
Appears in SIGGRAPH 2007.

Matrix Row-Column Sampling for the Many-Light Problem
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Figure 1: In the above images, over 1.9 million surface samples are shaded from over 100 thousand point lights in a few seconds. This is
achieved by sampling a few hundred rows and columns from the large unknown matrix of surface-light interactions.

Abstract

Rendering complex scenes with indirect illumination, high dynamic
range environment lighting, and many direct light sources remains
a challenging problem. Prior work has shown that all these effects
can be approximated by many point lights. This paper presents
a scalable solution to the many-light problem suitable for a GPU
implementation. We view the problem as a large matrix of sample-
light interactions; the ideal final image is the sum of the matrix
columns. We propose an algorithm for approximating this sum by
sampling entire rows and columns of the matrix on the GPU using
shadow mapping. The key observation is that the inherent struc-
ture of the transfer matrix can be revealed by sampling just a small
number of rows and columns. Our prototype implementation can
compute the light transfer within a few seconds for scenes with in-
direct and environment illumination, area lights, complex geometry
and arbitrary shaders. We believe this approach can be very useful
for rapid previewing in applications like cinematic and architectural
lighting design.
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1 Introduction

Rendering complex scenes with indirect illumination, high dynamic
range environment lighting, and many direct light sources remains a
challenging problem. Previous research [Keller 1997; Walter et al.
2005] has shown how all these sources of illumination can be con-
verted into many point lights and treated as a single many-light
problem. However, a brute-force rendering with many thousands
of point lights is itself prohibitively expensive. The recently intro-
duced lightcuts framework [Walter et al. 2005; Walter et al. 2006]
presents a scalable solution for the many-light problem that pro-
duces accurate results in a few minutes of computation, using a
CPU-based raytracer as its basic visibility algorithm. On the other
hand, recent work on real-time lighting and material design (e.g.
[Hašan et al. 2006; Ben-Artzi et al. 2006]) has highlighted the im-
portance of providing high-quality, fast user feedback for changes
to lighting and materials in design tasks. These approaches have
been shown to scale to complex scenes and appearance models by
relying on precomputation to amortize rendering costs, but this lim-
its their applicability to static scenes and fixed appearance models
(i.e., a user can either change the lights or the materials, but not
both). Our goal is complementary to that of prior work. We seek
an efficient solution to the many-light problem that provides fast
user feedback without requiring precomputation, thus supporting
any scene changes. We explicitly target execution on GPUs to take
advantage of their computing power. Furthermore, we seek a so-
lution that supports arbitrary appearance models, expressed as pro-
grammable shaders.

To take advantage of GPU capabilities, we formulate the many-
light problem as a large matrix of sample-light interactions, where
each column represents all samples lit by an individual light, while
each row represents an individual sample shaded by all lights. A
brute-force solution can be computed by accumulating all columns
of such a matrix, thus summing the contribution of each light for
all pixels. We show how this sum can be efficiently approximated
on the GPU. Our key observation is that this matrix is often close
to low rank, so its structure can be revealed by sampling a small
number of rows and columns. The main benefit of this approach
is that GPUs can compute entire rows and columns very efficiently
using shadow mapping.
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This paper makes the following contributions:

• We introduce an algorithm that efficiently uses both rows and
columns of the matrix; in particular, we use the the rows to
select a good set of columns. We demonstrate how row sam-
pling provides valuable information about the structure of the
matrix.

• To analyze the information provided by the computed rows,
we introduce a novel clustering metric to minimize the ex-
pected error of the algorithm. We further show a practical ap-
proach to solve the resulting large-scale discrete optimization
problem.

• Since our algorithm relies on entire rows and columns that can
be evaluated using shadow mapping, we believe our frame-
work to be the first to effectively map the many-light problem
to GPUs.

• By viewing the problem as an abstract matrix with no addi-
tional information, we present a flexible technique that can
handle any light and material type, physically-based or not.

• We present a prototype implementation showing transfer of
illumination from over 100 thousand lights to over 1.9 million
surface samples that achieves high accuracy in a few seconds.

We believe our algorithm would be very useful in many applica-
tions that require high-quality previewing of complex illumination,
including cinematic or architectural appearance design. Our ren-
dering times of a few seconds per image achieve a middle ground
between interactive techniques that compromise quality for perfor-
mance, and high-quality off-line renderers.

2 Related Work

Many lights: Several CPU-based many-light algorithms have been
published. [Ward 1994] sorts the lights to determine which lights to
prune at each pixel. In a Monte Carlo setting, [Shirley et al. 1996]
voxelize the scene to pick important lights, and sparsely sample
unimportant lights. [Paquette et al. 1998] construct hierarchical
trees of lights, but ignore visibility and shadowing.

Lightcuts [Walter et al. 2005; Walter et al. 2006] introduce a hier-
archical, error-bounded rendering algorithm for many lights, based
on a ray-tracer to compute visibility. As in our work, they treat
complex illumination as a problem of computing the interactions
between many sample-light pairs. In our matrix terminology, this
approach subdivides the matrix into blocks, and uses a perceptual
threshold to find blocks that can be efficiently approximated by a
single interaction.

Some interactive CPU-based approaches use ray tracing to sample
visibility in many lights scenes. [Fernandez et al. 2002] cache and
reuse visible lights and blockers, but can require large amounts of
memory. [Wald et al. 2003] importance sample lights to achieve
interactive performance, assuming highly occluded environments.

CPU-based indirect/environment illumination: A closely related
problem to our matrix of light-surface interactions is the matrix of
form-factors studied by radiosity algorithms. Similarly to us, the
goal is to come up with a scalable algorithm that is asymptoti-
cally better than brute-force. A large body of research on hierar-
chical radiosity (HR) was started by the seminal paper [Hanrahan
et al. 1991]. These approaches essentially approximate blocks of
the matrix with a constant, and use error estimation oracles to de-
cide whether to subdivide or approximate. Importance [Smits et al.
1992] can be used to speed up the convergence of these techniques.

Hemicube approaches might be thought of as sampling rows and
columns of the form-factor matrix. Radiosity algorithms usually
work with diffuse surfaces; supporting other materials is possible
but not trivial [Christensen et al. 1997]. Often, an expensive final
gather step is necessary to produce high-quality output from a ra-
diosity algorithm. [Scheel et al. 2001; Scheel et al. 2002] present
techniques to speed up this process.

Irradiance caching [Ward et al. 1988] is a widely used technique
to accelerate Monte Carlo ray-tracing by exploiting the smooth-
ness of illumination; however, it works less well in non-smooth
cases, e.g. detailed geometry, high-frequency environment maps
or indirect shadows from strong secondary sources. Photon map-
ping [Jensen 2001] is commonly used in several different forms:
with and without final gather, and with final gather using irradiance
caching. Without final gather, it can provide fast previews of in-
direct or environment illumination, but with some blurry artifacts.
Several systems cache sparse global illumination samples, allowing
for interactive camera and object movement [Walter et al. 1999;
Ward and Simmons 1999; Tole et al. 2002; Bala et al. 2003].

Environment lighting is similar to indirect illumination in that it
also involves hemisphere integration. On the other hand, there is a
large amount of work dealing specifically with environment maps.
[Agarwal et al. 2003] is similar to our work in that it is also looking
for a clustering (or stratification) that minimizes some expected er-
ror measure. A fast approach to convert an environment to a small
number of lights is given in [Ostromoukhov et al. 2004].

GPU algorithms: Instant radiosity [Keller 1997] presents a solu-
tion to the indirect illumination problem by shooting particles from
light sources and converting surface hits into indirect lights, ren-
dered on graphics hardware as point lights with cosine emission.
Our framework handles indirect illumination similarly, but we cre-
ate a large number of indirect lights and use our row-column sam-
pling algorithm to reduce the computation. We also compare our al-
gorithm to instant radiosity in Section 5. [Carr et al. 2003] present
a radiosity implementation on the GPU for diffuse environments.
[Purcell et al. 2003] presents an implementation of the photon map-
ping algorithm on graphics hardware.

Radiance cache (splatting) [Gautron et al. 2005; Křivánek et al.
2006] presents an algorithm for one-bounce global illumination that
takes advantage of illumination coherence by subsampling it at a
sparse set of locations. Temporal radiance caching [Gautron et al.
2006] accelerates computation of global illumination for image se-
quences by reusing samples between frames. Reflective shadow
maps [Dachsbacher and Stamminger 2005] and Splatting indirect
illumination [Dachsbacher and Stamminger 2006] provide interac-
tive solutions for one-bounce global illumination but neglect shad-
owing effects in the indirect bounces.

PRT algorithms: Finally, several precomputed transfer techniques
have been shown to support interactive previewing of lighting and
material changes in static scenes, e.g. [Ng et al. 2004; Sloan et al.
2002; Hašan et al. 2006; Ben-Artzi et al. 2006]. They do so at the
price of several minutes to hours of precomputation and (in some
cases) fixing the camera.

Theoretical work on row-column sampling: It is not difficult to
see that if a matrix A has rank exactly k, then there exist k rows
and k columns that reveal its structure entirely. In particular, let C
be the matrix of sampled columns, R the matrix of sampled rows,
and W the matrix of intersection elements. If the rows and columns
were chosen so that the rank of W is k, then we have A = CW−1R
– this is called a skeleton decomposition of A. Pseudo-skeleton
approximations [Goreinov et al. 1997] extend this to the case when
A is only close to rank k, by proposing the approximation A ≈
CW+

τ R, where W+
τ is the Moore-Penrose pseudo-inverse ignoring
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Figure 2: Conceptual overview of our algorithm.

Symbol Description Size
m Number of surface samples scalar
n Number of lights scalar
r Number of computed rows scalar
c Number of computed columns scalar
A Full lighting matrix m×n
R Matrix of computed rows r×n
K Matrix of cluster centers r× c
ϕ j Full column (i.e. column of A ) m×1
ρ j Reduced column (i.e. column of R ) r×1
si Sum of norms of all ρ j in cluster i scalar

Table 1: Summary of the notation used in the paper.

singular values smaller than τ . However, the paper does not present
a method to pick the rows and columns and the parameter τ in a
robust way, without the need to compute the SVD of A. A similar,
more recent approach is presented in [Drineas et al. 2006]. Again,
the running time of this algorithm is dominated by computing the
SVD of A, so it is not applicable in our domain.

3 Matrix Row-Column Sampling

This section describes our row-column sampling algorithm that
presents an efficient solution to the problem of shading m surface
samples from n lights. Ideally, for each sample we would like to
compute the sum of the contributions from all lights. A brute-force
approach would take time O(mn), which is clearly not practical for
the values of m and n required for high-quality rendering (thousands
to millions). Our algorithm runs in O(m +n) time and exploits the
GPU to push down the constant factor.

3.1 A Matrix Formulation of the Many-Light Problem

We can formally describe the problem as follows: consider a matrix
A of size m×n, such that the element Ai j is the contribution of light
j to sample i. Denote the j-th column of A by ϕ j. The quantity we
would like to compute is the sum of all the columns:

ΣA =
n

∑
j=1

ϕ j

However, we want to compute this without touching all elements of
A, since that would take O(mn) time. Instead, we assume A is given

as an oracle that computes elements on demand, and we propose an
algorithm that computes an approximation to ΣA in O(m+n) time.

Row-column sampling. The largest cost in evaluating elements
of A is the visibility term: if sample i is not visible from light j,
then Ai j is zero. Ray casting can be used to answer such visibility
queries, but remains relatively slow. Shadow mapping is a solution
to the visibility problem that incurs a constant cost for rendering
a depth map at point x, but amortizes it over a large number of
queries between x and other points y, which have only minimal cost.
This algorithm maps to the GPU naturally. Furthermore, while x is
usually a light source and y a surface sample, shadow mapping can
be also used to evaluate the contribution of all lights to a sample by
computing the depth map centered at the sample location.

In the context of sampling matrix elements, ray casting can evalu-
ate single elements of A in an arbitrary order, while shadow map-
ping computes whole rows and columns of A. The per-element cost
of the latter is much smaller, but the elements are not available in
arbitrary order. Thus we have to design an algorithm that makes
efficient use of complete rows and columns.

3.2 Proposed Algorithm

The rest of this paper presents an algorithm that computes r rows
and c columns of A and uses the acquired information efficiently
to compute an approximation to ΣA. We proceed by partitioning
the columns of A into c clusters, picking a representative column
in each cluster with a suitable probability distribution, scaling it
appropriately to represent the energy of the entire cluster, and accu-
mulating such representatives. We will see that this is an unbiased
Monte Carlo estimator, i.e. the expected value of the computed
result is exactly ΣA. Determining a good clustering becomes the
essential step to increase the performance of the algorithm, which
we address by using the rendered rows to drive our cluster selection.

Let R be the r× n matrix of randomly picked rows of A, and let
ρ j be the columns of R. (Note: we convert elements of R from
RGB to scalars by taking 2-norms of the RGB triples.) We call ρ j
the reduced columns, because they can be viewed as down-sampled
versions of the full columns, ϕ j . Essentially, R is the complete
matrix for a smaller version of the image. As long as r is large
enough, the reduced columns should still preserve enough of the
structure of their full counterpart, such that looking for an optimal
clustering of the reduced columns should yield a good clustering
of the full columns. One might view this idea as a combination
of exploration (row sampling) and exploitation (column sampling),
similar to problems arising in machine learning applications.
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To summarize, our algorithm (illustrated in Figure 2) consists of the
following phases:

• Sample r randomly selected rows using shadow maps (GPU).

• Partition the reduced columns into c clusters (CPU).

• Pick a scaled representative in each cluster (CPU).

• Accumulate these representatives using shadow maps (GPU).

3.3 Interpretation as a Monte Carlo Estimator

The notation used in the rest of the paper is summarized in Table
1. To formalize the above discussion, let’s suppose we are already
given a clustering, i.e. a partition of the n columns into k clusters
C1, ...,Ck. Later we will show how to find this clustering. We will
use the norms of the reduced columns, ‖ρ j‖, as a measure of the
contribution of light j to the image. Moreover, let’s denote si :=
∑ j∈Ci

‖ρ j‖; si can be viewed as a measure of the total energy of the
cluster Ci. Our goal is to define a Monte Carlo estimator XA so that
E[XA] = ΣA, the value we are looking for. We do this by defining
estimators X i

A for each cluster Ci, and taking their sum:

XA :=
c

∑
i=1

X i
A where X i

A =
si

‖ρ j‖
ϕ j with prob.

‖ρ j‖
si

for j ∈Ci

In other words, we are picking a representative column in each clus-
ter with probability proportional to the reduced column norms. If
we assume that all ‖ρ j‖ > 0, we can see that XA is indeed an unbi-
ased estimator for ΣA:

E[XA] =
c

∑
i=1

E[X i
A] =

c

∑
i=1

∑
j∈Ci

‖ρ j‖
si

si

‖ρ j‖
ϕ j =

c

∑
i=1

∑
j∈Ci

ϕ j = ΣA

One should note that having reduced columns with ‖ρ j‖ = 0 does
not guarantee that their contribution to the image is indeed zero.
The correct (unbiased) solution to this problem would be to put
these columns into a special cluster and use a different probability
distribution (e.g. uniform, power or similar). In practice we simply
ignore these columns, since they are negligible as long as r is large
enough.

Our approach to clustering and representative selection is somewhat
similar to lightcuts [Walter et al. 2005], with two key differences.
First, our reduced columns contain more information than a light’s
parameters (position, intensity, etc.) – they approximate the actual
contribution of the light to the image, including visibility. Second,
lightcuts use an adaptive clustering, compared to our global cluster-
ing.

3.4 Clustering Objective

Given our Monte Carlo formulation, our clustering attempts to min-
imize the expected error of XA. We could try a least-squares ap-
proach and minimize E[‖XA − ΣA‖2]. Unfortunately, this would
require processing the whole matrix A, which we want to avoid.
Instead, we optimize the clustering on the reduced columns and
later use the same cluster assignment on the full columns.

To do this, we define reduced estimators in an analogous way to
the original ones: XR := ∑

c
i=1 X i

R, where X i
R takes value ρ jsi/‖ρ j‖

with probability ‖ρ j‖/si for j ∈Ci. Denote ΣR := ∑
n
j=1 ρ j. Then

we clearly have E[XR] = ΣR, i.e. XR is an unbiased estimator for
ΣR.

We are looking for a clustering that minimizes the expected error of
XR, that is, E[‖XR −ΣR‖2]. In Appendix A we prove that this can
be writtten as:

E[‖XR −ΣR‖2] =
1
2

c

∑
k=1

∑
i, j∈Ck

‖ρi‖ · ‖ρ j‖ · ‖ρ̄i − ρ̄ j‖2

where we denote by x̄ the normalized version of a vector x, i.e.
x/‖x‖. To make this result intuitive, we define the distance between
two vectors x and y as d(x,y) = 1

2‖x‖ · ‖y‖ · ‖x̄− ȳ‖2 Take a com-
plete graph with n vertices corresponding to the reduced columns,
and with edge costs between i and j equal to d(ρi,ρ j). We can now
view the problem as follows: partition the graph into c components,
such that the sum of the edge costs within the components is min-
imized. The distance d can be viewed as a measure of how much
two lights dislike to be in the same cluster. Note that d is not a met-
ric since it does not satisfy triangle inequality. Yet more intuition
can be gained by rewriting d as d(x,y) = ‖x‖ · ‖y‖ · (1− cos(x,y))
where cos(x,y) = x̄T ȳ is the cosine of the angle between x and y.
In other words, the amount of “disagreement” between two lights
is proportional to their energy and to the difference between the
“kind” of their contribution to the image, which is measured by the
angle.

3.5 Minimizing the Clustering Objective

Our objective function is similar to weighted min-sum clustering
(also called weighted k-cluster problem), where the input is points
x1, ...,xn with associated weights w1, ...,wn and a number k, and the
goal is to partition the points into k clusters, minimizing

k

∑
p=1

∑
i, j∈Cp

wi ·w j · ‖xi − x j‖2

Our problem is a special case of this one, which can be seen by
setting k := c, xi := ρ̄i and wi := ‖ρi‖. [Schulman 1999] gives
a (1 + ε)-pseudo-approximation algorithm which is unfortunately
not practical. Instead, we present an approach which works well
in practice, even for the large values of n, r and c needed for our
application.

Clustering by sampling. A simple algorithm can be derived by
randomly picking c points as cluster centers and assigning all other
points to the nearest (with respect to d) cluster center. While a naive
implementation would provide poor clusterings, we use a modified
formulation inspired by [Schulman 1999]. We define αi to be the
cost of all edges in the graph incident to vertex i, i.e.

αi =
n

∑
j=1

d(ρi,ρ j)

We make the probability pi of choosing point i proportional to αi,
intuitively making points that are far away from others more likely
to be picked. Let a multi-set be a set with corresponding positive
weights for each element. When a point i is picked, we add it to the
multi-set with weight 1/pi. If the element is already there, we just
increase its weight by 1/pi. We iterate this process until we have
exactly c elements in the multi-set. Finally, we scale the selected
cluster centers by their weights from the multi-set, and assign each
point to the nearest cluster based on d.

Clustering by top-down splitting. One can derive a different ap-
proach that starts with all points in the same cluster, and keeps
splitting the cluster with highest cost, until c clusters are reached.
Defining how to split is crucial, and we found the following to give
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good results: let C be the cluster we are splitting. Project the points
ρ̄i, i ∈ C onto a random line (in r-dimensional space) and find the
best position to cut the line into two pieces. There are only |C|−1
possibilities, which can be checked quickly.

Combining the algorithms. We found that running the splitting
algorithm on the result of the sampling algorithm is both faster and
produces better clusterings than either of the algorithms alone. We
produce 2

3 c clusters by sampling, and then run splitting until c clus-
ters are reached. Intuitively, the sampling algorithm might leave
some areas under-sampled, so some clusters could be too large, but
the splitting algorithm fixes these problems.

3.6 Low Rank Interpretation

In realistic lighting situations, lights can often be approximated by
linear combinations of other lights. Intuitively, this means that A
is close to low rank. This intuition can be verified by computing
singular values of A (see Figure 3). Our algorithm benefits from
this, since it can be interpreted as producing a rank-c approximation
to A (where each cluster can be viewed as a rank-1 block).
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Figure 3: A logarithmic plot of the singular values of a smaller,
1200 × 1001 version of the matrix corresponding to the temple
scene, confirming the intuition that the matrix is close to low rank.

4 Implementation Details

Row analysis. Rows are selected by stratified uniform sampling:
we divide the image into blocks and pick a row in each block. Rows
are packed into a matrix R and analyzed using the clustering algo-
rithm given in Section 3.4. The most expensive operation of the
sampling phase of the clustering algorithm is assigning each point
to its closest cluster center. We speed this up by noting that d can
be rewritten as d(x,y) = ‖x‖ · ‖y‖− xT y. Let K be an r× c matrix
of cluster centers (as columns). Let nR be the row vector of column
norms of R, and let nK be the row vector of column norms of K.
Distances from every point to every cluster center can be computed
all at once by evaluating nT

KnR −KT R. To further improve perfor-
mance, we use the optimized BLAS implementation distributed in
the Intel MKL. We similarly compute αi by expressing the distance
from every point to every other point as the matrix nT

RnR −RT R.
Since we are only interested in the row sums of this matrix, we can
multiply it by a vector of ones and use the associativity of matrix
multiplication to simplify the expression.

Random projection. Another speed-up can be obtained by ran-
domly projecting the reduced columns into an r′-dimensional space

before running the clustering. This increases performance at the
expense of very slight decrease of clustering efficiency. We use
r′ = 50 in our results. For an introduction to random projection
techniques see [Vempala 2004].

Representative selection and color averaging. As discussed in
Section 3, we can choose a representative of a given cluster i with
a probability proportional to the reduced column norm, ‖ρ j‖, and
then scale the column by si/‖ρ j‖. We use a slight practical im-
provement, which gives the representative the “total color” of the
cluster. Define ρc

j be the “colored” version of ρ j and let the
2-norm be defined per-channel. We scale the representative by
(∑ j∈Ci

‖ρc
j ‖)/‖ρc

j ‖.

GPU implementation. Programmable shaders are used to eval-
uate surface and light models, while visibility is computed using
shadow maps. In particular, we use cube shadow maps for indi-
rect and omni-directional lights, while standard shadow maps are
used for directional and spot lights. Row visibility is evaluated by
computing a cube shadow map at the sample location. Rows are
rendered one-by-one and read back to the CPU, while columns are
accumulated directly without read-back.

Computing surface samples and lights. In our prototype, sur-
face samples are computed using ray-tracing, which takes roughly
10-15 seconds for an 800×600 image with 2×2 anti-aliasing, us-
ing an unoptimized Java implementation. However, this sampling
could be also implemented on the GPU with execution time com-
parable to one shadow map. Area lights and environment lighting
are handled by stratified uniform sampling, while the sun is con-
verted into a single directional light. Indirect lights are computed
using particle tracing as in [Keller 1997]. The results in this paper
use about 100,000 lights, which takes roughly one second to sam-
ple. For a faster turnaround we could adopt a GPU technique such
as [Dachsbacher and Stamminger 2005] to determine the indirect
lights, which would only capture one-bounce indirect illumination,
but it would eliminate ray-tracing altogether.

5 Results and Discussion

This section presents our results for various scenes rendered using
our system. We report the times as measured on a Core 2 Duo
2.6 GHz with an Nvidia GeForce 8800 GPU. (The timings do not
include computation of surface samples and lights; we assume these
are already given as input.) For comparison we provide reference
images computed by accumulating all the lights, which is to say
by computing the whole matrix. We also point out some image
differences by white arrows; however, it should be kept in mind that
randomized algorithms will produce different artifacts in different
runs.

Performance. Table 2 presents scene statistics and shows that our
algorithm supports the large geometric and lighting complexity re-
quired for high-quality previewing. Execution times are dominated
by row and column rendering, where shadow mapping constitutes
the largest component.

Complex lighting conditions. Figure 4 shows three scenes ren-
dered with our algorithm, where we specifically choose difficult re-
alistic illumination to demonstrate the robustness of our approach.
For each scene, we show a fast preview image together with a
slower high-quality image displaying the trade-off between time
and quality of the converged solution. The sponza and temple
scenes use a sun-sky direct illumination model, where most of the
visible scene is lit by indirect and sky illumination only. The kitchen
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scene triangles lights total (s) row render (s) clustering (s) col. render (s) shadow map (s)
100/100 300/900 100/100 300/900 100/100 300/900 100/100 300/900 100/100 300/900

sponza 66,454 100,001 1.6 7.9 0.9 2.9 0.2 0.6 0.5 4.4 0.6 3.1
trees 328,126 100,002 2.2 9.9 1.2 3.4 0.5 4.9 0.6 4.9 0.9 4.7
kitchen 388,454 101,089 2.3 12.0 1.0 3.0 0.3 1.3 0.9 7.8 0.9 5.7
bunny 869,483 100,489 3.2 12.6 2.1 6.2 0.5 2.1 0.5 4.1 2.1 7.9
grand central 1,526,555 100,836 3.2 16.1 1.5 4.2 0.6 1.9 1.2 10.0 0.8 4.0
temple 2,214,021 100,001 3.2 17.0 1.7 4.9 0.2 0.6 1.3 11.4 2.0 12.0

Table 2: Detailed statistics for scenes rendered using our algorithm at a resolution of 800 × 600 with 2 × 2 supersampled antialiasing. We
report geometry size and total number of lights. For timings we present total time in seconds for different numbers of rows and columns. We
further give detailed timing breakdowns for rendering rows, clustering, and rendering columns. We also give total time for shadow mapping.

100 rows, 100 columns, 1.6 s 300 rows, 900 columns, 7.9 s reference (8 min)

100 rows, 300 columns, 5.6 s 300 rows, 900 columns, 16.9 s reference (20 min)

300 rows, 300 columns, 6.4 s 432 rows, 864 columns, 13.5 s reference (13 min)

Figure 4: Images rendered with our system with difficult lighting configurations for the Sponza, temple and kitchen scenes. We show two
different settings, and a reference image computed by accumulating all the lights. We report the number of rows and columns used, and the
rendering time. Note that these timings do not include computation of surface samples and lights, which we treat as input to the algorithm.

scene is lit by area lights above the counters and by strong omni-
directional lights behind the corners, making the image dominated
by indirect illumination. Furthermore, most of the materials have
a glossy component (Ward model). Note how indirect shadows are
handled correctly, e.g. on the kitchen floor, and on the detailed
geometry of the temple pylons.

Exploration vs. exploitation. Our framework is built on the
assumption that exploration (in the form of row computation) is
worthwhile, even though it may take considerable time. An alterna-
tive approach would be to skip exploration altogether and dedicate
resources to render more columns. To prove the effectiveness of
our row sampling strategy, we compare our algorithm to:
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Instant radiosity Power sampling Our algorithm Reference (all lights)

2500 lights, 9.1 s 1925 lights, 8.8 s 300 rows, 900 columns, 7.9 s 8 min

2500 lights, 18.0 s 1925 lights, 17.1 s 300 rows, 900 columns, 16.9 s 20 min

2000 lights, 15.7 s 1992 lights, 15.8 s 432 rows, 864 columns, 13.5 s 13 min

Figure 5: Equal-time image comparison of instant radiosity, power sampling and our algorithm. The last column shows reference images.

• an “instant radiosity”-type algorithm (IR), where we generate
a smaller number of lights but render them exhaustively;

• a “power sampling” algorithm (PS), which solves the many-
light problem by picking lights with probability proportional
to their power (which can be thought of as sampling the
columns of the matrix, without any information from the
rows).

An equal time comparison of the results of these algorithms is
shown in Figure 5, showing the benefit of employing row-sampling.

Figure 6 plots the error of the three algorithms as a function of
execution time. For our algorithm we report four result curves cor-
responding to different ratios between rows and columns. The re-
ported error is computed as the 2-norm of the difference from the
reference image, normalized by the reference 2-norm. The temple
and sponza graphs show that our algorithm consistently computes
better solutions than either of the two prior ones. The graphs for the
IR and PS algorithms do not decrease monotonically, showing the
high variance of the error. On the other hand, our technique shows
lower variance together with lower error.

The kitchen graph shows a fundamental property of our algorithm:
the error drops rapidly when more resources are allocated to row
sampling. This behavior is logical because a certain threshold num-
ber of rows is needed to find all interesting lighting features present
in the image. Determining that number automatically without any
prior knowledge of the matrix is not trivial. In practice we run most
of our test cases with either a 1:2 or 1:3 ratios between rows and
columns. This problem of determining the right trade-off between
parameters is common in many rendering algorithms; e.g. deter-

mining the number of photons in photon mapping.

Coherence vs. low rank. Figure 7 shows two scenes which illus-
trate complex incoherent geometry, showing that our algorithm per-
forms well even for scenes that do not show image-space coherence
(high-frequency rows) or lighting-space coherence (high-frequency
columns). Most algorithms based on interpolation of illumination
would not necessarily perform well on these scenes. Our algorithm
instead exploits the low-rank nature of the lighting matrix, which is
not equivalent to coherence in geometry or lighting.

Low-rank assumption. The Grand Central scene (Figure 8) is
an example of a scene that does not match our low-rank matrix
assumption as well as other scenes. This is because of the omni-
directional point lights positioned in small recesses between stone
blocks. Columns corresponding to these lights cannot be well ap-
proximated as linear combinations of other nearby ones. However,
the reduced columns corresponding to these lights are very similar,
so the algorithm is eager to cluster them. While, as expected, our
algorithm will require a higher number of rows and columns, it will
eventually converge to the correct solution, showing that we can
successfully capture even these adversarial cases.

Comparison with Lightcuts. The Lightcuts [Walter et al. 2005;
Walter et al. 2006] framework presents a scalable solution to the
many-light problem that uses a CPU raytracer to evaluate visibility.
Our matrix sampling approach and Lightcuts solve the same mathe-
matical problem, but operate at different points of the performance-
quality tradeoff. An important difference is that Lightcuts adapt the
clustering to the sample being shaded, while we use one global clus-
tering to make the algorithm GPU-friendly. While directly compar-
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Figure 6: Comparison of error as a function of execution time for instant radiosity (IR), power sampling (PS) and 4 versions of our algorithm
with different row-column ratios.

100 rows, 200 columns, 2.9 s reference (14 min) 100 rows, 200 columns, 3.8 s reference (10 min)

Figure 7: Images rendered with our system showing high-frequency lighting and geometric details captured efficiently by our algorithm for
the trees and bunny scenes. The bunny scene shows a shader implementing the Kajiya-Kay hair shading model.

ing the execution times of different CPU vs. GPU based systems is
tricky, we have run the reconstruction cut algorithm (which exploits
image space coherence) from Lightcuts for the scenes in Figure 4
on the same machine used for our results. We obtain speed im-
provements in the range between 20x and 30x for our high-quality
images (middle column of Figure 4).

Discussion and Limitations. One of the drawbacks of our ap-
proach is that shadow mapping artifacts may be present. In par-
ticular shadow bias is an issue, since there might not exist a single
bias setting that works for all 100 thousand automatically generated
lights. Moreover, the conversion of indirect illumination to point
lights requires clamping, common to all similar approaches [Keller
1997; Walter et al. 2005]. This leads to slight darkening of indirect
lighting, especially in corners. Our framework does not specifically
address this limitation of the many-light formulation, treating indi-
rect lights like any other programmable shader. Furthermore, while
our algorithm is mostly designed for previewing single frames, we
would like to explore rendering animations. Currently, slight tem-
poral artifacts might be seen due to the Monte Carlo nature of the
algorithm, and can be remedied by increasing the number of sam-
ples; however, we are interested in developing a more temporally
stable version of the algorithm. Finally, it would be interesting to
investigate automatic selection of r and c, the number of rows and
columns. For columns, this is not conceptually difficult: instead of
minimizing expected error for a given c, we can search for the min-
imum c that satisfies an error threshold. For rows, this is harder to
do; however, just as rows contain information about which columns
to pick, columns can suggest which rows to pick. Therefore, we are
investigating a promising variation of the algorithm that alternates
row and column sampling.

6 Conclusion

We have presented an algorithm to compute fast and high-quality
solutions to the many-light problem, which we treat as the prob-
lem of approximating the sum of all columns of an unknown ma-
trix. We explore the matrix structure by sampling a small set of
rows, and reconstruct the image by rendering a small set of rep-
resentative columns. Our framework explicitly takes advantage of
GPU acceleration and requires no precomputation. Since complex
and arbitrary object appearance can be expressed in the context of
the many-light problem, we believe our approach could have com-
pelling applications in cinematic and architectural lighting design.
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Appendix A

We can rewrite E[‖XR −ΣR‖2] by noting that the X i
R are indepen-

dent, from which it follows that the expected error of XR is the sum
of the expected errors of the X i

R. Moreover, we note that for a ran-
dom variable X and its independent, identically distributed “clone”
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300 rows, 600 columns, 12.7 s 588 rows, 1176 columns, 24.2 s reference (44 min)

Figure 8: The Grand Central scene is an example of a scene that does not match our low-rank assumption. While our algorithm will require
more samples, it continues to provide a good quality preview and will converge to the solution even in this adversarial case.

X ′, we have

E[‖X −E[X ]‖2] =
1
2

E[‖X −X ′‖2]

We can thus write our clustering metric as:

E[‖XR −ΣR‖2] =
c

∑
k=1

E[‖Xk
R −E[Xk

R]‖2
]

=
1
2

c

∑
k=1

E[‖Xk
R −Xk

R
′‖

2
]

=
1
2

c

∑
k=1

∑
i, j∈Ck

‖ρi‖
sk

·
‖ρ j‖

sk
· ‖ sk

‖ρi‖
ρi −

sk

‖ρ j‖
ρ j‖

2

=
1
2

c

∑
k=1

∑
i, j∈Ck

‖ρi‖ · ‖ρ j‖ · ‖ρ̄i − ρ̄ j‖2
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