6 minutes.

TABLE 1: Summary of the rendering costs and model parameters for
our four test scenes: Bunny, Dragon, Buddha and Geode. Operations
marked with † are run on a single processor.

9.1 Scenes
The prototype implementation was tested using the
scenes shown in Figure 1. Each has a different ge-
ometry and material. The test scenes were chosen to
demonstrate the range of effects a general, high-quality
heterogeneous solver can reproduce.

Bunny uses a marble texture to simulate scattering in
a complex, aggregate material. The bunny scene uses a
relatively smaller mesh and simple lighting. This scene
emphasizes that in small scenes the FE algorithm only
adds a few seconds to the image cost when compared
to Wang et al. [47].

Dragon is modeled using an optically thinner material
similar to translucent plastic. This model shows that
our solution can capture smooth changes in color and
opacity.

Buddha contains a checkerboard of homogeneous
marble and jade-like materials. The material is difficult
because the solver must simultaneously capture the
sharp edges in the material properties but also correctly
simulate the smooth translucency in thinner geometry.

Geode pushes the limits of our FE algorithm. It
demonstrates that the FE approach can easily scale
to capture complex, high-frequency scattering even in
a very difficult lighting environment where all light
passes through the material.

9.2 Details of the Rendering Computation
All results were generated on a 8 x 2.66Ghz Xeon
workstation with 8GB of RAM and all images are
640x480 pixels. Tables 1(a) and 1(b) summarize the
model size, mesh creation costs and rendering time
for each scene. All of these costs are fully parallelized
except the mesh creation, the mesh refinement and
the FE matrix solution costs. Since parallel implemen-
tations of these operations were not available, these

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 12

times are performed on a single core. Each image is
16x anti-aliased but, for our FE solver, anti-aliasing
is essentially free. Once our FE solution is computed,
the computation of each sample reduces to a single
evaluation of the render query function.

The surface and single scattering components of
our images are computed using a combination of
Multidimensional Lightcuts (MDLC) [45] and an an-
alytical single scattering approximation [20]. Our FE
implementation is split between Java, which provides
an implementation of MDLC, and C++, which provides
an interface to the LibMesh [28] library. The LibMesh
library provides our conjugate gradient matrix solver
and mesh iteration and refinement functions.

The Geode model is lit by a small area source,
Buddha and Dragon are lit by the Kitchen environment
map [9] and the Bunny is lit by a small spherical
source. All images, unless otherwise noted, include
global illumination approximated by 100,000 virtual
indirect sources.

9.2.1 Reference Path Tracer
Our reference path tracer is highly optimized. It is fully
parallelized and importance samples all subsurface
paths. Further, we dramatically accelerate the path
tracer by modeling the heterogeneous material as a
large, piecewise constant grid of homogeneous cells.
To create the path tracing grid, we assign each grid
cell the scattering parameters of its center point. Since
the interior of each grid cell is homogeneous, the path
tracer can generate path segments within each cell
without ray marching or repeated material queries.
We chose the grid size so that this change had no
effect on the final image quality. For all scenes, a grid
with 256 cells in the longest dimension was sufficient.
We chose the size of the remaining dimensions so the
cells were cubical8. Without this optimization, the cost
of the reference path tracer would have been probative.

9.2.2 Material Parameters
The material models used in the test scenes were
synthesized by orthographically projecting an im-
age through the scattering geometry and using the
pixel values to determine values for the scattering
coefficients σa and σs. The parameters used in this
generation, as well as the source images, are provided
in Table 2. Each material coefficient is specified by
three colors and an image. The first two colors, range
min and max, are used to rescale the image to the
dynamic range of the scattering parameter and the last
color sets the parameter’s overall scale. To compute a
scattering parameter at a particular point, one finds
the corresponding pixel in the rescaled image, inverts
it and multiplies by the base scale. The inversion is

8. To ensure the sharp edges in the Buddha scene, we aligned
this rendering grid with the larger checker grid in the Buddha’s
material.

(a) (b) (c) (d) (e)

Param. Range Min Range Max Base Scale Tex.
Dragon σa (.05, .05, .05) (1.0, 1.0, 1.0) (0.75, 1.25, 1.75) (d)
Dragon σs (.25, .25, .25) (1.0, 1.0, 1.0) (16.7, 16.7, 16.7) (e)
Geode σa (.01, .01, .01) (1.0, 1.0, 1.0) (5.0, 5.0, 5.0) (c)
Geode σs constant constant (5.0, 5.0, 5.0) –
Buddha σa constant constant (1.63, 1.18, 4.5) –
Buddha σs (.05, .05, .05) (1.0, 1.0, 1.0) (16.7, 16.7, 16.7) (a)
Bunny σa (.05, .05, .05) (3.5, 3.5, 3.5) (7.8, 7.8, 7.8) (b)
Bunny σs (.60, .60, .60) (1.0, 1.0, 1.0) (13.1, 15.7, 18.0) (b)

TABLE 2: Parameters used to procedurally generate the volume
scattering textures. Section 9.2.2 describes our procedural material
model.

necessary because the material parameters specify how
much light is removed during scattering whereas, in
the image, the colors specify how much light should
be added to each pixel.

9.3 Performance

Table 1 breaks down the cost of the new FE algorithm
by component. From new scene to final image, the
system requires between 2 and 10 minutes. This cost
can be roughly divided into 2 parts: meshing costs and
rendering costs. First, Table 1(a) gives mesh sizes and
the costs of mesh generation and refinement. Because
the FE algorithm is agnostic to how the scattering
domain is discretized, it can use the most efficient
meshing algorithms available. For unstructured trian-
gular surface meshes, tetrahedralization is fast (1-2
minutes for all examples) and produces a high quality
discretization [40].

Second, Table 1(b) gives the cost to render each
image after the mesh has been computed. For the
four test scenes, these costs total between 50s and
6 minutes. These costs are further split into two
categories. The base costs—computing the boundary
source and rendering the surface component—are
performed by a separate surface rendering method
and are independent of the subsurface rendering
algorithm. Only the costs of assembling the finite
element diffusion equation (FEDE) and solving it are
inherent to our new FE algorithm. For all test scenes,
these costs total less than 3 minutes and, except for the
Buddha image, are less than half of the rendering cost.
Thus, in most scenes, the cost of adding subsurface
scattering roughly equals the cost of rendering high-
quality images without subsurface scattering. For a
simple scenes where this base cost is smaller, like the
Bunny, the our FE algorithm adds only 15s to the total
render time.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 13

1x Difference 1x Difference

Path Tracing (76h 40m 30s) 4x Difference Path Tracing (5h 19m 49s) 4x Difference

Fig. 7: Path traced reference images for Geode and Buddha from Figure 1. Their absolute difference and 4x magnified difference are presented
on the right of each image.

9.4 Comparison with Monte Carlo

Demonstrating the quality of our algorithm, Figures 1
and 7 compare our Dragon, Buddha and Geode images
with the same images produced by an exact, MC
path tracer. Compared to previous work in subsurface
rendering, there is impressive agreement between these
two sets of images. However, neither set of images is
perfect. Despite thorough optimization (Section 9.2.1
above), the path tracing algorithm is still expensive.
To avoid excessive computation, the path tracing was
performed progressively and was stopped as soon as
the noise fell below a level permitting a reasonable
comparison. Computing noise-free images would at
least double the multiple-hour cost of the path traced
references. As expected, the new algorithm has a
considerable advantage in performance. It generates
noise-free images in a few minutes.

To facilitate the quality comparison, absolute error
images are provided. These error images are nearly
black, so 4x magnified versions reveal differences.
There are two principle differences. First, particularly
prominent in the Buddha and Geode images, the path
tracer is able to capture highlights from caustic paths
that do not scatter within the material. However, since
these caustic paths are not part of the subsurface
scattering, this is an error of our MDLC surface render,
not our FE algorithm. Second, because the diffusion
equation (DE) treats all diffusive radiance as nearly
isotropic, it tends to overestimate the frequency of scat-
tering in thin geometry and near the surface and, as a
consequence, it underestimates contributions from low
order scattering events. This slightly darkens regions
when they are lit from behind as in the optically thinner
parts of the Dragon and Geode and slightly lightens
highly absorptive regions viewed directly, as in the
darker checkers on the Buddha. However, overall,
these differences are only visible in the magnified
errors images and result from fundamental limitations
in the diffusion approximation (DA) Given the orders-
of-magnitude difference in performance, these results
demonstrate that our FE algorithm is suitable even for
high quality rendering applications.

(a) FD original (b) FD corrected (c) FE

(d) MC (e) 4x FD error (f) 4x FE error
Fig. 8: Images of a constant scattering white bunny lit by two area
lights, fill below and key above: Figure 8(a) as described in Wang et
al. [47] with negative radiance areas highlighted in red; Figure 8(b)
corrected using derivation in Section 5; Figure 8(c) our FE algorithm;
Figure 8(d) MC reference; Figure 8(e) 4x absolute error of Figure 8(b);
and Figure 8(f) 4x absolute error of Figure 8(c).

Photograph Path tracer

Fig. 9: Comparison of the photograph artificial stone slab captured by
Wang et al. [47] to a path traced rendering of the resulting material
parameters. The authors have confirmed that this comparison is
accurate.

9.5 Comparison to Wang et al. [2008]

As a final test, we compare our new renderer to the best
existing approach, Wang et al. [47]. Since the focus of
our new algorithm is quality, rather than performance,
the comparison is made to a software version of their
iterative finite difference (FD) algorithm. This software
renderer omits the multi-resolution approximation
originally required to achieve interactive performance.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 14

For our comparisons, we allow the FD algorithm to
update fully each step and iterate until the solution
converges. However, despite these improvements, we
demonstrate that the FD algorithm has lower quality
and requires an expensive PolyGrid [43] mesh that
introduces rendering errors and diverges for some
materials.

To facilitate our comparison, Wang et al. [47] kindly
provided their measured material data and a PolyGrid
[43] bunny model. As an initial test, several images
of the bunny with a white, homogeneously scattering
material (see Figure 8) were created. Unfortunately, as
noted in Section 2.4.1 and [3], their original diffusion
formulation was incorrect and, as a result, their origi-
nal algorithm sometimes computes negative radiance
solutions. As shown in red in Figure 8(a), this happens
almost everywhere on the homogeneous bunny. In the
original work, this error was corrected by altering the
material parameters during the capture optimization
and, as a result, this error did not manifest itself in any
of the authors’ original results. Figure 9 demonstrates
this correction. It compares a path traced rendering of
the captured artificial stone material with a photograph
of the original object. The lack of saturation in the MC
result suggests that the acquired parameters have sig-
nificantly less absorption, making the image brighter.
Wang et al. [47] have confirmed the mismatch in Figure
9. In order to make the remaining comparisons in this
section fair, we use our correct formulation in further
comparisons with their approach.

The rest of the images in Figure 8 directly compare,
for meshes of equal size, Wang et al.’s FD algorithm,
the new FE algorithm and a path traced reference
(Figures 8(b), 8(c) and 8(d) respectively). Figures
8(e) and 8(f) display the error of the FD and FE
methods. Since both algorithms depend on the DE,
neither solution can produce an exact answer. However,
because the FD algorithm relies on a special PolyGrid
mesh [43], it has at least three additional sources of
error.

1) The diffusive source boundary condition (DSBC)
is enforced only approximately by using special,
smaller PolyGrid cells on the boundary.

2) The overall distortion of the PolyGrid can be only
approximately modeled during the FD solution.

3) Creating the uniformly connected PolyGrid re-
quired of the FD solver requires deleting some
nodes to along all boundary edges of the grid.
This introduces error in the solution near these
edges and especially at the grid corners.

Additionally, for certain materials, the iterative FD
algorithm can also be unstable. In Figure 10, the Bunny
model is rendered with three similar materials using
both the FD and FE algorithms. The first material (left)
is homogeneous and the two methods are mostly in
agreement. However, in the center and right columns,
a checker board is introduced by scaling the mean free

FE
M

et
ho

d
FD

M
et

ho
d

Homogeneous Checker MFP 3x Checker MFP 4x

Fig. 10: An example of divergence in the iterative FD solver used by
Wang et al. [47]. The bunny’s material is varied from a homogeneous
green material (left) toward the material used in the Buddha (see
Figure 1) by scaling the mean free path (MFP) of the material in the
lighter squares. The FD algorithm diverges beyond a 3x scale (middle;
see spots in ear, head and foot) and prominently at a 4x scale (right).

path of the material in alternating sections. As this
happens, the FD method diverges. In the middle and
right columns, the mean free path has been reduced
by factors of 3x and 4x respectively. For these cases,
the FD algorithm was stopped after 500 iterations to
prevent the fluence from overflowing. In both images,
the solution is beginning to diverge in the ears, head
and foot. Our algorithm does not have this instability.

Clearly, unlike Wang et al. [47], our algorithm
is not interactive but, to compare performance, we
must note that in Wang et al. [47] only part of the
complete rendering calculation is interactive. The costs
of mesh construction were not presented in [47] but the
author’s noted they required hand optimization which
could take hours. Our automated method requires
a few minutes (see Table 1(a)). When considering
rendering costs, the surface and source computations
are independent of either algorithm and could, as
demonstrated in [47], be done in real-time on the GPU.
We forgo this optimization for our results because
it introduces considerable error and would prevent
our overall solution from matching the path traced
reference. In the end, the only directly comparable
costs are our matrix assembly and its solution and, for
a simple scene (see Figure 1 and Table 1, Bunny) like
those in Wang et al. [47], these steps add only 15s to
the image cost for our mainly single threaded, CPU
implementation.

10 CONCLUSION

In this paper, we presented an efficient, general
and high-quality rendering algorithm for complex
heterogeneous materials. To create this algorithm,
we corrected errors in previous work and derived
an accurate diffusive scattering problem. Then, by
accurately solving that problem with the finite element
(FE) method, we reduced subsurface rendering to a

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 15

simple and adaptable four-step algorithm. To validate
this algorithm, we created an general implementation
and tested its accuracy on a series of four difficult
scenes. These results demonstrate that our algorithm
can render images in a few minutes that are nearly
identical to accurate path traced images produced in
hours and that this algorithm significantly improves
upon both the quality and generality of the best
previous methods.

10.1 Limitations and Future Work
Of course, despite its advantages, our algorithm has
its own limitations and future work remains. First,
our solution is directly limited in accuracy by the
diffusion approximation (DA) as a scattering model.
Similar to Li et al. [32], interesting future work could
consider detecting where the diffusive simulation is
inaccurate and compute these inaccurate regions with
a more accurate algorithm. Second and related, there is
the more general question of rendering diffusive and
non-diffusive aggregates of material, such as a crystal,
which might have both translucent and transparent
regions randomly dispersed throughout. Third, by for-
mulating subsurface scattering as a general FE problem,
we open the door to the application of the full breadth
of FE theory, including robust adaptive refinement,
higher order bases, and multi-resolution solvers. New
work could explore how to better leverage these tools
to improve the quality and performance of algorithms
like ours. Finally, there is immediate future work
in considering how to parallelize and enhance the
performance of our algorithm both on and off the
GPU.

REFERENCES
[1] R. T. Ackroyd, Finite Element Methods for Particle Transport:

Applications to Reactor and Radiation Physics. Research Studies,
1997.

[2] A. Arbree, B. Walter, and K. Bala, “Single-pass scalable
subsurface rendering with lightcuts,” Computer Graphics Forum,
vol. 27, no. 2, pp. 507–516, April 2008. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2008.01148.x

[3] ——, “Diffusion formulation for heterogeneous subsurface
scattering,” Cornell University Computing and Information
Science, Tech. Rep. http://hdl.handle.net/1813/14199, 2009.

[4] W. Bangerth and O. Kayser-Herold, “Data structures and
requirements for hp finite element software,” Institute for
Scientific Computation, Texas A&M University, Tech. Rep. ISC-
07-04-MATH, 2007.

[5] N. A. Carr, J. D. Hall, and J. C. Hart, “Gpu algorithms for
radiosity and subsurface scattering,” in HWWS ’03: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2003, pp. 51–59.

[6] C.-W. Chang, W.-C. Lin, T.-C. Ho, T.-S. Huang, and J.-H.
Chuang, “Real-time translucent rendering using gpu-based
texture space importance sampling,” Computer Graphics Forum,
vol. 27, no. 2, pp. 517–526, apr 2008.

[7] Y. Chen, X. Tong, J. Wang, S. Lin, B. Guo, and H.-Y. Shum,
“Shell texture functions,” in SIGGRAPH ’04: ACM SIGGRAPH
2004 Papers. New York, NY, USA: ACM, 2004, pp. 343–353.

[8] C. Dachsbacher and M. Stamminger, “Translucent shadow
maps,” in EGRW ’03: Proceedings of the 14th Eurographics
workshop on Rendering. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2003, pp. 197–201.

[9] P. Debevec, “Image-based lighting,” IEEE Comput. Graph. Appl.,
vol. 22, no. 2, pp. 26–34, 2002.

[10] C. Donner and H. W. Jensen, “Light diffusion in multi-layered
translucent materials,” in SIGGRAPH ’05: ACM SIGGRAPH
2005 Papers. New York, NY, USA: ACM, 2005, pp. 1032–1039.

[11] ——, “Rendering translucent materials using photon diffusion,”
in Eurographics Symposium on Rendering 2007, 2007, pp. 243–251.

[12] C. Donner, T. Weyrich, E. d’Eon, R. Ramamoorthi, and
S. Rusinkiewicz, “A layered, heterogeneous reflectance model
for acquiring and rendering human skin,” ACM Trans. Graph.,
vol. 27, no. 5, pp. 1–12, 2008.

[13] J. Dorsey, A. Edelman, H. W. Jensen, J. Legakis, and H. K.
Pedersen, “Modeling and rendering of weathered stone,” in
SIGGRAPH ’99: Proceedings of the 26th annual conference on
Computer graphics and interactive techniques. New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 1999, pp.
225–234.

[14] L. C. Evans, Partial Differential Equations. American Mathe-
matical Society, 1998.

[15] T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory
model of spatially resolved, steady-state diffuse reflectance for
the noninvasive determination of tissue optical properties in
vivo,” Medical Physics, vol. 19, no. 4, pp. 879–888, 1992.

[16] A. Ghosh, T. Hawkins, P. Peers, S. Frederiksen, and P. Debevec,
“Practical modeling and acquisition of layered facial reflectance,”
ACM Trans. Graph., vol. 27, no. 5, pp. 1–10, 2008.

[17] A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances
in diffuse optical imaging,” Physics in Medicine and Biology,
vol. 50, no. 4, pp. R1–R43, 2005.

[18] M. Goesele, H. P. A. Lensch, J. Lang, C. Fuchs, and H.-P. Seidel,
“Disco: acquisition of translucent objects,” in SIGGRAPH ’04:
ACM SIGGRAPH 2004 Papers. New York, NY, USA: ACM,
2004, pp. 835–844.

[19] T. Haber, T. Mertens, P. Bekaert, and F. V. Reeth, “A com-
putational approach to simulate subsurface light diffusion in
arbitrarily shaped objects,” in GI ’05: Proceedings of Graphics
Interface 2005. School of Computer Science, University
of Waterloo, Waterloo, Ontario, Canada: Canadian Human-
Computer Communications Society, 2005, pp. 79–86.

[20] P. Hanrahan and W. Krueger, “Reflection from layered surfaces
due to subsurface scattering,” in SIGGRAPH ’93: Proceedings of
the 20th annual conference on Computer graphics and interactive
techniques. New York, NY, USA: ACM, 1993, pp. 165–174.

[21] X. Hao, T. Baby, and A. Varshney, “Interactive subsurface
scattering for translucent meshes,” in I3D ’03: Proceedings of
the 2003 symposium on Interactive 3D graphics. New York, NY,
USA: ACM, 2003, pp. 75–82.

[22] X. Hao and A. Varshney, “Real-time rendering of translucent
meshes,” ACM Trans. Graph., vol. 23, no. 2, pp. 120–142, 2004.

[23] A. Ishimaru, Wave Propagaion and Scattering in Random Media.
Academic Press, 1978.

[24] H. W. Jensen and J. Buhler, “A rapid hierarchical rendering
technique for translucent materials,” in SIGGRAPH ’02: Pro-
ceedings of the 29th annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM, 2002, pp.
576–581.

[25] H. W. Jensen and P. H. Christensen, “Efficient simulation
of light transport in scences with participating media using
photon maps,” in SIGGRAPH ’98: Proceedings of the 25th annual
conference on Computer graphics and interactive techniques. New
York, NY, USA: ACM, 1998, pp. 311–320.

[26] H. W. Jensen, J. Legakis, and J. Dorsey, “Rendering of wet
materials,” in Rendering Techniques ’99, 1999, pp. 273–282.

[27] H. W. Jensen, S. R. Marschner, M. Levoy, and P. Hanrahan, “A
practical model for subsurface light transport,” in SIGGRAPH
’01: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques. New York, NY, USA: ACM, 2001,
pp. 511–518.

[28] B. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey, “libMesh:
A C++ Library for Parallel Adaptive Mesh Refinement/Coars-
ening Simulations,” Engineering with Computers, vol. 22, no. 3–4,
pp. 237–254, 2006.

[29] J. J. Koenderink and A. J. van Doorn, “Shading in the case of
translucent objects,” Proceedings of the SPIE: Human Vision and
Electronic Imaging VI, vol. 4299, pp. 312–320, 2001. [Online].
Available: http://link.aip.org/link/?PSI/4299/312/1

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (TVCG), VOL. V, NO. N, JANUARY YYYY 16

[30] V. Kolehmainen, “Novel approaches to image reconstruction
indiffusion tomography,” Ph.D. dissertation, Kuopio University,
2001.

[31] H. P. A. Lensch, M. Goesele, P. Bekaert, J. Kautz, M. A. Magnor,
J. Lang, and H.-P. Seidel, “Interactive rendering of translucent
objects,” in PG ’02: Proceedings of the 10th Pacific Conference on
Computer Graphics and Applications. Washington, DC, USA:
IEEE Computer Society, 2002, p. 214.

[32] H. Li, F. Pellacini, and K. E. Torrance, “A hybrid monte
carlo method for accurate and efficient subsurface scattering,”
in Rendering Techniques 2005: 16th Eurographics Workshop on
Rendering, jun 2005, pp. 283–290.

[33] T. Mertens, J. Kautz, P. Bekaert, F. V. Reeth, and H.-P. Seidel,
“Efficient rendering of local subsurface scattering,” in PG ’03:
Proceedings of the 11th Pacific Conference on Computer Graphics and
Applications. Washington, DC, USA: IEEE Computer Society,
2003, p. 51.

[34] T. Mertens, J. Kautz, P. Bekaert, H.-P. Seidelz, and F. V. Reeth,
“Interactive rendering of translucent deformable objects,” in
EGRW ’03: Proceedings of the 14th Eurographics workshop on Ren-
dering. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2003, pp. 130–140.

[35] K. W. Morton, Numerical Solution of Convection-Diffusion Prob-
lems. Chapman and Hall, 1996.

[36] M. Pauly, T. Kollig, and A. Keller, “Metropolis light transport for
participating media,” in Proceedings of the Eurographics Workshop
on Rendering Techniques 2000. London, UK: Springer-Verlag,
2000, pp. 11–22.

[37] P. Peers, K. vom Berge, W. Matusik, R. Ramamoorthi,
J. Lawrence, S. Rusinkiewicz, and P. Dutré, “A compact factored
representation of heterogeneous subsurface scattering,” in
SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers. New York,
NY, USA: ACM, 2006, pp. 746–753.

[38] M. Pharr and P. Hanrahan, “Monte carlo evaluation of non-
linear scattering equations for subsurface reflection,” in SIG-
GRAPH ’00: Proceedings of the 27th annual conference on Computer
graphics and interactive techniques. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 2000, pp. 75–84.

[39] M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy,
“The finite element method for the propagation of light in
scattering media: Boundary and source conditions,” Medical
Physics, vol. 22, no. 11, pp. 1779–1792, 1995.

[40] H. Si and K. Gaertner, “Meshing piecewise linear complexes
by constrained delaunay tetrahedralizations,” in Proceedings of
the 14th International Meshing Roundtable, sep 2005, pp. 147–163.

[41] P.-P. Sloan, B. Luna, and J. Snyder, “Local, deformable precom-
puted radiance transfer,” in SIGGRAPH ’05: ACM SIGGRAPH
2005 Papers. New York, NY, USA: ACM, 2005, pp. 1216–1224.

[42] J. Stam, “Multiple Scattering as a Diffusion Process,” in
Eurographics Rendering Workshop 1995. Eurographics, 1995,
pp. 41–50.

[43] M. Tarini, K. Hormann, P. Cignoni, and C. Montani, “Polycube-
maps,” in SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers. New
York, NY, USA: ACM, 2004, pp. 853–860.

[44] X. Tong, J. Wang, S. Lin, B. Guo, and H.-Y. Shum, “Modeling
and rendering of quasi-homogeneous materials,” in SIGGRAPH
’05: ACM SIGGRAPH 2005 Papers. New York, NY, USA: ACM,
2005, pp. 1054–1061.

[45] B. Walter, A. Arbree, K. Bala, and D. P. Greenberg, “Multidi-
mensional lightcuts,” in SIGGRAPH ’06: ACM SIGGRAPH 2006
Papers. New York, NY, USA: ACM, 2006, pp. 1081–1088.

[46] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian,
and D. P. Greenberg, “Lightcuts: a scalable approach to
illumination,” in SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers.
New York, NY, USA: ACM, 2005, pp. 1098–1107.

[47] J. Wang, S. Zhao, X. Tong, S. Lin, Z. Lin, Y. Dong, B. Guo,
and H.-Y. Shum, “Modeling and rendering of heterogeneous
translucent materials using the diffusion equation,” ACM Trans.
Graph., vol. 27, no. 1, pp. 1–18, 2008.

[48] R. Wang, J. Tran, and D. Luebke, “All-frequency interactive
relighting of translucent objects with single and multiple
scattering,” in SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers.
New York, NY, USA: ACM, 2005, pp. 1202–1207.

Adam Arbree Adam’s Bio.

Bruce Walter Bruce’s Bio.

Kavita Bala KB’s Bio

