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Overview Motivation:
Present simple, efficient online learning algorithms for * Most research on focused on extrinsic diversity.
learning both relevance and diversity in rankings, which » Intrinsic Diversity: Diversity in the aspects of a
are shown to be theoretically and empirically robust. single information need.

* No previous method for learning required amount
Example: News Recommendation of diversity from user feedback/click data.

1. Users have
multiple different
Interests

Learning Diversity:

« Capture diversity via non-linear combination of
document feature vectors:
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5. Which helps present better 1. Startwithw =0
e 2. Present ranking as per current w
Experiments: 3. Observe user feedback.
4. Perceptron Update:
* Used 2 news datasets: RCV1 and 20NG w += Feedback FeatVec - Presented FeatVec
* Simulated diverse users with 5 interests. 5. Repeat from step 2 for next user session

 TFIDF values used for document features,

« Simple and efficient
FIndings: * Theoretically guaranteed to converge to optimal

* Ranking in step 2 can be easily computed via

* Highly robust to noisy user feedback and quality of simple greedy algorithm for any submodular F.

feedback.
* Able to learn desired amount of diversity.
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Fig2: Comparison with supervised learning.
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Figl: Change in the number of intents covered (above) and search * User StUdy of model in recommendation system.
length (below) over time. « Extending to extrinsic diversity.
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