### Learning Socially Optimal Information Systems from Egoistic Users

Karthik Raman, Thorsten Joachims ({karthik,tj}@cs.cornell.edu)



#### Problem Overview

Learn robust systems that collectively satisfy a population of diverse users from user feedback.

#### **Example: Diversity in Search**



**Goal:** Find best overall (socially optimal) ranking.

#### User Feedback

#### **Egoistic** user feedback

- User's choice not social.
- Conflicting choices.

Weak, noisy & biased feedback.

- Cannot regard as cardinal labels.
- Treat as preferences.

# Web Images Maps Shopping News Monin Search bools Support vector machine - Wildpedia. The fine encyclopedia en whigelist on yells (Segment vector machine) encyclopedia grow in the control of the contro



## Web Images Maps Shopping News More \* Search tools SYM: Summary for Silvercorp Metals Inc Ordinary - Yahoo! Finance finance, yahoo.com/q?s=SVM \* View the basic SVM stock chart on Yahoo! Finance. Change the date range, chart type and compare silvercorp Metals Inc Ordinary against other companies. Board - Options - Historical Prices - News Support vector machine - Wikipedia, the free encyclopedia envikipedia org/wiki/Support, vector machine \* In machine learning, support vector machine \* In machine learning nodels with associated learning algorithms that ... Kemel trick - Quadratic programming - Positive-definite kemel - Linear classifier SVM www.svmcards.net/ \* SVM Light Support Vector Machine svmlight\_loachins.org/ \* Training software for large-scale SVMs. [Free for non-commercial use] Silvercorp Metals Inc. (USA): NYSE-SVM quotes & news - Google ... www.google.com/mance/exicle/Tr66473 \* Get detailed francial information on silvercorp Metals inc. (USA) (NYSE-SVM) including real-time stock quotes, historical charts & financial news, all for free! Silvercorp Metals Inc. - Home www.silvercorpmetals.com/ \* NYSE-SWM LOSS 3.26 + 0.03 + 0.99% Volume: 93,397 September 17, 2013. TSX:SVM CAOS 3.36 + 0.03 + 0.99% Volume: 93,397 September 17, 2013. TSX:SVM CAOS 3.36 + 0.03 + 0.99% Volume: 93,397 September 17, 2013. TSX:SVM Stock Quote - Silvercorp Metals Inc. Stock Price Today (SVM ... www.marketwatch.com/firvesting/stock/svm \* Updated stock quote for svm - including svm stock price today, earnings and estimates, stock charts, news, futures and other investing data. Kernel-Machines.Org — Kernel Machines www.kernel-machines.org \*

#### Learning from User Preferences

- ► Builds on **Coactive Learning** [SJ12,RJSS13].
- ► Given context **x**, predict object **y**.
- ► Goal: Optimize social utility  $U(x, y) = E[U_i(x, y)]$ .
  - $\triangleright$  **U**<sub>i</sub> is **personal** utility of user type **i** (w.p.  $\mathbf{p}_i$ ).
- ▶ User preferences: Feedback tends to improves personal utility:  $U_i(x, \bar{y}) \ge_{\alpha, \delta} U_i(x, y)$ .
  - ▶ Not social utility.



#### Modeling Utility: Submodularity

- Model personal utility of users as submodular in individual elements.
- ▶ **Diminishing returns:** Marginal benefit diminishes.
- ► Example: Coverage Function
- ▶ Given ranking/set  $y=(d_{i_1},\ldots,d_{i_n})$  and position-discount factors  $\gamma_1 \geq \gamma_2 \geq \ldots \geq \gamma_n \geq 0$ , aggregate features using submodular function F:

$$\phi_{\mathsf{F}}^{\mathsf{j}}(\mathsf{x},\mathsf{y}) = \mathsf{F}(\gamma_1 \phi^{\mathsf{j}}(\mathsf{x},\mathsf{d}_{\mathsf{i}_1}), \gamma_2 \phi^{\mathsf{j}}(\mathsf{x},\mathsf{d}_{\mathsf{i}_2}), \dots, \gamma_{\mathsf{n}} \phi^{\mathsf{j}}(\mathsf{x},\mathsf{d}_{\mathsf{i}_{\mathsf{n}}}))$$

- $\triangleright \phi^{j}(x, d_{i})$  is  $j^{th}$  feature of  $d_{i}$ .
- Model personal utility as linear in submodular aggregate:  $U_i(x, y) = w_{*,i}^T \phi_F(x, y)$ 
  - ▶ Submodular aggregation leads to diversity.
- ▶ Computing ranking ≈ Submodular maximization
- ► Use simple, efficient greedy algorithm.
- ► Approximation guarantee of  $\frac{1}{2}$  (under partition matroid constraint).
- Example of Diversity:

| Doc                   | Words     |  |  |
|-----------------------|-----------|--|--|
| $d_1$                 | ma:3 le:3 |  |  |
| $d_2$                 | ma:5 le:2 |  |  |
| $d_3$                 | ma:2 le:5 |  |  |
| d <sub>4</sub>        | me:3 si:5 |  |  |
| <b>d</b> <sub>5</sub> | me:6 si:2 |  |  |
| de                    | me:3 si:1 |  |  |

| Word     | Weight |  |
|----------|--------|--|
| machine  | 5      |  |
| learning | 7      |  |
| metal    | 4      |  |
| silver   | 6      |  |
|          |        |  |

| Posn       | Doc            | ma | le | me | si |
|------------|----------------|----|----|----|----|
| 1          | $d_3$          | 2  | 5  | 0  | 0  |
| 2          | d <sub>4</sub> | 0  | 0  | 3  | 5  |
| 3          | $d_2$          |    | 2  | 0  | 0  |
| MAX of Col |                | 5  | 5  | 3  | 5  |

| Doc            | Marginal Benefit |           |         |  |
|----------------|------------------|-----------|---------|--|
|                | lter1            | lter2     | Iter3   |  |
| $d_1$          | 3*5 + 3*7        | (3-2)*5   | (3-2)*5 |  |
| $d_2$          | 5*5 + 2*7        | (5-2)*5   | (5-2)*5 |  |
| $d_3$          | 2*5 + 5*7        | -         | _       |  |
| d <sub>4</sub> | 3*4 + 5*6        | 3*4 + 5*6 | _       |  |
| $d_5$          | 6*4 + 2*6        | 6*4 + 2*6 | (6-3)*4 |  |
| $d_6$          | 3*4 + 1*6        | 3*4 + 1*6 | 0       |  |

#### Social Perceptron for Ranking

- 1. Initialize weight vector  $\mathbf{w_1} \leftarrow \mathbf{0}$ .
- 2. Given context  $\mathbf{x_t}$  present user with  $\mathbf{y_t} \leftarrow \operatorname{argmax_v} \mathbf{w_t}^{\top} \phi(\mathbf{x_t}, \mathbf{y})$ .
- 3. Observe user clicks  $\mathcal{D}$ .
- 4. Construct preference feedback:  $\bar{y}_t \leftarrow PairedFeedback(y_t, \mathcal{D})$ .
- 5. Update weight vector:

$$\bar{\mathbf{w}}_{t+1} \leftarrow \mathbf{w}_t + \phi(\mathbf{x}_t, \bar{\mathbf{y}}_t) - \phi(\mathbf{x}_t, \mathbf{y}_t)$$

- 6. Clip to be non-negative:
  - $\mathbf{w}_{t+1}^{\mathsf{J}} \leftarrow \max(\bar{\mathbf{w}}_{t+1}^{\mathsf{J}}, \mathbf{0})$
- 7. Repeat from step 2.



PairedFeedback: Form pairs and swap if only lower element is clicked.

Referred to as the **SoPer-R** algorithm.

Also provide an algorithm for learning diverse sets called the **SoPer-S** algorithm.

See paper for more details

#### Theoretical Analysis

#### $\alpha_i$ , $\delta_i$ -Informative Feedback:

Characterize feedback  $\bar{\mathbf{y}}$  in terms of  $\alpha_{\mathbf{i}}, \delta_{\mathbf{i}}, \boldsymbol{\xi}$  as:

$$E_{\bar{y}}[U_{i}(x,\bar{y})] \geq (1+\delta_{i})U_{i}(x,y) \\
+\alpha_{i}(U_{i}(x,y^{*,i})-U_{i}(x,y))-\bar{\xi}$$

- ightharpoonup where  $\mathbf{y}^{*,i}$  is optimal for user  $\mathbf{i}$
- and y is the presented object.Note that this is a
- characterization (not an assumption).
- Does not assume anything about social utility.
- Used to prove regret bounds.

**Regret:** Define the regret after **T** iterations as:

$$\frac{1}{T} \sum_{t=1}^{T} (U(x_t, y_t^*) - E[U(x_t, y_t)]).$$

Note: In terms of social utility and social optimal.

#### Regret Bound

If 
$$\delta_i \geq \left(\Gamma_F \cdot \frac{1-p_i}{p_i}\right)$$
, average regret of the SoPer-R is:

$$\leq \frac{1}{\eta \mathsf{T}} \sum_{\mathsf{t}=0}^{\mathsf{T}-1} \mathsf{E}_{\mathsf{i}}[\mathsf{p}_{\mathsf{i}}\bar{\xi}_{\mathsf{t}}] + \frac{\mathsf{R}\|\mathsf{w}_{*}\|}{2\eta} \\ + \frac{\sqrt{15}\mathsf{R}\|\mathsf{w}_{*}\|}{\eta\sqrt{2\mathsf{T}}} \\ \text{with } \eta = \mathsf{min}_{\mathsf{i}} \ \mathsf{p}_{\mathsf{i}}\alpha_{\mathsf{i}}.$$

#### **Understanding the bound:**

- ▶ Does not depend on number of dimensions only radius of ball R.
- ightharpoonup Decays gracefully with weak feedback:  $lpha_i$ s.
- Need not converge to optimal (due to NP-hardness of submodular maximization).
- Bound is loose as solution improves.

Similar bound for **SoPer-S** algorithm as well.

#### **Experimental Results**

- ➤ Offline experiments on standard **TREC 6-8 Interactive** search diversification dataset.
  - ▶ Queries have 7-56 user types with binary relevance labels.
- Simulated user behavior: Scan rankings top to bottom. Click on first document relevant to them (with some error).
- ► Utility: Normalized DCG-Coverage function upto rank 5.

#### Single Query Diversification:

- ► Learning to diversify for single query.
- ► Compare with RankedBandit (Array of coupled MABs).



#### Cross-Query Diversification:

- Learning to diversify given **any** query.
- Structured Perceptron receives social-optimal as feedback.



- ► First method to diversify across queries from preferences.
- ► **Robust** to model mis-specification.

| TrueSocialF | SoPer-R (Varying Submodular Function) |               |               | Rand                              |
|-------------|---------------------------------------|---------------|---------------|-----------------------------------|
|             | MAX                                   | SQRT          | LIN           |                                   |
| MAX         | $.630 \pm .007$                       | $.620\pm.006$ | $.618\pm.006$ | $.557\pm.006$                     |
| SQRT        | $.656\pm.007$                         | $.654\pm.007$ | $.684\pm.006$ | $.610\pm.007$                     |
| LIN         | $.500\pm.006$                         | $.504\pm.006$ | $.566\pm.007$ | $\textbf{.474} \pm \textbf{.007}$ |

► **Robust** to feedback noise (.631 vs .630).