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Abstract

Scene understanding algorithms in computer vision are im-
proving dramatically by training deep convolutional neural
networks on millions of accurately annotated images. Col-
lecting large-scale datasets for this kind of training is chal-
lenging, and the learning algorithms are only as good as
the data they train on. Training annotations are often ob-
tained by taking the majority label from independent crowd-
sourced workers using platforms such as Amazon Mechani-
cal Turk. However, the accuracy of the resulting annotations
can vary, with the hardest-to-annotate samples having pro-
hibitively low accuracy.

Our insight is that in cases where independent worker an-
notations are poor more accurate results can be obtained by
having workers collaborate. This paper introduces consensus
agreement games, a novel method for assigning annotations
to images by the agreement of multiple consensuses of small
cliques of workers. We demonstrate that this approach re-
duces error by 37.8% on two different datasets at a cost of
$0.10 or $0.17 per annotation. The higher cost is justified
because our method does not need to be run on the entire
dataset. Ultimately, our method enables us to more accurately
annotate images and build more challenging training datasets
for learning algorithms.

Introduction

Creating large-scale image datasets has proved crucial to en-
abling breakthrough performance on computer vision tasks
(Krizhevsky, Sutskever, and Hinton 2012). A significant
barrier to the creation of such datasets has been the hu-
man labor required to accurately annotate large collections
of images. Increasingly such datasets have been labeled
through innovations in the area of crowdsourcing and hu-
man computation, whereby the efforts of large numbers of
often inexpert Internet-based workers are used to yield data
of surprising accuracy (Deng et al. 2009; Kanefsky, Barlow,
and Gulick 2001; Raddick et al. 2007; Russell et al. 2008;
Sorokin and Forsyth 2008; Von Ahn and Dabbish 2004;
Westphal et al. 2005). The introduction of the Amazon Me-
chanical Turk crowdsourcing platform in 2006 in particu-
lar quickly led to its adoption in various image recognition
tasks (Barr and Cabrera 2006; Douglis 2007; Sorokin and
Forsyth 2008; Spain and Perona 2008; Deng et al. 2009).
The most common approach seeks labels for each item
from multiple workers and assigns as the item’s label
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the “majority vote” among those provided by the work-
ers (Sheng, Provost, and Ipeirotis 2008; Snow et al. 2008;
Sorokin and Forsyth 2008). Even as increasingly sophisti-
cated approaches have been developed for aggregating the
labels of independent workers there can still be significant
variability in the quality of such data. Many samples receive
very low agreement when labeled by multiple MTurk work-
ers. For example, (Bell et al. 2013) collected approximately
five labels per sample, and for those with 60% agreement (3
out of 5 agreement, after removing votes from low-quality
workers) many of these low-agreement samples were misla-
beled, making them unsuitable for training a high-accuracy
model. As aresult, (Bell et al. 2015) only used samples with
at least 80% agreement (high-agreement samples).

Relying solely on high-agreement data can bias the data to
easy-to-classify cases, which may not mirror the diversity of
cases to which the trained model will be applied, negatively
impacting the quality of the learned model. Further, low-
agreement samples can represent cases that fall near deci-
sion boundaries, reflecting data that can be particularly valu-
able for improving model accuracy (Lewis and Gale 1994).

Ultimately, the problem is that MTurk workers have a
high error rate on low-agreement data. If the MTurk error
rate is the fraction of mislabed samples (compared to, for
example, expert labelers or some other appropriate notion of
ground truth), our goal is to reduce it so that low-agreement
samples become more accurate, and thereby more useful for
training computer vision models.

Reducing the MTurk error rate is not easy. The key char-
acteristic of low-agreement data is that independent work-
ers cannot agree on the label. Getting more answers from
independent workers or encouraging them with agreement
incentives does not get us better answers (as shown in the
Experiments section). Instead, we take an approach where
labels are assigned through a collaborative process involv-
ing multiple workers. We find our inspiration in two previ-
ous works. First, the graph consensus-finding work of (Judd,
Kearns, and Vorobeychik 2010; Kearns 2012) showed that a
network of workers can collectively reach consensus even
when interactions are highly constrained. Next, the ESP
Game (Von Ahn and Dabbish 2004) showed how to obtain
labels from non-communicative workers by seeking agree-
ment around a shared image. In this paper, we show how
to label images by casting it as a graph consensus prob-
lem which seeks agreement between multiple, independent
consensus-finding cliques of workers. We find this pattern
to be effective on difficult-to-label images.



Our approach achieves greater accuracy at a greater cost
than majority voting, and thus the approach is intended for
use in the context of creating large-scale databases of labeled
images that are not biased towards easy-to-classify samples.
This approach should be used after using majority voting
to gather labels, only to refine the labels of low-agreement
samples.

Related Work

Others have considered different ways in which the confi-
dence in an item’s annotation may differ across items, and
its implications. For example, Galaxy Zoo created “clean”
and “superclean” datasets by constraining data to those in
which at least 80% or 95% of workers agree on an item’s
label (Lintott et al. 2008), and (Hsueh, Melville, and Sind-
hwani 2009) use worker disagreement so as to remove am-
biguous data and improve the classification of sentiment in
political blog excerpts. (Dekel, Gentile, and Sridharan 2012;
Deng et al. 2009; Parameswaran et al. 2014) consider how
disagreement among obtained labels can be used to sig-
nal that more labels should be obtained for such items and
(Ipeirotis et al. 2014) uses the uncertainty of a trained model
on a dataset to target items for which additional labels can
improve learning. (Wallace et al. 2011) show that learning
can be improved if workers are allowed to specify their own
low confidence in labeling an item so that it can be routed
to more expert workers, while (Shah and Zhou 2015) pro-
poses a payment mechanism to incentivize workers to only
respond to items they have confidence about. In settings
where workers provide labels for multiple items it is pos-
sible to learn models of worker performance based on fac-
tors that include the extent of ambiguity of an item’s annota-
tion (Bachrach et al. 2012; Mao, Kamar, and Horvitz 2013;
Wauthier and Jordan 2011). This work is complementary
to such efforts, in that rather than persist with methods in
which workers assign labels in isolation, we seek to im-
prove annotation accuracy by employing consensus agree-
ment games in which workers act collaboratively to assign
labels to items.

This work seeks more accurate annotations by en-
gaging workers in a gaming setting similar to the ESP
Game (Von Ahn and Dabbish 2004). The ESP Game gives
images to pairs of players then annotates the image and re-
wards the players if they enter identical tags. A number of
variants to the ESP Game have also been proposed. The
Make a Difference game (Thogersen 2013) is similar to the
ESP Game, but requires three workers to agree on a tag for it
to be accepted. Further generalization to number of players
and thresholds was made by (Lin et al. 2008). KissKiss-
Ban (Ho et al. 2009) is a three-person game in which two
players attempt to enter matching tags after a third player
enters taboo words that, if entered by both other players,
gives the third player points. The ESP Game and its vari-
ants bear the most similarity to consensus agreement games
in that they look for the same label produced by multiple
players in an interactive setting. The difference between
these games and consensus agreement games is that the
latter allows players to see and respond to the labels pro-
vided by the others in their clique. This allows players

to guide each other to the correct answer in groups whose
social dynamics avoid many of the frailties found in real-
world decision-making groups (Levine and Moreland 2008;
Sunstein 2006).

Our work is inspired by that of (Judd, Kearns, and Vorob-
eychik 2010; Kearns 2012), who explored the ability for
a group of individuals to solve graph consensus problems
through limited local interaction as a function of the topol-
ogy of the network connecting them. Our approach is dif-
ferent because we require a non-collaborative agreement
between disjoint subgraphs and design financial incentives
which drive players toward the correct consensus rather than
just any consensus.

Finally, it has been shown that crowdsourcing outcomes
can be improved if worker compensation depends on match-
ing answers with those of one or more other workers.
(Huang and Fu 2013b; Faltings et al. 2014) show improved
outcomes if bonuses are given for a worker matching that
of another single worker. (Rao, Huang, and Fu 2013)
showed similar improvements when bonuses are based on
a worker matching the majority vote of a set of other work-
ers, whereas (Kamar and Horvitz 2012; Dasgupta and Ghosh
2013; Radanovic, Faltings, and Jurca 2016) provide reward
schemes that match a worker’s answers to more complex
functions of the answers of other workers. Unlike this previ-
ous work, we use agreement to determine if all the workers
(within multiple collaborative consensus decision-making
cliques) have converged to the same answer. Nonetheless,
we seek agreement and could benefit from the forms of
agreement explored in previous works with the caveat that
since our goal is to label difficult-to-label samples, lessons
learned about agreement from experiments on entire datasets
may not apply.

Method

Our goal is to reduce MTurk error rate by having multiple
workers interactively find a consensus for low-agreement
samples. In the manner of (Judd, Kearns, and Vorobeychik
2010) we formulate a consensus graph problem of 2N nodes
organized into two disjoint cliques of /N. The graph is solved
when all 2V nodes are assigned the same label. The graph
problem is made tractable by showing both cliques the same
image. We hypothesize that this is sufficient information for
the 2N players to solve the graph (based on the success of
the ESP Game).

We explicate this pattern and describe how to implement
it in the subsections below.

Consensus Agreement Games

Consensus agreement games (CAG) is an instantiation of the
pattern described above. Namely, we take each clique as an
N-way collaborative labeling game where the potential la-
bels are constrained to the labels from a previous majority-
vote labeling process plus enough random labels to make a
set of K labels. K should be small so that we make full
use of the information we gathered in the previous labeling
process yet large enough so that cliques have a low probabil-
ity of agreeing if the players collaboratively guess randomly.



During the game a player can see the selections of the other
N —1 players and can freely change their own selection. No
other interaction is allowed between players.

A game ends after a fixed time limit whereupon if all play-
ers have selected the same label then the game has reached
a consensus. Two games, operated independently, make one
CAG in which we look for agreement in the consensus out-
comes.

A pair of games has four possible outcomes:

e Consensus agreement: both games achieve a consensus
and they agree.

e Consensus disagreement: both games achieve a consen-
sus but they disagree.

e Solitary consensus: one game achieves a consensus.
e No consensus: both games fail to achieve a consensus.

A label which achieves consensus agreement is deemed to
be confident enough to be taken as an annotation for the
sample.

Player labeling strategies will be determined by the game
payoffs, P;. We define three outcomes for a game (which is
paired with a second game):

e Consensus agreement (P;): a consensus is reached and it
matches the consensus reached by the second game.

e Clique consensus (P): all players select the same label
but it is not a consensus agreement.

e Discord (Ps): not all players select the same label.

We want to choose payoffs which support our goals. First,
the payoff for a clique consensus must be higher than the
payoff for discord. This incentivises the players to adopt a
labeling strategy which is different from independent voting.
However, players may adopt simple strategies to get a clique
consensus (e.g., always follow the first person that votes).
Therefore, the payoff for a consensus agreement must be
higher than the payoff for a clique consensus. This incen-
tivises the players to vote for the truth since they have no
other way to interact with the second group of players. Thus,
the payoffs must satisfy P; > P, > Ps.

Games have a fixed duration but not all images need the
same amount of time to label. We use a 120 second timer
and averaged out the needed time by packing 8 images into a
single game. Accordingly, we created a payment schedule in
quanta of 1/8 cents where P; = $0.02125, P, = $0.00625,
and P3 = $0.00125 so that the maximum payout per game is
$0.17 and the minimum payout is $0.01. These values were
selected based on the results of preliminary experiments.

Worker Experience

In this section we describe one of our experimental games
from the perspective of an MTurk worker.

1. The HIT reward is $0.01 but the title advertises “(with
bonuses)”. The HIT description informs the worker that they
will work “with other people”. We require that workers have
a 95% approval rate and at least 100 approved HITs.

2. A worker previewing the HIT is told that they will “play
a 120 second game with other people” and the earnings are

described as “If you and your group play well, you are able
to each make up to $0.17 for 120 seconds of your time. This
works out to $5.10 per hour. The base rate for your time is
$0.01 for up to 4 minutes of your time. If your group agrees
on the same label, then you will receive a bonus of $0.005
(each game consists of 8 labels, so up to an additional $0.04
per game). If your group agrees on the correct label, then
you receive an additional $0.015 per label (up to $0.12 per
game).”

3. After accepting a HIT the worker is presented with in-
structions on how to play the game, definitions of the cate-
gories, and information on common mistakes. In particular,
they are told “You are allowed and encouraged to change
your vote as you change your opinion of what the material
i8.”, “You will be able to see, in real time, the choice of the
other players in their own rows.” and “At the end of the
game, you want your votes to all be the same, if a consensus
is reached then you are given a bonus. Remember you get a
bigger bonus if you all choose the same label and the label
is correct.”

4. When the worker presses a button to indicate they are
ready to play then they are placed on a game queue. The
worker is told that they are waiting for people to join and
that “If you wait for 3 minutes and your game doesn’t start,
then you will get money if you stay on the webpage and
submit the HIT when you are instructed to submit it.”

If the worker waits for 3 minutes then they are moved into

the exit survey directly and will receive the HIT reward of
$0.01 (which is 8 x P3) for their time.
5. During a game a worker is told “You can change your
vote as many times as you want. Remember you get a big-
ger bonus if everyone picks the same label for each pair of
images and the label is correct.” Below this the worker is
shown 8 pairs of images. Each pair is a crop of the sample
to be labeled, a crop of the entire picture and buttons indi-
cating the current vote of each player (Figure 1). Clicking
on a crop shows a higher resolution version. They are also
shown the current votes from each player for each sample.

Below the final pair the worker is told “As long as the
game is running, the other players can change their votes.
You may want to change your vote depending on what the
others players do.” At the bottom of the page the 8 pairs
are repeated with much smaller images and the same vote
buttons (the same as Figure 1 except the images are 85%
smaller). This compact summary lets the worker view votes
and vote without having to scroll the page excessively.

The time remaining (updated each second) is displayed at

the top, middle and bottom of the page. When the game ends
each worker is sent to an individual exit survey.
6. On the exit survey page the worker is told “You have
earned at least $0.XX and will receive more if your group
agrees with the second group. You must press ‘Submit HIT
with bonuses’ to receive all the money you have earned
(may take 48 hours).” where XX is 1 cent plus 1/2 cent
per clique consensus. The worker is given the opportunity
to provide optional feedback. We ask: “Do you have any
feedback about the image labeling task?” and “Do you have
any feedback about the webpage or game?”



Flayer A: ‘ glass ‘ | painted || paper ‘ ‘ metal ‘

Your Vote ! glass || painted || paper H metal ‘

Player C: ‘ glass H painted | paper ” metal ‘

Figure 1: The collaborative labeling interface. Top: The
material shape to be labeled is outlined in red. Clicking
on either image will show a higher resolution image. The
left image shows a crop of the shape, the right image shows
where the shape appears in the photograph. Bottom: But-
tons indicate the current selection of each player. Here,
Player A has not yet made a selection, Player B (the current
player) has selected glass and Player C has selected paper.
Players may change their selection at any time, and the other
players will see updates in real-time, but once a player has
made a selection it is not possible for that player to return to
the initial ‘no-selection’ state.

Experimental Datasets

We want to evaluate CAG on natural images which are dif-
ficult to label yet not ambiguous. In this section we describe
how we prepared two datasets which fit these criteria.

MINC

The Materials in Context (MINC) Database' (Bell et al.
2015) identifies segments of uniform materials in images
and annotates them with material labels (e.g., wood, plastic,
etc). We choose this dataset since it has 5 votes per sample
and the data is hard to classify while requiring only an under-
standing of everyday materials. We define low-agreement
samples as those which have exactly 3 out of 5 votes in
agreement (in the future this definition could be expanded
to include samples with even lower agreement among work-
ers). This definition matches the experimental settings of
MINC since they defined high-agreement as four matching
votes. See Figure 2 for examples.

We need ground truth to compute an error rate but ground
truth is not available since the samples came from Inter-
net photographs. Instead, we use experts to create a high-
quality expert truth and rank different methods by compar-
ing worker error rates against expert truth.

Three experts examined random low-agreement samples
from the 10 largest categories of MINC and assigned anno-
tations to samples which were unambiguous. In total, the
experts annotated 456 samples with expert truth. The ex-
perts labeled as closely to truth as they could, and so were

"http://opensurfaces.cs.cornell.edu/publications/minc/

Figure 2: Examples of low-agreement samples in MINC.
Top-Left: This bowl received 3 votes for ceramic and 2
votes for glass. Top-Right: This pig received 3 votes for
ceramic, 1 vote for plastic and 1 vote for foliage. Bottom-
Left: This bottle received 3 votes for glass and 2 votes
for plastic. Bottom-Right: This door received 3 votes for
painted and 2 votes for wood.

not limited to the 10 largest categories. Thus, we ended up
with more than 10 categories.

Places

The MIT Places Database? (Zhou et al. 2014) is a collec-
tion of images categorized by scene type. Since we do not
know a priori which samples are difficult, we first selected
12 categories in 5 mutually confusing groups and collected
5 votes for 2400 images, 200 from each category. We then
looked at the samples which received 3 of 5 agreement and
assigned expert truth. Two of the mutually confusing groups
had sufficient samples for experimentation. In order to pre-
vent workers from being biased we randomly subsampled
the largest categories so that no category was more than
twice the smallest mutually confusing category. This rule
only applied to the hotel room category, which was signifi-
cantly over-represented since many bedrooms were actually
hotel rooms.

We ended up with a low-agreement dataset of 22 bed-
room, 32 hotel room, 16 nursery (the preceding constitute
one mutually confusing group), 34 coast, 44 ocean and 28
river (the second mutually confusing group) images.

Experiments

In this section we evaluate performance. We first clarify the
terminology of labels and annotations. A label is assigned to
a sample by a worker. An annotation is assigned to a sample
by a method. Not all samples receive an annotation. For
example, if 5 workers label a sample with 5 unique labels
then majority vote does not assign an annotation since no
label achieved a majority.

*http://places.csail. mit.edu/



Baseline method. We want to compare the MTurk error
rate of CAG against a baseline. We selected majority vote of
7 unique workers (Vote7) as a baseline since majority vote
is commonly used in practice and 7 voters prevents ties and
is nearly the same number of people as in CAG when N =
3. We cannot use the original votes for the baseline since
those workers chose from more than 4 possible choices (34
choices for MINC and 12 for Places). Instead, we collected
new votes using the same protocol as CAG (4 choices, the
original votes plus random labels). We set the per-label cost
to $0.004 and this decision was guided by the cost of MINC
annotations (reported as $0.0033 in Table 1 of (Bell et al.
2013)).

CAG settings. We took K = 4 so that the chance of ran-
dom agreement is low. The clique size is a free parame-
ter. We experimented with N = 2 and N = 3 since the
smallest possible clique will be the most cost effective and
an odd-sized clique can prevent stalemates due to ties. We
did not experiment with larger N since the cost per anno-
tation would be too high. We report performance for both
values of N on both datasets in Table 1 but for brevity we
report results only for the best settings (N = 2 for MINC
and N = 3 for Places) in the remainder of this section.

Comparison statistics. If one were labeling a dataset then
two cliques would label each sample. However, this natural
experiment would give us very little data for computing er-
ror rate. Instead we showed each sample to 3 cliques and
formed all possible pairings. This gave us 3 times as much
data for only 50% more experimental cost. We then used
bootstrap sampling (1000 trials) to estimate performance
statistics and standard errors (SE). Bootstrap sampling was
not needed for the baseline method since Vote7 annotated a
high-fraction of samples.

The MTurk error rate is (1—Precision) as defined in Equa-
tion 1. For each method the true positives are annotations
which match the expert truth and the false positives are those
which do not.

True Positive

Precision = — — (€))]
True Positive + False Positive

We also report cost per annotation and throughput (the
fraction of samples which receive an annotation). CAG
throughput is reduced for three reasons: a player does not
cast a vote (because they abandon the game or run out of
time), players disagree or cliques disagree. We remind the
reader that our goal is to augment an already large dataset
with correctly annotated hard-to-label samples. Thus, CAG
prioritizes accuracy over throughput which leads to higher
cost per annotation.

MTurk error rate. We find that CAG has a lower er-
ror rate (by at least 3 SE) than Vote7 on both datasets.
See Table 1 for a summary. For MINC we had 456 low-
agreement samples of which 427 received a Vote7 annota-
tion for a throughput of 0.9364. With 344 correct annota-
tions the MTurk error rate is 0.1944. CAG has an estimated

MTurk error rate of 0.1186 with standard error 0.01257 and
throughput of 0.4997 with SE 0.01335. For Places we had
176 low-agreement samples of which 170 received a Vote7
annotation for a throughput of 0.9659. With 130 correct an-
notations the MTurk error rate is 0.2353. CAG has an es-
timated MTurk error rate of 0.1490 with SE 0.02493 and
throughput of 0.3842 with SE 0.02216.

Cost per annotation. The cost of a Vote7 annotation is
determined by throughput and the reward of $0.20 per HIT
of 50 images which gives a cost of 7 x $0.004/0.9364 =
$0.0299 per MINC annotation and $0.0290 per Places an-
notation. For CAG the costs are variable. We pay workers
for their time ($0.01 per game), a clique for achieving a con-
sensus ($0.005 each) and a pair of cliques for achieving a
consensus agreement ($0.015 each). Our estimated cost per
MINC annotation is $0.104, SE $0.00105. The breakdown is
9% for worker time, 33% for clique consensus bonuses, and
58% for consensus agreement bonuses. Our estimated cost
per Places annotation is $0.168, SE $0.00392. The break-
down is 12% for worker time, 35% for clique consensus
bonuses, and 54% for consensus agreement bonuses. Since
the costs for each dataset are similar we report the combined
cost in Table 1.

Acquiring more votes. We hypothesized that since we
specifically selected samples which are known to be labeled
with low confidence (and empirically found to have low ac-
curacy) by an independent worker method then acquiring
even more independent labels would not ultimately converge
to the correct annotation. To test this hypothesis we used
the baseline method to gather 21 votes per sample for the
MINC dataset and the measured error rates at 7, 11 and 21
votes are 0.1944, 0.1900 and 0.1962, respectively. This con-
firms that for low-agreement samples additional indepen-
dent votes does not converge to lower error rates.

High-agreement samples. We hypothesized that CAG
would work best on low-agreement samples. For a com-
parison, we ran CAG and Vote7 on 352 MINC samples with
4 out of 5 agreement. The Vote7 MTurk error rate is 0.0698
with a throughput of 0.9773. The estimated CAG error rate
is 0.05603 with SE 0.009223 and throughput of 0.5901 with
SE 0.01496. The CAG mean is lower but within 1.5 SE so
we find little difference between the two methods.

Consensus game. How important is agreement for CAG?
We can conduct a single consensus game (CG) without look-
ing for agreement between two cliques. This is attractive
since the cost per annotation can be halved. The obvious
downside is that there is no longer a financial incentive for
the clique to label the image correctly.

For this method there are only two payoffs and they must
satisfy P, > P5. In our experiments we use P> = $0.02125
and P; = $0.00125 so that the pay per worker is the same as
the consensus agreement games but the cost per annotation
is approximately half.



Method MINC | Places Cost

Vote7 0.1944 | 0.2353 | $0.0296
CAGN=2 | 0.1186 | 0.2407 | $0.1043
CAGN=3 | 0.1410 | 0.1490 | $0.1685

Table 1: MTurk error rate for low-agreement samples and
cost per annotation. Consensus agreement games (CAG) re-
duces the error rate. The clique size (/N) which gives the
best performance depends on the dataset although N = 3
outperforms the baseline on both datasets.

We tested CG on MINC and found it much worse than
Vote7. The MTurk error rate is 0.2730 and the throughput
is 0.6667. Clearly workers found the HITs very lucrative
since they enthusiastically snapped up CG HITs as soon as
we posted them. We find that consensus does not perform
well but it becomes a useful mechanism when paired with
agreement.

Agreement incentives. How important is the clique con-
sensus compared to the incentives for agreement? We con-
ducted experiments on MINC which included the agree-
ment incentives but excluded the collaborative clique game.
This experiment’s HITs are similar to a Vote7 HIT but the
payment schedule is $0.01 for the worker’s time and $0.02
per annotation (two workers agree). HITs contain 20 sam-
ples and have a time limit of 15 minutes. We found that
the estimated MTurk error rate is 0.2054 with SE 0.01401
and throughput is 0.5904 with SE 0.01353 which makes
this method on par with Vote7 (within 0.8 SE). Although
peer incentives are effective, they become even more effec-
tive when combined with consensus games in our setting of
difficult-to-label samples.

Analysis

We want to look more deeply into how the workers played
the game so we instrumented some MINC CAG games on
low-agreement samples and recorded all moves made by the
players. We used N = 3 since larger cliques may have more
interesting behaviors and we used MINC since it has more
categories. There are two instrumented games per sample so
the game pairs were used directly without the data augmen-
tation described in the previous section.

Based on preliminary experiments we gave players 120
seconds to label 8 images. Yet, we found that the mean time
of the last player activity was 77 seconds with deviation 20.
This indicates players were under some time pressure and
increasing the time allotted may reduce error further.

Players are allowed to change their labels so we looked for
changes in the 2568 labelings. We found that in 186 cases
the worker changed their label and in 162 of those cases the
final label was different from the initial label.

How many different labels get considered as potential an-
notations for a sample? In Figure 3 we look at a histogram
of the number of different labels a worker considers for a
sample. In 2382 cases workers selected one label, a worker
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Figure 3: Left: The number of different choices made for
a sample by a single player. Middle: The number of dif-
ferent choices made for a sample by a single clique. Right:
The number of different choices made for a sample by both
cliques. Single workers consider a small number of choices
whereas the cliques increase the variety of choices consid-
ered for annotation.

selected two different labels 178 times, three different labels
7 times and all four possible labels once. We see that most
players do not change their label (i.e., their first label is final)
and when they do change their label they very rarely pick a
third or fourth choice. What about a clique? As we can see,
a sample receives more different votes from a clique than it
does from just one worker. This implies that a clique does
increase the amount of knowledge which is applied to a sam-
ple. How about across both cliques? Although the cliques
cannot communicate directly we can still see that the label
space is explored even more by 6 workers. These observa-
tions indicate the not all workers have the same knowledge.
Each person is bringing their own opinions and sharing them
with their clique.

Does this extra knowledge from fellow clique members
help or hinder? We looked at how often an initially incor-
rect label was corrected and vice versa. We found that 100
initially incorrect labels were corrected and 44 initially cor-
rect labels were misled. This indicates that the cliques help
guide members to the correct answer more often than they
drive them away.

We know that players changed their labels, but how often
do they do it? For example, do they change from A to B then
back to A? If each change was decisive then there would
have been 195 changes — the minimum number of changes
needed (which was computed from the number of unique
labels per sample made by players). We found that play-
ers changed their labels 230 times, therefore there were in-
stances where players switched their labels more often than
necessary. This could have been attempts to signal other
players and/or it could be evidence of indecisiveness.

Observations About Workers

MTurk workers seemed to enjoy the game. We got lots of
positive feedback: “Thanks, this was pretty fun and different
way of doing it!”, “It was my first time playing game like
this. Much better than simple labeling”, “Fun game! Well
done HIT!”, “That was fun!”, “enjoyed a lot”, and “very

cute”.



Workers commented on the collaborative aspects of the
game: “Wish we could post a message to other players in
real time. I didn’t change one of my labels because I thought
I had a good reason for doing so.”, “I feel like the second to
last was hard, it was the one my group did not agree on.
It was painted, yes, but painted wood.”, “It’s an interesting
concept. I'm amazed my group mostly agreed.”, “I’m not
sure what to do if I think we labeled something wrong, but
we marked it so we would all agree?”, and “Would have
been more interesting if you could play once alone, and then
with the other and see if the players do any changes.”

At least one worker had the disappointing experience of
the other players abandoning the game: “I don’t think it’s
fair that I only get a bonus if other people are paying atten-
tion. Neither of the other people in my group even did the
task. It should be based on how many I got correct, not how
many the other people bothered to do.”. One worker appears
to have learned something about the other workers, namely
that people often mislabel painted doors as wood: “make the
directions about painted surfaces bold”.

We had no problem getting workers to play our games.
We could usually start one game per minute. It was ob-
served that many workers would take another HIT and play
subsequent games. This caused a phenomenon where small
groups of workers may play several games together. In gen-
eral, there was enough activity that workers played games
rather than getting paid $0.01 for waiting 3 minutes.

One problem we encountered was that a small number
of workers would take many HITs at once. Those workers
learned not to enter the queue more than 2 or 3 times si-
multaneously because it is difficult to play multiple games
at once. However, by holding the HITs they prevented other
players from joining the queue so that games could not be-
gin. We decided to allow multiple-queueing, but lowered the
HIT duration so that a worker could only comfortably take
4 HITs at once before they had to begin returning HITs.

To better understand the workers the authors took the role
of a player (in games not used for analysis or experimenta-
tion). We observed two interesting behaviors. In one case,
the workers agreed that a sample was painted but we kept
our vote as wallpaper (which was the correct answer). As we
approached the end of the game one of the workers rapidly
changed their vote between painted and wallpaper. They
may have been trying to draw attention to the disagreement
in the hopes of getting someone to change their vote. Or,
they may have been trying to signal that they were indiffer-
ent to the two choices. The second interesting behavior was
in a different game. In the beginning, the third player did not
cast any votes. This can happen if they are absent or have re-
turned the HIT after joining the game queue. However, near
the end of the game that third player suddenly cast a vote for
every consensus that the two other players had established.
We hypothesize that this player was following a strategy that
maximized their payout without requiring their full attention
— they simply let the other two players do all the work and
copied their votes.

We anticipated that workers may try to collude to force a
global consensus every time. This is hard since workers do
not know when the second clique will run (or even if they

are in the first or second clique) and our queueing system
prevents any worker from the first clique entering the sec-
ond clique. Nonetheless, it was suggested to the authors that
workers could use a predetermined strategy of always pick-
ing the label which comes first lexicographically. We tried
to oppose such strategies by including at least one random
label in the set of candidates and shuffling the button order
for each game.

In one case, we observed two workers that would very
often play the game together. This could simply be be-
cause they enjoyed the game and were actively seeking our
HITs. Another hypothesis is that this was the same person or
two people in the same room taking control of the game by
controlling two votes. We inspected the game records and
found that these two players did not always agree and thus
concluded that they were not colluding. However, we rec-
ommend that the queueing system prevent pairs of workers
from entering the same games too often.

Discussion

This paper has demonstrated that consensus agreement
games can improve the annotations of images on which in-
dependent workers disagree. We have explored only two
instances of this approach, and one can imagine varying de-
sign choices in this space to explore their impact on cost
and effectiveness. For example, using cliques of size larger
than three or varying the number of parallel cliques that
must agree would impact the cost and accuracy of consen-
sus agreement games. Indeed, while our results show that
agreement is necessary, one could imagine doing so only at
random on a subset of cases, to reduce cost while hopefully
maintaining effectiveness. Our current approach only allows
workers to change labels once the worker has provided a la-
bel, with no opportunity to “erase” the vote without picking
an alternative. Allowing vote erasing, restricting the num-
ber of times an answer can be changed, or allowing workers
to define arbitrary labels as in the ESP Game would impact
cost and effectiveness in as yet unexplored ways.

There are also design choices relevant to the worker expe-
rience. Payment sizes, the number of images presented per
game, amount of time given for each game, worker qualifica-
tions, throttling repeat players, and rules about simultaneous
queueing and game playing could also all affect MTurk er-
ror rate and throughput. Results may be further improved by
implementing cheating prevention mechanisms such as ran-
dom clique assignment and blocking previously seen worker
pairings. Worker attention may be improved by adding sen-
tinel samples. Since workers seem to enjoy playing it may
not be necessary to pay for the time workers wait on the
game queue. Simply allowing the worker to return a HIT
if they tire of waiting would simplify the game logic and
lower costs. Worker enthusiasm can also be taken as a sign
that rewards can be reduced even further. It is not possible
to pay fractional cents so there is a limit to how low payoffs
can go, and while we combine multiple images into each
game, there are attentional limits to increasing that number
too high. One way to reduce rewards is to allow workers
to chain multiple games and combine their rewards into a
single payout.



Whereas (Judd, Kearns, and Vorobeychik 2010; Kearns
2012) explored how a group of individuals reach consen-
sus as a function of the topology of the network connect-
ing them, cliques are one case in the space of networks —
consensus agreement games could be based on other net-
work structures. We followed Judd, et al’s approach of min-
imal communication channel amonst workers, but given the
value that social transparency (Huang and Fu 2013a) and
larger-scale communication (Mao et al. 2016) can have on
online group performance, the nature of the communication
allowed between workers could be expanded, such as letting
a player highlight portions of images or providing a chat-
box (as suggested by one worker). Given our observation of
free riding in some game instances (Latane, Williams, and
Harkins 1979), mechanisms for player self-policing (Kraut
et al. 2012; Horton 2010; Dow et al. 2012), such as allow-
ing players to identify and remove idle players, might have
value. Also, workers could become more effective consen-
sus members if they are instructed to be open to different
opinions, view conflict as natural, and avoid early decision
making (Gentry 1982).

On the other hand, the social psychology literature has
found a wide range of ways in which teams and groups do
not work as well as we might expect (Kerr and Tindale 2004;
Levine and Moreland 2008; Sunstein 2006), finding for ex-
ample that group behavior can suffer from group polariza-
tion, in-group/out-group biases, social loafing, and ampli-
fication of individual cognitive biases. CAG avoids many
of these issues, creating small group structures that violate
the premises of much of such work. For example, social in-
fluence effects have limited relevance when your teammates
are anonymous and only together for a short time with lim-
ited means of communications. There is minimal opportu-
nity to have differentiated member roles, to see the effects of
a team leader, to consider time-varying group composition,
to have intragroup conflict, or to see impacts of suboptimal
work flows when all workers are given identical tasks and
incentives, remain anonymous to each other, and are teamed
for timescales measured in minutes or seconds. Consen-
sus games have found a way to take what had previously
been perceived as problematic issues for small groups and
has instead harnessed them as an asset. Social forces that
encourage conformity are known to damage group perfor-
mance, serving as a barrier to getting a diversity of knowl-
edge and approaches. We instead present group tasks that
actually seek conformity, both within each collaborative la-
beling clique and by using payments that target conformity
to a second game’s outcomes. Indeed, consensus agreement
games may turn group polarization into an asset.

Consensus games, nonetheless are a form of small group
activity, and need not be immune from the known inefficien-
cies of small groups. For example, our observations suggest
the presence of social loafing. More generally, consensus
games can be studied from the lens of social psychology, ex-
ploring such questions as what communication patterns (as
constrained as they are) impact outcomes? How does what
we know about the effects of time scarcity on small groups
apply here? How do anchoring, priming, and other effects
impact outcomes, for example in terms of what sequence of

games (images, teammates) a player is given? What are the
effects of sex, age, and personality differences on group per-
formance? How can group outcomes be improved through
individual performance feedback? Do forms of organiza-
tional learning occur, and if so are they helpful? Are there
ways in which mutual presence of team members (most typ-
ically visual) can positively impact group performance as
it does in other small group settings? The answers to such
questions are not just academic. The selection of who should
be teamed and how their efforts should be structured can be
informed by such knowledge, so that rather than assembling
anonymous workers, we would assemble teams of the right
people given the right tasks in the right way (Gentry 1982).

Whether one uses independent workers, consensus agree-
ment games, or other crowdsourcing approaches for anno-
tating data, they can all be loosely seen as sampling from
a large population of individuals and eliciting information
from them either independently or collaboratively so as to
approximate what the majority vote of the entire population
would be. Thus, for example, one might ask if an image of a
cat is “cute”, where this judgment should reflect what a typ-
ical person might answer, yet we are attempting to answer
this without sampling the entire population. There are a va-
riety of approaches that have been taken to perform tasks of
this sort (Caragiannis, Procaccia, and Shah 2013; Dasgupta
and Ghosh 2013; Donmez, Carbonell, and Schneider 2009;
Ertekin, Hirsh, and Rudin 2012; Goel and Lee 2012; 2014;
Lee et al. 2014; Mao, Procaccia, and Chen 2012; Mon-
tanari and Saberi 2009), and they might similarly suggest
methods for using interacting workers to label data. Fur-
ther, while we have proposed a hard-coded pragmatic ap-
proach of starting with votes among independent workers
and then turning to consensus agreement games when there
is insufficient support for a label, one could consider explic-
itly reasoning over workflows incorporating these and other
consensus-seeking approaches (Shahaf and Horvitz 2010;
Zhang, Horvitz, and Parkes 2013; Weld 2015).

Conclusion

We introduce consensus agreement games — a method
for refining the majority vote labels on hard-to-label sam-
ples. We demonstrated this method on two real-world image
datasets and showed that error rate was on average 37.8%
lower than a majority vote baseline. The cost per annota-
tion is high, but the method does not need to be run on the
entire dataset. We suggest the following procedure. First,
label all data with cost-efficient independent labeling tasks.
Next, divide the dataset into subsets based on estimated dif-
ficulty. Next, take a small part of each subset, annotate them
with expert truth then run CAG with N = 2 and N = 3.
Select the best performing N and compare the difference of
error rates for CAG annotations and independent worker an-
notations against the expert truth. Finally, use CAG to fully
annotate those subsets for which the error rate (or difference
of error rates) is larger than some threshold. The threshold is
determined by either estimating the value of reducing error
rate or setting a tolerance for maximum error rate.

In this paper we grounded the method in two practical,
unrelated image labeling tasks that demonstrate its success



in the setting for which it was conceived. Yet, the pattern is
general and may prove useful for other application domains.
We believe there is value in the future to explore the merit
of consensus agreement games on human computation tasks
outside of image labeling.

Acknowledgments

PI Bala would like to thank our funding agencies including
a Google Faculty Research Grant and NSF IIS 1617861.

References

Bachrach, Y.; Graepel, T.; Minka, T.; and Guiver, J.
2012. How to grade a test without knowing the answers—
a bayesian graphical model for adaptive crowdsourcing and
aptitude testing. arXiv preprint arXiv:1206.6386.

Barr, J., and Cabrera, L. F. 2006. Ai gets a brain. Queue
4(4):24-29.

Bell, S.; Upchurch, P.; Snavely, N.; and Bala, K. 2013.
OpenSurfaces: A richly annotated catalog of surface appear-
ance. ACM Trans. on Graphics (SIGGRAPH) 32(4).

Bell, S.; Upchurch, P.; Snavely, N.; and Bala, K. 2015.
Material recognition in the wild with the materials in context
database. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 3479-3487.

Caragiannis, I.; Procaccia, A. D.; and Shah, N. 2013.
When do noisy votes reveal the truth? In Proceedings of the
fourteenth ACM conference on Electronic commerce, 143—160.

ACM.

Dasgupta, A., and Ghosh, A. 2013. Crowdsourced judge-
ment elicitation with endogenous proficiency. In Proceedings
of the 22nd international conference on World Wide Web, 319—
330. ACM.

Dekel, O.; Gentile, C.; and Sridharan, K. 2012. Selective
sampling and active learning from single and multiple teach-
ers. The Journal of Machine Learning Research 13(1):2655—
2697.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, 248-255. IEEE.

Donmez, P.; Carbonell, J. G.; and Schneider, J. 2009. Ef-
ficiently learning the accuracy of labeling sources for selec-
tive sampling. In Proceedings of the 15th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining,

259-268. ACM.

Douglis, F. 2007. From the editor in chief: The search
for jim, and the search for altruism. IEEE Internet Computing
11(3):4.

Dow, S.; Kulkarni, A.; Klemmer, S.; and Hartmann, B.
2012. Shepherding the crowd yields better work. In Pro-
ceedings of the ACM 2012 conference on Computer Supported Co-
operative Work, 1013—-1022. ACM.

Ertekin, S.; Hirsh, H.; and Rudin, C. 2012. Learning to
predict the wisdom of crowds. arXiv preprint arXiv:1204.3611.

Faltings, B.; Jurca, R.; Pu, P.; and Tran, B. D. 2014. Incen-
tives to counter bias in human computation. In Second AAAI
Conference on Human Computation and Crowdsourcing.

Gentry, M. E. 1982. Consensus as a form of decision mak-
ing. J. Soc. & Soc. Welfare 9:233.

Goel, A., and Lee, D. 2012. Triadic consensus. In Internet
and Network Economics. Springer. 434-447.

Goel, A., and Lee, D. T. 2014. Large-scale decision-making
via small group interactions: the importance of triadsl. In
Workshop on Computational Social Choice (COMSOC).

Ho, C.-J.; Chang, T.-H.; Lee, J.-C.; Hsu, J. Y.-j.; and Chen,
K.-T. 2009. Kisskissban: a competitive human computation
game for image annotation. In Proceedings of the acm sigkdd
workshop on human computation, 11-14. ACM.

Horton, J. J. 2010. Employer expectations, peer effects and
productivity: Evidence from a series of field experiments.
Peer Effects and Productivity: Evidence from a Series of Field Ex-
periments (August 3, 2010).

Hsueh, P.-Y.; Melville, P.; and Sindhwani, V. 2009. Data
quality from crowdsourcing: a study of annotation selection
criteria. In Proceedings of the NAACL HLT 2009 workshop on
active learning for natural language processing, 27-35. Associ-
ation for Computational Linguistics.

Huang, S.-W., and Fu, W.-T. 2013a. Don’t hide in the
crowd!: increasing social transparency between peer work-
ers improves crowdsourcing outcomes. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems,
621-630. ACM.

Huang, S.-W., and Fu, W.-T. 2013b. Enhancing reliability
using peer consistency evaluation in human computation. In
Proceedings of the 2013 conference on Computer supported coop-

erative work, 639-648. ACM.

Ipeirotis, P. G.; Provost, F.; Sheng, V. S.; and Wang, J. 2014.
Repeated labeling using multiple noisy labelers. Data Mining
and Knowledge Discovery 28(2):402-441.

Judd, S.; Kearns, M.; and Vorobeychik, Y. 2010. Be-
havioral dynamics and influence in networked coloring and
consensus. Proceedings of the National Academy of Sciences

107(34):14978-14982.

Kamar, E., and Horvitz, E. 2012. Incentives and truth-
ful reporting in consensus-centric crowdsourcing. Technical
report, Technical report, MSR-TR-2012-16, Microsoft Re-
search.

Kanefsky, B.; Barlow, N. G.; and Gulick, V. C. 2001.
Can distributed volunteers accomplish massive data analy-
sis tasks. Lunar and Planetary Science 1.

Kearns, M. 2012. Experiments in social computation. Com-
munications of the ACM 55(10):56-67.

Kerr, N. L., and Tindale, R. S. 2004. Group performance
and decision making. Annu. Rev. Psychol. 55:623—655.
Kraut, R. E.; Resnick, P.; Kiesler, S.; Burke, M.; Chen, Y.;
Kittur, N.; Konstan, J.; Ren, Y.; and Riedl, J. 2012. Building

successful online communities: Evidence-based social design. Mit
Press.



Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing systems,

1097-1105.

Latane, B.; Williams, K.; and Harkins, S. 1979. Many hands
make light the work: The causes and consequences of social
loafing. Journal of personality and social psychology 37(6):822.

Lee, D. T.; Goel, A.; Aitamurto, T.; and Landemore, H.
2014. Crowdsourcing for participatory democracies: Effi-
cient elicitation of social choice functions. In HCOMP-2014.

Levine, J. M., and Moreland, R. L. 2008. Small groups: key
readings. Psychology Press.

Lewis, D. D., and Gale, W. A. 1994. A sequential algo-
rithm for training text classifiers. In Proceedings of the 17th
annual international ACM SIGIR conference on Research and de-
velopment in information retrieval, 3—12. Springer-Verlag New
York, Inc.

Lin, C.-W.; Chen, K.-T.; Chen, L.-J.; King, .; and Lee, J. H.
2008. An analytical approach to optimizing the utility of
esp games. In Web Intelligence and Intelligent Agent Technol-
ogy, 2008. WI-IAT’08. IEEE/WIC/ACM International Conference
on, volume 1, 184-187. IEEE.

Lintott, C. J.; Schawinski, K.; Slosar, A.; Land, K.; Bam-
ford, S.; Thomas, D.; Raddick, M. J.; Nichol, R. C.; Szalay,
A.; Andreescu, D.; et al. 2008. Galaxy zoo: morphologies
derived from visual inspection of galaxies from the sloan
digital sky survey. Monthly Notices of the Royal Astronomical
Society 389(3):1179-1189.

Mao, A.; Mason, W.; Suri, S.; and Watts, D. J. 2016. An ex-
perimental study of team size and performance on a complex
task. PloS one 11(4):e0153048.

Mao, A.; Kamar, E.; and Horvitz, E. 2013. Why stop now?
predicting worker engagement in online crowdsourcing. In
HCOMP-2013.

Mao, A.; Procaccia, A. D.; and Chen, Y. 2012. Social
choice for human computation. In HCOMP-12: Proc. 4th Hu-
man Computation Workshop. Citeseer.

Montanari, A., and Saberi, A. 2009. Convergence to equi-
librium in local interaction games. In FOCS’09. 50th Annual
IEEE Symposium on, 303-312. IEEE.

Parameswaran, A.; Boyd, S.; Garcia-Molina, H.; Gupta, A.;
Polyzotis, N.; and Widom, J. 2014. Optimal crowd-powered
rating and filtering algorithms. Proceedings of the VLDB En-
dowment 7(9):685-696.

Radanovic, G.; Faltings, B.; and Jurca, R. 2016. Incen-
tives for effort in crowdsourcing using the peer truth serum.
ACM Transactions on Intelligent Systems and Technology (TIST)
7(4):48.

Raddick, J.; Lintott, C.; Schawinski, K.; Thomas, D.;
Nichol, R.; Andreescu, D.; Bamford, S.; Land, K.; Mur-
ray, P.; Slosar, A.; et al. 2007. Galaxy zoo: an experiment
in public science participation. In Bulletin of the American As-
tronomical Society, volume 39, 892.

Rao, H.; Huang, S.-W.; and Fu, W.-T. 2013. What will oth-
ers choose? how a majority vote reward scheme can improve
human computation in a spatial location identification task.

In First AAAI Conference on Human Computation and Crowd-
sourcing.

Russell, B. C.; Torralba, A.; Murphy, K. P.; and Freeman,
W. T. 2008. LabelMe: A database and web-based tool for
image annotation. IJCV 77(1-3):157-173.

Shah, N. B., and Zhou, D. 2015. Double or nothing: Mul-
tiplicative incentive mechanisms for crowdsourcing. In Ad-
vances in Neural Information Processing Systems, 1-9.

Shahaf, D., and Horvitz, E. 2010. Generalized task markets
for human and machine computation. In AAAL

Sheng, V. S.; Provost, F.; and Ipeirotis, P. G. 2008. Get
another label? improving data quality and data mining us-
ing multiple, noisy labelers. In Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and

data mining, 614-622. ACM.

Snow, R.; O’Connor, B.; Jurafsky, D.; and Ng, A. Y. 2008.
Cheap and fast—but is it good?: evaluating non-expert an-
notations for natural language tasks. In Proceedings of the
conference on empirical methods in natural language processing,
254-263. Association for Computational Linguistics.

Sorokin, A., and Forsyth, D. 2008. Utility data annotation
with amazon mechanical turk.

Spain, M., and Perona, P. 2008. Some objects are more
equal than others: Measuring and predicting importance. In
Computer Vision—-ECCV 2008. Springer. 523-536.

Sunstein, C. R. 2006. Infotopia: How many minds produce
knowledge. Oxford University Press.

Thogersen, R. 2013. Data quality in an output-agreement
game: A comparison between game-generated tags and
professional descriptors. In Collaboration and Technology.
Springer. 126-142.

Von Ahn, L., and Dabbish, L. 2004. Labeling images with
a computer game. In Proceedings of the SIGCHI conference on
Human factors in computing systems, 319-326. ACM.

Wallace, B. C.; Small, K.; Brodley, C. E.; and Trikalinos,
T. A. 2011. Who should label what? instance allocation in
multiple expert active learning. In SDM, 176-187. SIAM.
Wauthier, F. L., and Jordan, M. I. 2011. Bayesian bias mit-
igation for crowdsourcing. In Advances in Neural Information
Processing Systems, 1800—1808.

Weld, D. S. 2015. Intelligent control of crowdsourcing.
In Proceedings of the 20th International Conference on Intelligent
User Interfaces, 1-1. ACM.

Westphal, A. J.; Butterworth, A. L.; Snead, C. J.; Craig, N.;
Anderson, D.; Jones, S. M.; Brownlee, D. E.; Farnsworth,
R.; and Zolensky, M. E. 2005. Stardust@ home: a massively
distributed public search for interstellar dust in the stardust
interstellar dust collector.

Zhang, H.; Horvitz, E.; and Parkes, D. C. 2013. Automated
workflow synthesis. In AAAL

Zhou, B.; Lapedriza, A.; Xiao, J.; Torralba, A.; and Oliva,
A. 2014. Learning deep features for scene recognition using

Places database. In Advances in neural information processing
systems, 487-495.



