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Problem Overview

I Learn robust systems that collectively satisfy a
population of diverse users from user feedback.

Example: Diversity in Search
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What did the
 user mean?

Goal: Find best overall (socially optimal) ranking.

User Feedback

Egoistic user
feedback
I User’s choice

not social.
I Conflicting

choices.
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Weak, noisy &
biased feedback.
I Cannot

regard as
cardinal
labels.

I Treat as
preferences.
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Presented (y) Feedback (y¯)

Learning from User Preferences

I Builds on Coactive Learning [SJ12,RJSS13].

I Given context x, predict object y.

I Goal: Optimize social utility
U(x, y) = E[Ui(x, y)].

. Ui is personal utility of user type i (w.p. pi).

I User preferences: Feedback tends to improves
personal utility: Ui(x, ȳ) ≥α,δ Ui(x, y).
. Not social utility.

SYSTEM
(e.g. Search Engine)

USER

Context
(e.g. Query)

Takes Actions (e.g. Present Ranking)

Provides Feedback
(e.g. Receive Improved Ranking: 

From User Clicks)

Modeling Utility: Submodularity

I Model personal utility of users as submodular in individual
elements.

I Diminishing returns: Marginal benefit diminishes.
I Example: Coverage Function   

D1

D2

D3

D4

I Given ranking/set y = (di1, . . . , din) and position-discount factors
γ1≥γ2≥ ... ≥ γn ≥ 0 , aggregate features using submodular function F:

φj
F(x, y) = F(γ1φ

j(x, di1), γ2φ
j(x, di2)... . . . , γnφ

j(x, din))

. φj(x, di) is jth feature of di.

I Model personal utility as linear in submodular aggregate:
Ui(x, y) = wT

∗,iφF(x, y)

. Submodular aggregation leads to diversity.

I Computing ranking ≈ Submodular maximization

I Use simple, efficient greedy algorithm.

I Approximation guarantee of 1
2

(under partition matroid constraint).

I Example of Diversity:

Doc Words

d1 ma:3 le:3

d2 ma:5 le:2

d3 ma:2 le:5

d4 me:3 si:5

d5 me:6 si:2

d6 me:3 si:1

Word Weight

machine 5

learning 7

metal 4

silver 6

Posn Doc ma le me si

1 d3 2 5 0 0

2 d4 0 0 3 5

3 d2 5 2 0 0

MAX of Col 5 5 3 5

Doc Marginal Benefit

Iter1 Iter2 Iter3

d1 3*5 + 3*7 (3-2)*5 (3-2)*5

d2 5*5 + 2*7 (5-2)*5 (5-2)*5

d3 2*5 + 5*7 - -

d4 3*4 + 5*6 3*4 + 5*6 -

d5 6*4 + 2*6 6*4 + 2*6 (6-3)*4

d6 3*4 + 1*6 3*4 + 1*6 0

Social Perceptron for Ranking

1. Initialize weight vector w1 ← 0.

2. Given context xt present user with
yt ← argmaxyw>t φ(xt, y).

3. Observe user clicks D.

4. Construct preference feedback:
ȳt ← PairedFeedback(yt,D).

5. Update weight vector:
w̄t+1 ← wt + φ(xt, ȳt)− φ(xt, yt)

6. Clip to be non-negative:
wj

t+1 ← max(w̄j
t+1, 0)

7. Repeat from step 2.

Click! 

Click! 

Presented Ranking (y) Feedback Ranking (y ̅) 
 

≤α 

PairedFeedback: Form pairs and swap if only
lower element is clicked.

Referred to as the SoPer-R algorithm.

Also provide an algorithm for learning diverse
sets called the SoPer-S algorithm.

I See paper for more details

Theoretical Analysis

αi, δi-Informative
Feedback:
Characterize feedback ȳ in
terms of αi, δi, ξ as:

Eȳ[Ui(x, ȳ)] ≥ (1+δi)Ui(x, y)

+αi

(
Ui(x, y∗,i)−Ui(x, y)

)
− ξ̄

I where y∗,i is optimal for user i
I and y is the presented object.

I Note that this is a
characterization (not an
assumption).

I Does not assume anything
about social utility.

I Used to prove regret bounds.

Regret: Define the regret
after T iterations as:

1

T

T∑
t=1

(
U(xt, y∗t )−E[U(xt, yt)]

)
.

I Note: In terms of social
utility and social optimal.

Regret Bound

If δi ≥
(

ΓF · 1−pi

pi

)
, average

regret of the SoPer-R is:

≤
1

ηT

T−1∑
t=0

Ei[piξ̄t] +
R‖w∗‖

2η

+

√
15R‖w∗‖
η
√

2T
with η = mini piαi.

Understanding the bound:
I Does not depend on number of

dimensions only radius of ball R.
I Decays gracefully with weak

feedback: αis.
I Need not converge to optimal

(due to NP-hardness of
submodular maximization).

I Bound is loose as solution
improves.

Similar bound for SoPer-S
algorithm as well.

Experimental Results

I Offline experiments on standard TREC 6-8 Interactive
search diversification dataset.
. Queries have 7-56 user types with binary relevance labels.

I Simulated user behavior: Scan rankings top to bottom. Click
on first document relevant to them (with some error).

I Utility: Normalized DCG-Coverage function upto rank 5.

Single Query Diversification:
I Learning to diversify for single query.
I Compare with RankedBandit (Array of coupled MABs).
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Cross-Query Diversification:
I Learning to diversify given any query.
I Structured Perceptron receives social-optimal as feedback.
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I First method to diversify across queries from preferences.

I Robust to model mis-specification.
TrueSocialF SoPer-R (Varying Submodular Function) Rand

MAX SQRT LIN

MAX .630± .007 .620± .006 .618± .006 .557± .006
SQRT .656± .007 .654± .007 .684± .006 .610± .007

LIN .500± .006 .504± .006 .566± .007 .474± .007

I Robust to feedback noise (.631 vs .630).


