Bayesian Ordinal Peer Grading

Karthik Raman Thorsten Joachims
Cornell University Cornell University
Ithaca, NY 14850 Ithaca, NY 14850
karthik@cs.cornell.edu tjlcs.cornell.edu
Abstract

Massive Online Open Courses have become an accessible and affordable choice
for education. This has led to new technical challenges for instructors such as
student evaluation at scale. Recent work has found ordinal peer grading, where
individual grader orderings are aggregated into an overall ordering of assignments,
to be a viable alternate to traditional instructor/staff evaluation [21]. Existing tech-
niques, which extend rank-aggregation methods, produce a single ordering as out-
put. However, a single ordering alone may not be sufficient for instructors to con-
fidently determine the final grades. For instance, instructors would like to have an
estimate of the uncertainty of each assignment’s grade as well. In this work, we
tackle this problem by applying Bayesian techniques to the ordinal peer grading
problem; in particular we use MCMC-based sampling techniques in conjunction
with the Mallows model. Experiments are performed on real-world peer grading
datasets along with an analysis of the quality of the learned posterior distributions.

1 Introduction

MOOCs (Massive Online Open Courses) offer the promise of affordable higher education, across a
breadth of disciplines, for anyone with access to the Internet. The introduction of MOOCS has forced
instructors to adapt conventional classroom logistics in order to scale to classrooms of 10,000+ stu-
dents. One such key logistic is the evaluation of students in MOOCs. Given the orders of magnitude
difference in scale, conventional assessment techniques such as instructor/staff-based grading are
simply infeasible for MOOCs. On the other hand scalable automatic-grading schemes, such as
multiple-choice questions, fall short of conventional testing standards as they are not a good mea-
sure of student learning [10, [11]. Furthermore they limit the kinds of courses offered; for instance,
research-oriented classes require more open-ended testing such as essays and reports, which are very
challenging to evaluate automatically.

Peer grading, where students — not instructors or staff — provide feedback on the work of other
students in the class, has been proposed as a solution, since it naturally overcomes the problem of
scale [9, [13]]. Despite the inherent scalability of peer grading — the number of “graders” matches
the number of students — a key obstacle for peer grading to work is the fact that the students are
not trained graders and are just learning the material themselves. To ensure good-quality grades it
is imperative that the grader feedback be simple and easy to provide. Recent work has proposed
eliciting ordinal feedback from graders [21] (e.g. ’project A is better than project B”’) rather than
cardinal grades (e.g. “project A should get 87 out of 100”), since ordinal feedback has been shown
to be easier to provide and more reliable than cardinal feedback [3} 22} 5] in several other settings.

This leads to the ordinal peer grading problem, where given the grader feedback (partial orderings
over a subset of the assignments), the goal is to infer the overall ordering of all assignments. Rank-
aggregation techniques have been extended to this task [21] and shown to not only be comparable
to (if not better than) cardinal-grading based techniques but also traditional evaluation practices
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Figure 1: Having the peer grading algorithm produce more detailed information of each individual
assignment’s performance can be very useful for instructors when it comes to determining final
grades. The above figure is one such example, where for each assignment the posterior marginal
distribution (over position in the overall ranking) is shown (rank on x-axis, marginal probability on
y-axis) along with statistics such as posterior mean, median and entropy of the marginal distribution.

such as course-staff (TAs) based grading. It is important to note than unlike other rank aggregation
problems, peer grading requires accuracy throughout the ranking and not just at the top.

A more critical difference is the fact that unlike other rank aggregation problems, a single aggregated
ordering alone is not always sufficient for instructors. In particular, instructors would like more
information to determine the final grades for the assignments. A visual illustration of such fine-
grained output produced by a peer-grading algorithm can be seen in Figure [} Such information
allows instructors to ascertain the algorithm’s confidence in the grade (i.e., percentile/position in
ranking) of each assignment and discern the uncertainty of the underlying peer grades for each
assignment. For instance, in the above example, while it is clear that assignment 1 is the best of the
four assignments, it is not obvious that assignment 2 is better than assignment 3. This is because of
the high uncertainty in the position of assignment 3 (as evidenced by its’ high entropy of 4.57). If
presented with such information, instructors could intervene and improve the final grades by having
such uncertain assignments (assignments with maximum student disagreement) evaluated by staft-
members. Thus while such information could be very helpful, current methods are unable to provide
such information to instructors.

In this work, we look to address this problem, by employing Bayesian techniques for the ordinal
peer grading problem. In particular we propose a Metropolis-Hastings [[7]] based Markov Chain
Monte-Carlo (MCMC) method, for sampling from the posterior of a Mallows model [[17]. The re-
sulting samples allow us to empirically estimate the posterior grade distribution of each assignment,
allowing us to report confidences and uncertainty information. The resulting uncertainty estimates
can be used to improve the overall grading as described earlier.

We empirically study the efficacy of the proposed method on peer grading datasets, collected from a
university-level class. In addition to studying the quality of the learner posterior orderings, we also
analyze the resulting confidences and uncertainty information, both qualitatively and quantitatively.

2 Bayesian Methods for Ordinal Peer Grading (OPG)

In this section, we first describe the ordinal peer grading problem from a machine learning per-
spective. We then briefly review existing techniques for the OPG problem. Our proposed Bayesian



G,g9(€ G) | Setof all graders, Specific grader
D,d(e D) | Setof all assignments, Specific assignment
Dgy(C D) | Setof items graded by grader g
o Ranking feedback (with possible ties) from g
ng(€ RT) | Predicted reliability of grader g
ré”) Rank of assignment d in ordering o (rank 1 is best)

do > d1 ds is preferred/ranked higher than d; (in o)
m(A) Set of all rankings over A C D

o1 ~ 02 3 way of resolving ties in o2 to obtain o1
o Estimated ordering of assignments
o (Latent) True ordering of assignments

Table 1: Notation overview and reference.

version of these techniques is then presented, followed by an empirical evaluation of these tech-
niques in Section 3]

2.1 Ordinal Peer Grading Problem

In the ordinal peer grading problem, we are given a set of |D| assignments D = {dy, ...,d|p}
(e.g., project reports, essays) which we need to grade. The grading is performed by a set of |G|
graders G = {gi,...,9q|} (e.g., student peer grader, reviewers). Each grader receives a subset
of assignments D, C D to assess. The subsets D, can be determined randomly, by a sequential
mechanism or a deterministic policy. As feedback, each grader provides an ordering o(9) (possibly
with ties) of their assignments D,.

The primary goal of OPG is ordinal grade estimation [21], i.e., to produce an overall ordering
of the assignments & using the individual grader orderings o(9). While we would like this inferred
ordering ¢ to accurately match some (latent) true ordering o*, we are faced with a couple of chal-
lenges. First, the individual grader orderings are only partial orderings, i.e., the orderings only cover
a small subset of the assignments (|Dy| < |D|). The second challenge is the fact that not all graders
do an equally good job of grading, be it due to effort, skill or understanding of the material.

This leads to the secondary goal of grader reliability estimation, where we would like to estimate
the accuracy/quality n, € R of the feedback of each grader g. This allows us to improve the
ordinal grade estimation quality by identifying unreliable graders and thus reduce the impact of
their feedback on the estimated ordering . Furthermore, it helps incentivize good and thorough
grading by making peer grading itself part of the overall grade.

2.2 Relation to existing rank aggregation literature

The ordinal grade estimation problem in OPG can be viewed as a specific kind of rank aggregation
problem. Rank aggregation [[14] covers a class of problems where the goal is the combination of
ordinal (ranking) information from multiple different sources. Voting Systems (or Social Choice
[1]) are one of the most common applications of rank aggregation techniques. The goal of these
systems is to merge the preferences of a set of individuals. Condorcet voting methods such as
Borda count amongst others [8, [L6] are commonly used to tackle these problems. Search Result
Aggregation (also known as Rank Fusion or Metasearch [2]) is perhaps the most well-known rank-
aggregation problem. Given rankings from different sources (typically different algorithms), the
goal is to merge them and produce a single output ranking. Extensions of classical techniques such
as the Mallows model [[17]] and Bradley-Terry model [4] have become popular for these problems
[15,16] and have been used to improve ranking performance in different settings [20, 23} |18].

While our work also extends the classical Mallows model, there are some fundamental differences
to the these other rank aggregation problems, which make existing methods ill-suited for the OPG
problem. First and foremost is the fact that while the success of search result aggregation and voting
systems depend on correctly identifying the top item(s), in ordinal grade estimation it is imperative

"Producing an overall ordering of the assignments can be used to infer, for each assignment, a percentile
rank as the grade (a common performance metric reported by standardized tests).



to accurately estimate the full ranking. In other words, we cannot afford to do any worse of a job
identifying the 50" percentile assignments than we do identifying the top assignments.

A second key difference (and the main focus of this work) is the fact that unlike other rank aggre-

gation problems, a single ordering of assignments may not suffice for the purpose of determining

grades. Before determining the final grades of assignments, instructors would like to have access to

other information such as the uncertainty in the rank of an assignment. In other words, theiwould
1)

like to know more about the distribution of rc(l&) (for instance a visualization such as Figure

2.3 Existing Approaches to OPG

Different approaches [21] to the OPG problem include extensions of classical models such as the
Mallows and Bradley-Terry model. We focus on the Mallows-based methods, as they form the basis
for the techniques proposed in this work. In particular, the proposed Mallows-based peer grading
model defines a distribution over rankings in terms of the Kendall-Tau distance [[12] from the true
ranking o* of assignments.

Definition 1 The Kendall-T Distance § i between rankings o1 and o5 is the number of incorrectly
ordered pairs between the two rankings and is given by:

Sk(or,00) = > Tl =, di]]- (1)

di>=o, d2
Given the grader orderings 9, we can define the data likelihood (if the overall ranking was o) as:
—6x (o,07)

P (g);v _ D@ € . 2
(oo = TT =555 @

where the normalization constant Zj, is easy to compute as it only depends on the ranking length.
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Note that in Equation |2} ties in the grader rankings are modeled as indifference (i.e., agnostic
to either ranking), which leads to the summation in the numerator is over all total orderings o’
consistent with the weak ordering . While computing the MLE estimator of Equation [2| is NP-
hard [8], a couple of simple and tractable approximations are presented in [21] that are shown to
work well in practice.

While this model does not produce grader reliability estimates, an extension to the model is proposed
in [21] and computed using a MAP estimator (rather than MLE estimator):
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However, both models (with and w/o reliability estimates) suffer from the same issue, in that they
both produce point estimates, i.e., a single ranking as output. In the next section, we will propose
and study a Bayesian version of these models that estimates the posterior distribution of the true
ranking and reliabilities.

2.4 Mallows MCMC using Metropolis-Hastings

To help provide more detailed information to instructors, we would like to have access to the pos-
terior distribution of the orderings. In other words, instead of the data likelihood probability we
have in Equation [2| (ignoring the grader reliabilities for now), we would like to know the posterior
distribution of an estimated ranking o i.e., P(c|{c@;Vg}). We can safely assume a uniform prior
on all orderings (for academic fairness), which gives us:
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Algorithm 1 Sampling from Mallows Posterior using Metropolis-Hastings

1: Input: Grader orderings ¢, Grader reliabilities 14 and MLE ordering 6.

2: Pre-compute z;; < > e Nglldi =50 dj] =3 cqnglld; =50 dif

3: 0040 > Initialize Markov Chain using MLE estimate
4: for t=1...T do

: Sample ¢’ from (MALLOWS) jumping distribution: Jasar(c'|o¢—1)

A CAICAATD)
P(o—1|[{c@;Vg})
With probability min(r¢, 1), oy < o’ else o + 041
Add o to samples (if burn-in and thinning conditions met)

5

6:  Compute ratio 7y = using Equation |5
7

8

However computing this posterior exactly is infeasible given the combinatorial number of possible
orderings of all assignments. To help us ascertain information from the posterior, we will employ
MCMC based sampling. Markov Chain Monte Carlo (or MCMC in short) are a set of techniques for
sampling from a distribution by constructing a Markov Chain which converges to the desired dis-
tribution asymptotically. Metropolis-Hastings is a specific MCMC algorithm which is particularly
common when the underlying distribution is difficult to sample from (as is the case here) especially
for multi-variate distributions.

Thus to help us estimate properties of the posterior we will design a Markov Chain whose stationary
distribution is the distribution of interest: P(c|{c@;Vg}). Along with the theoretical guarantees ac-
companying these methods, an added advantage is the fact that we can control the desired estimation
accuracy (by selecting the number of samples).

The resulting algorithm is a simple and efficient algorithm shown in Algorithm[I] To begin with
we pre-compute statistics of the net cumulative weighted total each assignment d; is ranked above
another assignment d;. We then initialize the Markov Chain using the MLE estimate of the ordering:
&. At each timestep, to propose a new sample o’ given the previous sample o;_1, we sample from a
jumping distribution (Line 5). In particular, we use a Mallows-based jumping distribution:

— JJWAL(J/‘O')OceiéK(U/’J).

This is a simple distribution to sample from and can be done efficiently in | D|log| D| time. Further-
more as this is a symmetric jumping distribution (i.e., Jysar (0'|0) = Jyrar(o]o’)), the acceptance
ratio computation is simplified.

When it comes to computing the (acceptance) ratio r; (Line 6), we can rely on the pre-computed
statistics to do so efficiently. In particular, we can simplify the expression for the ratio to:

HeéK(U(‘g)yl"b)—SK(o'@,a'a) _ Hexij(ﬁ[dz‘>aadj]*]l[dkobdﬂ) (5)

P(aa|{09;vg}) _
) geG ,J

P(oy|{09;Vg}

This expression is again simple to compute and can be done in time proportional to the number
of flipped pairs between o, and o}, which in the worst case is O(|D|?). Overall, the algorithm
has a worst-case time complexity of O(7'|D|?). The resulting samples produced by the algorithm
can be used to estimate the posterior distributions including the marginal posterior of the rank of
each assignment i.e., P(r4|{c9;Vg}, as well as statistics such as the entropy of the marginal, the
posterior mean and median etc.

In order to improve the quality of the resulting estimates, we ensure proper mixing by targeting a
moderate acceptance rate and by thinning samples (in our experiments we thin every 10 iterations).
Furthermore we draw samples only one the chain has started converging i.e., we use a burn-in of
around 10,000 iterations.

We also derive a Metropolis-Hastings based extension of the Mallows model with grader reliabilities.
In addition to sampling the orderings, we also sample the reliabilities using a Gaussian jumping
distribution (also symmetric). However the acceptance ratio computation is now more involved and
hence less efficient than that for Algorithm|[T] but nonetheless can be computed fairly efficiently. We
omit the precise equation and computations for the purpose of brevity.



Data Statistic PO |FR
Number of Assignments | 42 | 44
Number of Peer Reviewers|148[153
Total Peer Reviews 996|586

Table 2: Statistics for the two datasets (PO=Poster, FR=Report)

3 Experiments

In this section, we shall empirically evaluate the performance of the Bayesian Mallows-based peer
grading method. In particular, we shall study a) the quality of the learned posterior, as measured
with regards to conventional instructor grades; and b) the quality of the confidence intervals and
uncertainty information.

3.1 Experimental Setting

We used the peer-grading datasets introduced in [21]. These datasets were collected in a real-
classroom setting from a large university class. The class which consisted of about 170 students
and 9 Teaching Assistants (TAs), used peer grading to evaluate the course projects (done in groups
of 3-4 students). The advantage of this class size is the availability of conventional instructor and
TA based grades for assignments, in addition to the peer grades (performed individually by each
student). Having these instructor grades allows us to provide a more robust evaluation of the educa-
tional impact of these techniques, beyond what previous work has done.

We used both the Poster (PO) and Final Report (FR) datasets in this work. The two datasets
correspond to different parts of the course. Students were incentivized to do a good job grading
by incorporating their peer grading performance into their overall grade for the course. While the
peer grading was done on a 10-point (cardinal) Likert scale (so as to compare cardinal and ordinal
peer grading methods) in this work we simply use the implied orderings of the assignment. Table
summarizes some of the key statistics of the two datasets.

The Bayesian Mallows MCMC method was run with identical (fixed) parameters for both datasets.
In total, 5000 sample orderings were drawn from the Markov Chain using Algorithm[I] These sam-
ples were used to estimate the posterior distributions and for obtaining the statistics in the following
subsections.

3.2 How good are the posterior orderings learned

Although we are inferring a distribution over rankings, rather than a single point estimate, the hope
is that the overall quality of these rankings is good. To verify this, we computed the expected
Kendall-Tau error of the learned posterior. We also compute the expectation of a weighted version
of the Kendall-Tau error where misordering items with a larger (instructor) score difference leads to
a worse performance measure. We compared the following techniques:

e MLE: MLE Estimate of the Mallows model. This is a single point estimate and is used to
initialize the Markov Chain.

e Mode: (One of the) Modes of the posterior of the Mallows distribution (as discovered
during the sampling process). This is a single point estimate.

e Bayes-MAL: This is an estimate of the expected value of the 7,1 over the posterior learned
by Alg([l]
e Bayes-MAL+G: This is an estimate of the expected value of the 7x7 over the posterior

learned by the Metropolis-Hastings version of the Mallows model with grader reliability
estimates.

The results are shown in Figure [2] Interestingly, we observe that the expected performance of the
Bayesian posteriors, on both the Kendall-Tau error and the weighted variant, is nearly as good (if
not better) than the MLE and MODE estimates for the POSTER dataset. Even on the REPORT
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Figure 2: (Left) Kendall-Tau Performance of the MCMC Mallows methods (with and without grader
reliability estimation) against the instructor grades. Lower the better. Note: Performance of a
random baseline would be 50%. Figure on the Right is similar but reports a weighted version of the
Kendall-Tau error.

dataset, though performance worsening is unsurprising, we still find that the performance is quite
competitive and far better than random ordering. In both cases, the performance reported is better
than the NCS cardinal grading method [19] as reported in [21]]. We should also point out that while
the diminished performance of the MODE compared to the MLE may be a bit surprising, this is
strongly determined by which mode was selected (as the distribution tends to be multi-modal).

While we typically observe better performance on the POSTER dataset than the REPORT dataset,
this can largely be attributed to the larger number of peer grades per assignment for the posters.
Lastly we also note that the performance does not vary much on adding grader reliability estimation.
This observation agrees with that made in [21] where a similar finding was made. The most likely
reason for observing this behavior is the explicit incentive the students were given for doing a good
job grading.

3.3 How good are the confidence intervals learned

While the previous experiment indicated the overall quality of the orderings tends to be quite good
(with regards to instructor grades), it does not tell us how good the confidence intervals estimates are.
In particular, we would like to estimate how good are the Bayesian confidence intervals (i.e., cred-
ible intervals) of the inferred posterior marginal distributions (over position in the overall ranking)
for individual assignments. To evaluate these uncertainty estimates, we again utilize the instructor
gradesﬂ In particular we evaluate the quality of the 50% and 80% credible intervals.

For each assignment, we first compute the (posterior) marginal distribution over the ranking po-
sitions as shown in Figure [T] from the introduction. We then compute the overlap of the credible
intervals of these marginals with the instructor ranking distribution i.e., an assignment whose credi-
ble interval contains (all) the instructor-provided ranks has a 100% overlap, whereas an interval with
no overlap scores a 0%. We report this overlap averaged over all assignments. In addition to this,
we also report the size of these intervals (as a percentage of the overall ranking length).

The results are shown in Figure 8] Encouragingly we find that the 50% and 80% interval cover
roughly that percentage of the instructor grades, which indicates that the intervals are meaningful
and of good quality. Furthermore we find that the overlap is far more than the size of the interval
(indicating that the performance is far better than random). As in the previous experiment, we do
not find a significant difference in performance when using grader reliability estimation.

Lastly we find that the interval quality tends to be slightly better on the reports than the posters, but
that is largely due to the intervals being significantly larger than for the posters, i.e., there is far more

2Since these also have ties, we treat ties as indifference and hence have a uniform probability distribution
over all possible valid rank positions.
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Figure 3: Overlap of the 50% and 80% Bayesian credible intervals with the instructor rank distribu-
tion, for both the Bayes-MAL and Bayes-MAL+G methods. For each interval, we report the average
overlap followed by the average size of the interval (as a percentage) of overall ranking length.
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Figure 4: Distribution of the entropies of the marginals for the Bayes-MAL method.

uncertainty in the marginals of the reports than the posters. This is confirmed by Figure ] which
shows the distribution of the marginal entropies for the two datasets.

Together these two experiments indicate that the posterior marginals learned are meaningful and con-
vey the uncertainty information fairly accurately and can hence be used to report such information
to instructors. In fact, the examples from Fig I] are the actual inferred distributions of assignments
from the poster dataset using the Bayes MCMC Mallows model.

4 Future Work

In addition to further empirical studies into the quality of the learned posteriors, we are also explor-
ing other Bayesian techniques for the OPG problem. Furthermore we are also exploring studying
the quality of the credible intervals of the estimated grader reliabilities.
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