Online Learning to Diversify from Implicit Feedback

Karthik Raman

Cornell University karthik@cs.cornell.edu

Pannaga Shivaswamy

Cornell University pannaga@cs.cornell.edu

Thorsten Joachims

Cornell University tj@cs.cornell.edu

Overview

Present simple, efficient <u>online learning</u> algorithms for learning both relevance and <u>diversity</u> in rankings, which are shown to be theoretically and empirically robust.

Example: News Recommendation

Experiments:

- Used 2 news datasets: RCV1 and 20NG
- Simulated diverse users with 5 interests.
- TFIDF values used for document features,

Findings:

- Highly robust to noisy user feedback and quality of feedback.
- Able to learn desired amount of diversity.

Fig1: Change in the number of intents covered (above) and search length (below) over time.

Motivation:

- Most research on focused on extrinsic diversity.
- Intrinsic Diversity: Diversity in the aspects of a single information need.
- No previous method for learning required amount of diversity from user feedback/click data.

Learning Diversity:

• Capture diversity via non-linear combination of document feature vectors:

$$\phi^{j}(\mathbf{x}, \mathbf{y}) = F(\{\phi^{j}(d_{i_1}), \phi^{j}(d_{i_2}), ..., \phi^{j}(d_{i_k})\})$$

• Choice of F determines how much redundancy in predicted rankings. Couple of examples:

Name	F(A)
LIN	$F(A) = \sum_{a \in A} a$
MAX	$F(A) = \max_{a \in A} a$

Algorithm:

- 1. Start with $\mathbf{w} = \mathbf{0}$
- 2. Present ranking as per current w
- 3. Observe user feedback.
- 4. Perceptron Update:

w += Feedback FeatVec - Presented FeatVec

- 5. Repeat from step 2 for next user session
- Simple and efficient
- Theoretically guaranteed to converge to optimal
- Ranking in step 2 can be easily computed via simple greedy algorithm for any submodular F.
- Outperforms supervised learning within few iterations despite not receiving true labels.

Fig2: Comparison with supervised learning.

Future Directions:

- User study of model in recommendation system.
- Extending to extrinsic diversity.