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Understanding Intrinsic Diversity in Web Search: Improving
Whole-Session Relevance
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Current research on Web search has focused on optimizing and evaluating single queries. However, a signif-
icant fraction of user queries are part of more complex tasks [Jones and Klinkner 2008] which span multiple
queries across one or more search sessions [Liu and Belkin 2010; Kotov et al. 2011]. An ideal search engine
would not only retrieve relevant results for a user’s particular query but also be able to identify when the
user is engaged in a more complex task and aid the user in completing that task [Morris et al. 2008; Agichtein
et al. 2012]. Toward optimizing whole-session or task relevance, we characterize and address the problem of
intrinsic diversity (ID) in retrieval [Radlinski et al. 2009], a type of complex task that requires multiple in-
teractions with current search engines. Unlike existing work on extrinsic diversity [Carbonell and Goldstein
1998; Zhai et al. 2003; Chen and Karger 2006] that deals with ambiguity in intent across multiple users,
ID queries often have little ambiguity in intent but seek content covering a variety of aspects on a shared
theme. In such scenarios, the underlying needs are typically exploratory, comparative, or breadth-oriented
in nature. We identify and address three key problems for ID retrieval: identifying authentic examples of ID
tasks from post-hoc analysis of behavioral signals in search logs; learning to identify initiator queries that
mark the start of an ID search task; and given an initiator query, predicting which content to prefetch and
rank.
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1. INTRODUCTION

Information retrieval research has primarily focused on improving retrieval for a single
query at a time. However, many complex tasks such as vacation planning, comparative
shopping, literature surveys, etc., require multiple queries to complete the task [Jones
and Klinkner 2008; Bailey et al. 2012].

Within the context of this work, we focus on one specific type of information seeking
need that drives interaction with Web search engines and often requires issuing multi-
ple queries, namely, intrinsically diverse (ID) tasks [Radlinski et al. 2009]. Informally,
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Table I. Examples of Intrinsically Diverse Search Tasks

Initiator query Successor queries

snow leopards

snow leopard pics

where do snow leopards live

snow leopard lifespan

snow leopard population

snow leopards in captivity

remodeling ideas

cost of typical remodel

hardwood flooring

earthquake retrofit

paint colors

kitchen remodel

Note: Showing the initiator (first) query and several successor (next) queries from
the same search session.

an intrinsically diverse task is one in which the user requires information about mul-
tiple aspects of the same topical information need. Table I gives examples of two in-
trinsically diverse tasks based on those observed in commercial Web search engine
logs. Intrinsic diversity, where diversity is a desired property of the retrieved set of
results satisfying the current user’s immediate need, is meant to indicate that diver-
sity is intrinsic to the specific need itself; this is in contrast to techniques that provide
diversity to cope with uncertainty in the intent of the query (e.g., the ambiguous query
[jaguar]).

Intrinsically diverse tasks typically are exploratory, comprehensive, survey-like, or
comparative in nature. They may result from users seeking different opinions on a topic,
exploring or discovering aspects of a topic, or trying to ascertain an overview of a topic
[Radlinski et al. 2009]. While a single, comprehensive result on the topic may satisfy
the need when available, several or many results may be required to provide the user
with adequate information coverage [Radlinski et al. 2009]. As seen in the examples,
a user starting with [snow leopards] may be about to engage in an exploratory task
covering many aspects of snow leopards, including their lifespan, geographic dispersion,
and appearance. Likewise, when investigating remodeling ideas, a user may wish
to explore a variety of aspects including cost, compliance with current codes, and
common redecorating options. Note that the user may in fact discover these aspects
to explore through the interaction process itself. Thus ID search may overlap in some
cases with both exploratory and faceted search [Dakka et al. 2006; White et al. 2008].
However, unlike the more open-ended paradigm provided by exploratory search, we
desire a solution that is both shaped by the current user’s information need and is
able to discover and associate relevant aspects to a topic automatically in a data-
driven fashion. For example, given the query [snow leopards], our goal is to enable
deeper user-driven exploration of that topic by proactively searching for the relevant
information that the user might want during the course of a session on that topic, thus
reducing the time and effort involved in manual reformulations, aspect discovery, and
so on.

To this end, we aim to design a system that addresses two key problems needed
for ID retrieval: detecting the start of and continued engagement in an ID task, and
computing an optimal set of ID documents to return to the user, given they are engaged
in an ID task. For the first problem, the system must be capable of predicting when a
user is likely to issue multiple queries to accomplish a task, based on seeing their first
“initiator query”. To do this, we first develop a set of heuristic rules to mine examples of
authentic intrinsic diversity tasks from the query logs of a commercial search engine.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 20, Publication date: October 2014.



Understanding Intrinsic Diversity in Web Search 20:3

The resulting tasks provide a source of weak supervision for training classification
methods that can predict when a query is initiating an intrinsically diverse task or
continuing engagement in such a task. With these predictive models, we characterize
how ID initiators differ from typical queries. We then present our approach to intrin-
sically diversifying a query. In particular, rather than simply considering different
intents of a query, we incorporate queries that give rise to related aspects of a topic by
estimating the relevance relationship between the aspect and the original query. Given
the intrinsically diverse sessions identified through log analysis, we demonstrate that
our approach to intrinsic diversification is able to identify more of the relevant mate-
rial found during a session given less user effort, and furthermore, that the proposed
approach outperforms a number of standard baselines.

2. RELATED WORK

The distinction between extrinsic and intrinsic diversity was first made by Radlinski
et al. [2009]. In contrast to extrinsically-oriented approaches, which diversify search
results due to ambiguity in user intent, intrinsic diversification requires that results
are both relevant to a single topical intent as well as diverse across aspects, rather
than simply covering additional topical interpretations. Existing methods like maximal
marginal relevance (MMR) do not satisfy these requirements well, as we show in Sec-
tion 6.3. While diversified retrieval has been a popular research topic over many years,
much of the research has focused on extrinsic diversity: this includes both learning-
based [Yue and Joachims 2008; Slivkins et al. 2010; Santos et al. 2010b; Raman and
Joachims 2013] and non-learning-based approaches [Carbonell and Goldstein 1998;
Zhai et al. 2003; Chen and Karger 2006; Clarke et al. 2008; Swaminathan et al. 2009;
Agrawal et al. 2009; Dang and Croft 2013]. While there has been some work on online
learning for intrinsic diversity [Raman et al. 2012], it has been limited to simulation
studies and has not addressed the problem of intrinsic diversity in Web search. Recent
work [Bailey et al. 2012] indicates that real-world Web search tasks are commonly in-
trinsically diverse and require significant user effort. For example, considering average
number of queries, total time spent, and prevalence of such sessions, common tasks
include discovering more information about a specific topic (6.8 queries, 13.5 minutes,
14% of all sessions); comparing products or services (6.8 queries, 24.8 minutes, 12% of
all sessions); finding facts about a person (6.9 queries, 4.8 minutes, 3.5% of all sessions);
and learning how to perform a task (13 queries, 8.5 minutes, 2.5% of all sessions). Thus,
any improvements in retrieval quality that address intrinsically diverse needs have
potential for broad impact.

Some previous TREC tracks, including the Interactive, Novelty, and QA tracks, stud-
ied intrinsic diversity-like problems in which retrieval effectiveness was partly mea-
sured in terms of coverage of relevant aspects of queries, along with the interactive
cost to a user of achieving good coverage. While our work shares important goals with
these tracks, our task and data assumptions differ. For example, the Interactive tracks
focused more on coverage of fact- or website-oriented answers, while our definition of
query aspect is broader and includes less-focused subtopics. In addition to optimizing
rankings to allow efficient exploration of topics, we also predict queries that initiate in-
trinsically diverse tasks and show how to mine candidates for ID tasks from large-scale
search log data.

Session-based retrieval is a topic that has become increasingly popular. Different
research groups have studied trends observed in user search sessions and ways to
improve search for such sessions [Guan et al. 2013; He et al. 2013]. For example,
Radlinski and Joachims studied the benefit of using query chains in a learning-to-
rank framework to improve ranking performance [2005]. Others have studied different
means of evaluating search performance at the session level [Järvelin et al. 2008;
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Clarke et al. 2009; Kanoulas et al. 2011a; Smucker and Clarke 2012; Sakai and Dou
2013]. Research in this area has been aided by the introduction of the Session track
at TREC [Kanoulas et al. 2010, 2011b]: resulting in work on session analysis and
classification [Liu et al. 2010; Liu et al. 2011]. Of particular interest is work by He
et al., which proposed a random walk on a query graph to find other related queries
which are then clustered and used as subtopics in their diversification system [2011].
In our re-ranking approach, we also use related queries to diversify the results, but
maintain coherence with the original query. Specifically, we identify a common type of
information need that often leads to longer, more complex search sessions. However, in
contrast to previous work, rather than using the session interactions up to the current
point to improve retrieval for the current query, we use a query to improve retrieval
for the user’s current and future session. We use sessions from query logs for analysis
and evaluate the effectiveness of the proposed methods. While the TREC Session track
evaluated the number of uncovered relevant examples for the final query, the emphasis
is on the impact provided by the session context up to the present query; in our case, we
assume no previous context, but instead are able to characterize the need for intrinsic
diversity based on the single query alone.

Session data has also been used to identify and focus on complex, multistage user
search tasks that require multiple searches to obtain the necessary information [White
et al. 2010; Kotov et al. 2011]. This has led to research on task-based retrieval [Hassan
et al. 2011; Liao et al. 2012; Hassan and White 2012; Feild and Allan 2013] where tasks
are the unit of interest, as opposed to queries or sessions. Trail-finding research studies
the influence of factors such as relevance, topic coverage, diversity, and expertise [Singla
et al. 2010; Yuan and White 2012]. While these problems are certainly related to
ours, tasks and trails tend to be more specialized and defined in terms of specific
structures: for example, tasks are characterized as a set or sequence of subtasks to
be accomplished, while trails are defined in terms of specific paths of user behavior
on the Web graph. However, intrinsically diverse search sessions, for example, as in
Table I, represent a broader, less-structured category of search behavior. Similarly, our
approach complements work on faceted search [Kohlschutter et al. 2006; Kong and
Allan 2013] and exploratory search [Marchionini 2006; White et al. 2006; Qvarfordt
et al. 2013] by providing a data-driven manner of discovering common facets dependent
on the particular topic.

Query suggestions are a well-established component of Web search results with a
vast pertinent research literature: common approaches include using query similarity
(e.g., [Zhao et al. 2006; De Bona et al. 2010; Dupret et al. 2010; Guo et al. 2011]) or
query-log-based learning approaches (e.g., [Joachims et al. 2007; Dang et al. 2010]).
Query suggestions play an important role for intrinsically diverse needs, because they
provide an accessible and efficient mechanism for directing users towards potentially
multiple diverse sets of relevant documents. Therefore, query suggestion techniques
that do not merely provide simple reformulation of the initial query but correctly
diversify across multiple facets of a topic, may be particularly helpful for intrinsically
diverse needs. Thus our retrieval approach has been partly inspired by recent research
on diversifying query suggestions [Ma et al. 2010; Sadikov et al. 2010; Santos et al.
2010a; Song et al. 2011; Fujita et al. 2012], including work that performs clustering of
query refinements by user intent for categorical queries. Similarly, work on diversifying
results using query reformulations [Radlinski and Dumais 2006; Capannini et al. 2011;
Dang and Croft 2012] is also related to our approach.

Our approach is also motivated by recent work on interactive ranking. Brandt et al.
propose the notion of dynamic rankings, where users navigate a path through the
search results to maximize the likelihood of finding documents relevant to them [2011].
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Our objective formulation closely relates to another recent work on two-level dynamic
rankings [Raman et al. 2011], which studied the benefit of interaction for the problem of
extrinsic diversity. Similarly, user interaction has been found to help in more structured
and faceted search tasks [Zhang and Zhang 2010; Gollapudi et al. 2011; Pound et al.
2011], in cases such as product search. However, while presenting interactive, dynamic
rankings is one user experience that offers a way to surface the improved relevance
to users, our techniques are more general: they may be used to present a summary of
the topic to the user, recommend unexplored options, anticipate and then crowdsource
queries to trade off latency and quality by prefetching, and more.

In contrast to previous work, we provide a way not only to identify complex search
tasks that will require multiple queries but to proactively retrieve results for future
queries before the user has searched for them. Importantly, these future queries are
neither simple reformulations nor completely unrelated, but are queries on the par-
ticular task that the user has started. Finally, we introduce diversification methods
which, unlike previous methods, maintain coherence around the current theme while
diversifying. Using these methods, we demonstrate that we can improve retrieval rele-
vance for a task by detecting an intrinsically diverse need and providing whole-session
retrieval at that point.

RELATION to Raman et al. [2013]. This article revises and extends the work in
Raman et al. [2013]. In particular, this article makes the following additional contri-
butions. (1) It presents improved evaluation of the session filtering performance using
additional annotators, error estimation and further analysis (Section 3.1). (2) It charac-
terizes and contrasts ID sessions with non-ID sessions in terms of different measures of
effort and success, among others (Section 3.2). (3) Linguistic and topical traits of ID ini-
tiator queries are explored further (Section 4.5). (4) The problem of predicting ID task
initiation is studied further, including the effects of training data, model choices and
class-bias (Sections 4.6–4.8). (5) A new classification task (Predicting ID task engage-
ment given context) is introduced and studied in detail (Section 5). (6) The proposed ID
reranking method is compared with new baselines, evaluated on additional datasets
and further analysis provided in terms of the effects of the user model and document set
(Section 6.3). This article also provides additional details such as the session-mining
algorithm (Appendix A), statistical characterization of ID initiators (Appendix B), proof
of the submodularity of the re-ranking objective along with a corresponding approxima-
tion guarantee (Appendix C) and the labeling guidelines used for the annotation tasks
(Appendix D). To further aid understanding, illustrative examples have been added
across different sections including the session-filtering algorithm (Figure 1), ID initia-
tor identification (Table VIII), ID query re-ranking (Figure 13) and the user interaction
model (Figure 14).

3. INTRINSICALLY DIVERSE TASKS

An intrinsically diverse task is one in which the user requires information about mul-
tiple, different aspects of the same topical information need. In practice, a user most
strongly demonstrates this interest by issuing multiple queries about different aspects
of the same topic. We are particularly interested in identifying the common theme of
an intrinsically diverse task and when a user initiated the task. We unify these into the
concept of an initiator query where, given a set of queries on an intrinsically diverse
task, the query among them that is most general and likely to have been the first
among these set of queries is called the initiator query. If multiple such queries exist,
then the first among them from the actual sequence (issued by the user) is considered
the initiator. We give importance to the temporal sequence since the goal is to detect
the initiation of the task and provide support for it as soon as possible.
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Fig. 1. Illustrative example of the filtering algorithm that mines intrinsically diverse needs within sessions.
Each box denotes a session at a stage of processing, with the queries inside the box representing those
observed in the session. Different processing steps, along with the corresponding filtering they perform, are
marked either by formatted text or text color. Steps 1–3 remove queries unlikely to contribute to a session
being ID. Steps 4 and 5 remove sessions that are unlikely to be ID. Steps 6–8 remove successor queries that
are semantically unrelated to the initiator or not diverse enough. Step 9 removes sessions such as the red
example, which has an insufficient number of syntactically distinct queries to be considered ID. The sessions
remaining are considered ID and are marked with the initiator and successor queries.

While previous work has defined the concept of intrinsic diversity, there has been
no real understanding or algorithmic development of the problem, including practical
means to obtain data related to intrinsically diverse needs. We now identify and analyze
authentic instances of intrinsically diverse search behavior extracted from large-scale
mining and analysis of query logs from a commercial search engine.
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3.1. Mining Intrinsically Diverse Sessions

Intuitively, intrinsically diverse (ID) tasks are topically coherent but cover many dif-
ferent aspects. To automatically identify ID tasks in situ where a user is attempting to
accomplish the task, we seek to codify this intuition. Furthermore, rather than trying
to cover all types of ID tasks, we focus on extracting with good precision and accuracy a
set of tasks where each task is contained within a single search session. As a “session”,
we take the commonly used approach of demarcating session boundaries by 30 minutes
of user inactivity [White and Drucker 2007]. Once identified, these mined instances
could potentially be used to predict broader patterns of cross-session intrinsic diversity
tasks [Kotov et al. 2011; Agichtein et al. 2012], but we restrict this study to mining
and predicting the initiation of an ID task within a search session and performing
whole-session retrieval at the point of detection.

To mine intrinsically diverse sessions from a post-hoc analysis of behavioral inter-
actions with the search results, we developed a set of heuristics to detect when a
session is topically coherent but covering many aspects. These can be summarized
as finding sessions that are (1) longer—the user must display evidence of exploring
multiple aspects; (2) topically coherent—the identified aspects should be related to the
same overall theme rather than disparate tasks or topics; (3) diverse over aspects—
the queries should demonstrate a pattern beyond simple reformulation by showing
diversity. Furthermore, the user’s interaction with the results will be used in lieu of a
contextual relevance judgment for evaluation. Thus, we also desire that we have some
“satisfied” or “long-click” results where, in line with previous work, we define a satisfied
(SAT) click as having a dwell of ≥30s or terminating the search session [Fox et al. 2005;
Gao et al. 2009].

Given these criteria, we propose a simple algorithm to mine intrinsically diverse
user sessions. Our algorithm (Alg. 2), which is detailed in Appendix A, uses a series of
filters as explained in more detail next. When we refer to “removing” queries during a
processing stage, we mean they were treated as not having occurred for any subsequent
analysis steps. For sessions, with the exception of those we “remove” from further
analysis in Step 4, we label all other sessions as either intrinsically diverse or regular
(i.e., not ID). We identify the initiator query as the first query that remains after all
query removal steps, and likewise a successor query is any remaining query that follows
the initiator in the session. More precisely, we use the following steps in sequence to
filter sessions.

(1) Remove frequent queries. Frequent queries, such as facebook or walmart, are often
interleaved with other tasks during a session, and such queries can obscure the
more complex task the user may be accomplishing. Therefore, we remove the top 100
queries by search log frequency as well as frequent misspellings of these queries.

(2) Collapse duplicates. We collapse any duplicate of a query issued later in the session
as representing the same aspect of the user’s information need, but record all SAT
clicks across the separate impressions.

(3) Only preserve manually entered queries. To focus on user-driven exploration and
search, we removed queries that were not manually entered, for example, those
queries obtained by clicking on query suggestion or related search links embedded
on a page.

(4) Remove sessions with no SAT document. Since we would like to eventually measure
the quality of rerankings for these session queries in a personal and contextual
sense, we would like to ensure that there is at least one long-dwell click to treat as
a relevance judgment. While this is not required for a session being an ID session,
we simply require it for ease of evaluation. Thus, we removed sessions with no SAT
clicks.
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(5) Minimum aspects explored. To ensure a certain minimum complexity for the intrin-
sically diverse sessions, any session having less than three unique queries (i.e., the
initiator query + two other queries) was deemed to be regular and not intrinsically
diverse.

(6) Ensure topical coherence (semantic similarity). As ID sessions have a common topic,
we removed any successor query that did not share at least one common top-10
search result with the initiator query. Note that this need not be the same result
for every aspect. Although this restricts the set of interaction patterns we identify,
it enables us to be more precise, while also ensuring semantic relatedness. This ap-
proach also does not rely on the weakness of assuming a fixed, static topic ontology.

(7) Ensure diversity in aspects. We would like to avoid identifying trivial query
differences, such as simple reformulations or spelling corrections, as different
aspects, so we avoid queries that share a very high syntactic similarity with the
initiator query. To measure query similarity robust to spelling variations, we
consistently use cosine similarity with character trigrams in this work, and remove
queries where the similarity was more than 0.5.

(8) Remove long queries. We observed a small fraction of sessions matching the pre-
ceding filters that appeared to consist of copy-and-pasted homework questions on a
common topic. While potentially interesting, we focus in this article on completely
user-generated aspects and introduce a constraint on query length, removing
queries of length at least 50 characters, so as to filter these homework-based
queries.

(9) Threshold the number of distinct aspects. Finally, to focus on diversity and complex-
ity among the aspects, we threshold on the number of distinct successor queries.
We identify a query as distinct when its maximum pairwise (trigram character
cosine) similarity with any preceding query in the session is less than 0.6. Any
sessions with less than three distinct aspects (including the initiator) are labeled
as regular and those with three or more aspects are labeled as intrinsically diverse.

Figure 1 provides an illustrative example of the actions taken by the different steps of
the filtering algorithm as well as the resulting sessions. The example regular session
in green is typical of sessions when the user reformulates to further specify a need
(application) the user was likely looking for to begin with (peace corp). Also, not all
long sessions are ID, as seen in the gray example session, where the user has disjoint
information needs.

Putting everything together, we ran this algorithm on a sample of user sessions
from the logs of a commercial search engine in the period April 1–May 31, 2012. We
used log entries generated in the English-speaking United States locale to reduce
variability caused by geographical or linguistic variation in search behavior. Starting
with 51.2M sessions comprising 134M queries, applying all but the SAT-click filter, with
the Number of Distinct Aspects threshold at two, led to more than 497K ID sessions
with 7.0M queries. These ID tasks accounted for 1.0% of all search sessions in our
sample, and 3.5% of sessions having three queries or more (14.4M sessions).1 Further
applying the SAT-click filter reduced the number to 390K. Finally, focusing on the more
complex sessions by setting the Number of Distinct Aspects filter to three, reduced this
to 146,450 sessions. Varying this threshold leads to different sized datasets, shown in
Table II, that we use in subsequent experiments.

Given that ID sessions require multiple queries, we hypothesized that ID sessions
account for a disproportionately larger fraction of time spent searching by all users. To

1Because we do not focus on more complex ID information seeking, such as tasks that span multiple sessions,
the true percentage associated with ID tasks is likely to be larger.
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Table II. Different ID Datasets Extracted from the Search Logs
by Changing the Threshold of the Number of Distinct Aspects

Filter of Alg. 2.

Dataset Distinct Aspect Threshold Number of Sessions
MINED2+ 2 390K
MINED3+ 3 146450
MINED4+ 4 55604
MINED5+ 5 16527

test this, we estimated the time a user spent in a session by the elapsed time from the
first query to the last action (i.e., query or click). Sessions with a single query and no
clicks were assigned a constant duration of 5 seconds. Here, the time in session includes
the whole session once an ID task was identified in that session. Our hypothesis was
confirmed: while ID sessions with at least two distinct aspects represented 1.0% of all
sessions, they accounted for 4.3% of total time spent searching, showing the significant
role ID sessions play in overall search activity.

To assess the accuracy of our automatic labeling process, we sampled 150 sessions
of length at least two queries: 75 each from the auto-labeled regular and MINED2+
intrinsic sets.2 We ignored single query sessions since those are dominated by regular
intents, which may result in a bias in labeling. In total, we had four assessors for
this task: two authors (annotators A,B) and two external annotators (annotators C,D).
The assessors were given an information sheet (provided in Appendix D.1), which
contained instructions similar to the description in the first paragraph of Section 3 as
well as examples of ID sessions, such as those in Table I. They were provided with all
of the queries, including queries filtered by Algorithm 2, in the session in the order
they were issued, and were asked to label each session as regular or ID. The order
of the sessions was randomized and the automatic annotation for the session was not
revealed to the annotators. This prevents inadvertent annotator bias that happens
when all ID or regular sessions are presented together or when the annotator knows
what automatic label a session had.

The resulting assessment statistics are shown in Table III. We find that the four
assessors had a 68.7% pairwise-agreement with an inter-rater κ agreement of 0.353.
At these values of κ, the annotator agreement is moderate, and thus we conclude that
the provided labels are reliable. Using each assessor as a gold standard and taking the
average, on sessions of length two or greater our extraction method has a precision of
70.4% and an accuracy of 65.5%, as shown in Table IV (the IND results). Note that
overall accuracy is higher because single query sessions are always treated as regular.
Using the majority labels leads to similar results.

A closer inspection of these results indicates that aspects for some of the filtered
sessions were not diverse enough, which can be remedied by tightening Step 7 of the
algorithm and using a more stringent threshold for the cosine similarity. Furthermore,
we found that annotator D did not fully comprehend the labeling task and labeled only
42 of the 150 sessions as ID, compared to the average of 63 for the other three annota-
tors. Annotator D’s labels also tended to agree less with the other three annotators (as
seen in Table III) and also disagreed with the labels output by the filtering algorithm
(as seen in Table IV). This might be attributed to the need for further details and more
examples of ID and non-ID sessions in the labeling instructions.

Overall, with both good agreement and moderate-to-strong accuracy and precision,
the filtering method provides a suitable source of noisy supervised labels. Furthermore,

2We chose the MINED2+ dataset for this labeling task so as to minimize any bias that the session length
may introduce in the annotation.
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Table III. Statistics of the Session-Annotation Task with
and without the Annotations from Annotator D

Value
Statistic A,B,C A,B,C,D

Pairwise Agreement 75.34% ±3.42 68.64% ±3.82
Cohen’s Kappa 0.507±0.065 0.352 ±0.074
Fleiss Kappa 0.487 ±0.053 0.332 ±0.044

Note: The estimates were computed using 1,000 boot-
strap samples of 150 sessions each.

Table IV. Performance of the Filtration Method w.r.t
the Session Annotations

Value
Performance A,B,C A,B,C,D

(IND) Precision 73.85% ±5.63 70.39% ±6.09
(IND) Accuracy 70.06% ±3.69 65.49% ±3.89
(MAJ) Precision 76.77% ±5.15 65.18% ±4.31
(MAJ) Accuracy 73.22% ±3.64 65.31% ±2.97

Note: Estimated using 1,000 bootstrap samples
with and without labels from annotator D. Perfor-
mance is computed using both individual (IND)
annotator labels as well as the majority (MAJ)
label.

classical results from learning theory tell us that with enough data, we can hope to
overcome the noise in the labels, as long as this noise is unbiased, with an appropriate
risk-minimizing learning algorithm [Bartlett et al. 2004].

We note that our evaluation of these sessions was limited to a few annotators due
to the data coming from real search user sessions and thus containing Personally
Identifiable Information (PII). As it can be hard to identify what data is PII and what
isn’t, we were unable to release the data publicly3 and thus could not crowdsource
the annotation task. However, given the reviewer agreement on this data, as well as
the TREC session track data (Section 6.5), we believe that the results provided are
representative and likely to hold even with a large-scale evaluation of the algorithm’s
performance.

3.2. Characteristics of Identified Intrinsically Diverse Sessions

To further understand what differentiates the mined ID sessions from regular sessions,
we compared different statistics of the two kinds of sessions. We selected 30K sessions
randomly from each to have comparable sampling error. In particular, we considered
three different sets of sessions.

(1) MINED. A sample of the MINED4+ dataset of size 30K sessions.4
(2) ALLREG. A sample of 30K regular sessions (with at least one SAT click).
(3) REG4+. A sample of 30K regular sessions all of which have at least one SAT

click and four queries (to control for the minimum length of session relative to
MINED4+).

We characterize statistical differences between the different session types in terms
of different quantitative measures, as detailed in Table V. We observe that ID ses-
sions (MINED) tend to involve more user effort, as measured by the average number
of queries and total dwell-time, than that displayed for regular sessions (ALLREG),
including longer regular sessions (REG4+). Figure 2 visualizes some of these differ-
ences. With regard to success while searching, we find that users tend to look for more
information in ID sessions, as seen by the increased number of SAT clicks; however,
they tend to require more queries and appear to be more selective for these sessions,
resulting in a lower number of SAT clicks per query. This also indicates that users are
not as satisfied with the quality of search engine results for these queries compared to
the other kinds of sessions, indicating potential to improve retrieval for these kinds of
sessions. We will further address this problem in Section 6.

3For this same reason we are unable to report real examples for the session filtering.
4To focus on more complex and (label) noise-free ID tasks, we use the MINED4+ dataset as the primary
analysis dataset for ID sessions in the rest of the article.
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Table V. Mean and Standard Deviation of Different Session Characteristics Characterizing
the Different Kinds of Sessions

Measure of Session Characteristic MINED ALLREG REG4+
Mean Dev. Mean Dev. Mean Dev.

Effort
Number of Queries 14.19 (5.21) 10.50 (1.73) 3.10 3.60 6.68 5.48
(Relative) Total Dwell Time 3.42 3.66 1.00 2.22 2.59 3.07

Success
(Relative) No. of SAT clicks 3.23 (1.34) 2.65 (0.90) 1.00 1.03 2.04 1.69
(Rel.) Avg. SAT clicks per query 0.79 0.51 1.00 0.65 0.96 0.61

Diversity
Number of Unique Documents
(in Top 10)

38.79 10.54 24.21 33.67 58.76 49.15

Number of Unique Documents
Per Query (in Top 10)

7.61 1.13 7.24 2.31 8.86 1.15

Semantic
Similarity

Fraction of Top-10 results com-
mon to previous queries

0.29 0.13 0.06 0.14 0.12 0.13

Avg. No. of Top-10 results com-
mon to previous queries

2.84 1.24 0.60 1.36 1.19 1.25

Syntactic
Similarity

Average Trigram Cosine Simi-
larity to previous queries

0.28 (0.33) 0.12 (0.10) 0.17 0.25 0.26 0.19

Avg. Trigram Cosine Similarity
(among all query pairs)

0.26 (0.33) 0.12 (0.10) 0.16 0.25 0.23 0.18

Note: Numbers in parenthesis refer to those for the ID part of the session only, that is, for the selected
queries. Some measures are reported relative to the mean value of the ALLREG sessions.

Fig. 2. Differences between different session types for (from left to right) (a) # queries in session, (b) total
session dwell time.

Another interesting characteristic of ID sessions relative to regular sessions is seen
by comparing the syntactic and semantic similarities between queries in a session.
More specifically, we find that the average syntactic similarity across queries (via
trigram cosine similarity) for ID sessions is quite comparable to that for more complex
regular sessions, albeit a bit more than that for the average regular session. However,
the semantic similarity measures clearly show that queries of an ID session tend to be
far more semantically similar than those in regular sessions. This is also reflected in
the diversity measures: Despite having more queries, the number of unique documents
in the top 10 search results for ID sessions is less than those for long regular sessions
and is quite comparable with that for any regular session. Similarly, the number of
unique documents per query indicates that nearly 3 of the top 10 documents have been
observed at least once previously in the session. As seen in the first row of the table,
the number of ID queries in a session (mean: 5.21) comprise only around a third of
all queries in ID sessions (mean: 14.19). These statistical observations are more than
just a by-product of our extraction algorithm: they are inherent in this kind of search
session and corresponding user search behavior. Thus, the previous observation of an
increased semantic similarity among queries of an ID session agrees with our choice
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of selecting ID session aspects based on semantic similarity, rather than syntactic
similarity, in our extraction process (Step 6).

4. PREDICTING INTRINSICALLY DIVERSE TASK INITIATION

Given that we may want to alter retrieval depending on whether the user is seeking
intrinsic diversity or not, we ask whether we can train a classifier that accurately
predicts when a query has initiated an intrinsically diverse task. While in Section 3 we
used the behavioral signals of interaction between the initiator and successor queries
of a session to automatically label queries with a (weak) supervised label, here we ask
if we can predict what the label would be in the absence of those interaction signals—
a necessary ability if we are to detect the user’s need for intrinsic diversity in an
operational setting. Ultimately our goal is to enable a search engine to customize the
search results for intrinsic diversity only when appropriate, while providing at least
the same level of relevance on tasks predicted to be regular. Recognizing that, in most
operative settings, it is likely important to invoke a specialized method of retrieval only
when confident, we present a precision-recall trade-off but focus on the high precision
portion of the curve.

4.1. Experimental Setting

Data. We used a sample of initiator queries from the intrinsically diverse sessions
described in Section 3.1 (from the MINED4+ dataset) as our positive examples, and
the first queries from regular sessions were used as negative examples, after removing
common queries as in Step 1 of Section 3.1. Note that since the label of a query (e.g.,
[foo]), comes from the session context, it is possible that [foo] occurs in both positive
and negative contexts. In order to only train to predict queries that were clearly either
ID or regular, we dropped such conflicting queries from the dataset; this only occurred
in 1 out of every 5,000 ID sessions. Also, to weight each task equally instead of by
frequency, we sample by type, that is, we treat multiple occurrences of a query in the
positive (resp. negative) set as a single occurrence. Finally, we downsample to obtain a
1:1 ratio from the positive and negative sets to create a balanced set. Unless otherwise
mentioned, the dataset was sampled to contain 61K queries and split into an 80/5/15
proportion (50,000 training, 3,000 validation, 8,000 test) with no class bias.

Classification. We used SVMs [Joachims 1999]5 with linear kernels, unless men-
tioned otherwise. We varied the regularization parameter (C) over the values {10−4, 2 ·
10−4, 5 · 10−4, 10−3, . . . , 5 · 102, 103}. Model selection was done by choosing the model
with the best (validation set) precision using the default margin score threshold of 0.

Features. The features are broadly grouped into five classes as shown in Table VI.
All features are computed only using the query of interest and not any of the other
queries in the session. All features except the Text and POS features were normalized
to have zero mean and unit variance. Features with values spanning multiple orders
of magnitude, such as the number of impressions, were first scaled down via the log
function. Due to the large scale of our data, coverage of some features is limited. In
particular, query classification was done similar to Bennett et al. [2010] by selecting
the top 9.4M queries by frequency from a year’s query logs previously in time and then
using a click-based weighting on the content-classified documents receiving clicks.6
Likewise, Stats and QLOG features are built from four months’ worth of query logs
(December 2011–March 2012) and have limited coverage as a result. Note that the

5http://svmlight.joachims.org/.
6For greater coverage, this could be extended to a rank-weighted back-off as described in Bennett et al.
[2010].
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Table VI. Different Feature Sets Used for the Identification of Initiator Queries

Feature Set Examples Cardinality Coverage Normalized Log-Scale
Text Unigram Counts 44,140 100% No No
Stats # Words, # Characters, #

Impressions, Click Count,
Click Entropy

10 81% Yes Yes

POS Part-of-Speech Tag Counts 37 100% No No
ODP Five Most Probable ODP

Class Scores from Top Two
Levels

219 25% Yes Yes

QLOG Average Similarity with
co-session queries, Average
session length, Distribution of
occurrences within session
(start/middle/end)

55 44% Yes No

query logs chosen to build these features were from prior to April 2012 to ensure a fair
experimental setting with no overlap with the data collection period of the intrinsically
diverse or regular sessions. We found the coverage of these features to be roughly
the same for both the positive and negative classes. Note that the QLOG features
are statistics about the queries computed from the existing query logs. These features
include the average length of a session such a query occurs in (since an ID initiator
potentially occurs in longer sessions than regular queries), as well as the average
similarities with other queries occurring in the same session as this query.

We also note that the cardinality of some feature sets will depend on the training
set: for example, the vocabulary size of Text features grows with more training data.
The values listed in Table VI are for the default training set of 50,000 queries. Most of
our experiments will use all of the five feature sets; the effect of using only a subset of
the feature sets is explored in Section 4.3.

4.2. Can We Predict ID Task Initiation?

To begin with, we would like to know the precision-recall trade-off that we can achieve
on this problem. Figure 3 shows the precision-recall curve for a linear SVM trained on
50K examples with all the features. The result is a curve with clear regions of high
precision, indicating that the SVM is able to identify initiator queries in these regions
quite accurately. Furthermore, performance is better than random (precision of 50%
since classes are balanced) along the entire recall spectrum.

As Table VII shows, we are able to achieve relatively high precision values at low
recall values. For example, we can identify 20% of ID tasks with 79.3% precision.
Table VIII provides randomly-chosen examples of initiator queries correctly identified
with high confidence. Indicating the efficacy of our method, most of these queries
do indeed appear to be exploratory in nature or indicative of deeper, multi-aspect
information needs that would likely require multiple queries to satisfy.

Qualitatively, we wish to understand the types of errors in prediction the classifier
makes in the high precision region. Table IX contains randomly-chosen examples of
regular queries that are predicted with high confidence to be intrinsically diverse
queries. While some of them could be considered as potential errors ([bing maps]), some
could be argued to be intrinsically diverse or exploratory queries in many contexts (e.g.,
[how old is my house], [top pit masters in the state]). This is possible because
although our auto-labeling procedure has quite good precision, it may have mistakenly
labeled some ID sessions as regular. Thus while predicting some of these queries to
be ID initiators may hurt precision according to the auto-labels, it may still benefit by
applying diversified retrieval (in Section 6, we will see that is indeed the case).
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Fig. 3. Precision-recall curve for predicting ID task initiation.

Table VII. Recall at Different
Precision Levels and

Vice-Versa for Predicting ID
Initiation

Recall@Prec Prec@Recall
5.9 90 84.9 10
9.8 85 79.3 20

18.3 80 75 30
30.3 75 72.8 40
49.0 70 69.4 50
61.4 65 65.4 60
78.8 60 62.4 70

Table VIII. Examples of Queries Initiating (Auto-Labeled)
ID Tasks Correctly Predicted to be ID with High

Confidence

Prec Queries

>90

main character gears of war

different types of cattle dogs

facts about bat eared fox

what is lobelia used for

∼90

queen isabellas work during renaissance

kingman paintball gun parts

where is galileo buried

what kind of diet does a clownfish have

∼80

rms sinking of titanic

roll runners for stairs and hallways

gamboa rainforest resort panama

bill cosby recordings

Table IX. Examples of Queries Initiating
(Auto-Labeled) Regular Tasks Incorrectly
Predicted to be ID with High Confidence

Prec Queries

>90

adobe flash player 10 activex

bing maps

live satellite aerial maps

how old is my house

∼90

port orchard jail roster

was is form 5498

java file reader example

free ringtones downloads

∼80

life lift

top pit masters in the state

promag 53 user manual

pky properties llc nj

4.3. Which Features Were Most Important?

We next investigate the effect of using different subsets of the features on performance.
The results are shown in Figure 4 and Table X. First, we note that Stats, QLOG, and
ODP feature sets help identify only a small fraction of the initiator queries but do so
with high precision. On the other hand, the Text and POS feature sets, which have
high coverage, provide some meaningful signal for all the queries, but cannot lead to
high precision classification. We also find that some combinations of features, such as
Text and Stats, complement each other leading to higher precision (as well as higher
recall) than is obtainable with either feature type alone. In fact, the Text and Stats
combination performs almost as well as using all features (which in turn was the best
of all feature combinations).

At this point, it is worth noting that while the Stats, QLOG, and ODP feature sets
don’t result in high recall, this is due in large part to their limited coverage: they can
help distinguish class labels only for those queries that were seen in previous query
logs. Thus, higher coverage of these features by using larger samples of query logs and
smoothing the query classification, as described in Bennett et al. [2010], can only help
improve performance for this classification task.

ACM Transactions on Information Systems, Vol. 32, No. 4, Article 20, Publication date: October 2014.



Understanding Intrinsic Diversity in Web Search 20:15

Fig. 4. Change in classification performance of ID initiation as
feature sets are varied.

Table X. Effect of Feature Set
on Precision & Recall

Feature
Set

Rec@
80%Prec

Prec@
40%Rec

T 0.1 62.6
S 9.2 63.7
P 0.0 52.8
O 5.6 51.6
Q 9.4 54.1
TS 13.6 69.7

TSPO 12.2 67.0
TSPOQ 18.3 72.8

Note: T = Text, S = Stats, P = POS,
O = ODP, Q = QLOG

Table XI. Top 10 Parts-of-Speech and Words with High Positive
Association with ID Initiators According to Log-Odds Ratio (LOR)

Part of speech LOR Words LOR

Wh-pronoun 0.41 information 1.64
Proper noun, singular 0.40 forms 1.59
Particle 0.27 account 1.50
Adjective, superlative 0.16 facts 1.45
Verb, present tense, 3rd per-
son singular

0.14 log 1.39

Other 0.14 did 1.34
Noun, plural 0.13 army 1.22
Verb, past participle 0.12 manual 1.18
Preposition or subordinating
conjunction

0.09 login 1.17

Cardinal number 0.09 form 1.16

Note: Results are restricted to tags and counts with ≥50 occurrences.

4.4. Linguistic Features of Initiator Queries

To further understand ID initiator queries, in Table XI we identified the part-of-speech
and text features most strongly associated with them, by computing each feature’s
log-odds ratio (LOR)7 compared to regular queries. Looking at the top-ranked features
by LOR, we found that initiator queries are more likely to use question words
(LOR = 0.41); focus on proper nouns (0.40) such as places and people; use more ‘filler’
words (particles) found in natural language (0.27); use fewer personal pronouns (LOR =
−0.32) and when they use general nouns, these tend to be plural (0.13) instead of
singular (−0.052). Predominant text features indicated the importance of list-like
nouns such as forms, facts, types, ideas (LOR = 1.59, 1.45, 1.25, 0.92);8 verbs that are
commonly used in questions such as did (1.34); and words indicating a broad need
such as information and manual (1.64, 1.18). Strong negative features tend to encode
exceptions: for example, the word with most negative LOR lyrics (−2.25) is typically
used to find words to specific songs.

7The LOR can be thought of as an approximation to the weight in a single-variable logistic regression.
8“Types” and “ideas” had slightly less than 50 occurrences and thus do not occur in Table XI.
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Table XII. ODP Classes with Highest and Lowest LOR Association with ID Initiators

Level-1 Class LOR Notable sub-classes LOR Level-1 LOR Sub-class LOR

Science 0.29 Biology 0.72 Adult −0.82 Images −0.91
Social-Sciences 0.24 News −0.37 Newspapers −1.05

Computers 0.27 Internet 0.55 Sports −0.33 Basketball −0.13
Software 0.24 Arts −0.24 Performing Arts −1.09

Health 0.26 Pharmacy 1.10 Music −0.53

Note: Results are restricted to classes with ≥50 occurrences.

4.5. Topics Associated with Intrinsically Diverse Tasks

We would like to know which topical categories are typically associated with initiator
queries. Table XII shows the results of an LOR study of the ODP features, similar
to that done for the linguistic features. We find that classes with information-seeking
queries such as Science and Health (e.g., extensive searching on software problems,
drug & information effects) tend to occur more frequently in ID sessions. On the other
hand, targeted search categories like News, Sports, and Music (e.g., find an article on a
current event, read game outcomes, find music lyrics) tend to be negatively associated
with ID initiators.

4.6. How Much Training Data is Needed for Predicting ID Initiation?

Although we can achieve high precision for low recall values, we seek to understand how
the quantity of training data impacts the precision-recall trade-offs we can obtain. To
evaluate this, we varied the training set size while keeping the validation and test sets
unchanged. In all cases we ensured there was no overlap between any of the training
sets and the validation/test sets. To control the variance that results from changing
both the training set size and the datapoints, the training sets were generated so that a
training set of size N was a superset of all training sets of size less than N.9 The results
in Figure 5 show how the precision-recall curve changes when varying the quantity of
training data.

We find that using more training data allows us to achieve higher precision for a fixed
recall. While there is minimal learning possible for the small training data sizes, as
the amount of training data increases, the precision improves significantly. Table XIII
simply highlights this further, with large increases in recall numbers at the 80%
precision mark, and large increases in precision at the 40% recall mark. Thus, we find
using more data to train the models can further help obtain higher-precision numbers.

More generally, we expect the Stats and other non-Text features to prove most useful
when training data is limited. With an increase in training data, we expect the Text
features to become more important and to lead to better classification.

4.7. Model Choices for SVM Prediction

We investigated the sensitivity of predictions to the choice of kernel used in the SVM
classifier. In particular, we considered the polynomial kernel of degree 2 and the radial
basis (RBF) kernels, as compared to the default linear kernel. Figure 6 and Table XIV
show the results for the different kernels. While using the higher-order kernels im-
proved recall at the very highest precision levels, their results got progressively worse
at increasing recall for lower precision levels, while also being computationally more
expensive. We therefore used linear kernels for the remainder of our experiments.

Since the only tunable parameter in our setup is the regularization parameter C in
the SVM, we examined the sensitivity of performance to the value of C. This also gives

9To obtain the largest training set size of 200K queries, we added queries sampled from the MINED3+ set.
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Fig. 5. Effect of changing the training set size on clas-
sification of initiator queries.

Table XIII. Change in Precision and Recall on
Increasing Training Data Size

Train Size Rec@80%Prec Prec@40%Rec
1k 0.0 51.0
2k 0.0 52.0
5k 2.9 52.2
10k 4.9 55.3
20k 17.5 69.7
50k 18.3 72.8
100k 31.1 76.8
200k 39.3 79.6

Fig. 6. Change in classification performance of ini-
tiator queries on varying the kernel.

Fig. 7. Change in classification performance on
varying the SVM regularization parameter.

us an idea of the degree of overfitting, since worse performance at higher C values
indicates significant overfitting—a higher C places more emphasis on fitting the data
and less on the regularization norm. Figure 7 and Table XV summarize these results.
Apart from minor variations, classification performance was roughly the same across
different values of C. This held true in other settings as well, indicating the prediction
is not overly sensitive to this parameter value. We also noted interesting variations in
precision across the parameter values: lower C values typically lead to initially higher
precision, but with performance dropping off faster than that for higher choice of C.
This corresponds with our intuition that stronger regularization should initially lead to
higher precision, but eventually result in weaker performance for the more uncertain
examples later.

4.8. The Impact of Class Skew on Predicting ID Task Initiation

An assumption made so far was that there were equal numbers of positive examples and
negative examples, that is, a balanced dataset. However, in a practical setting, this ratio
is likely to be skewed towards having many more negative examples. To begin with, we
studied the effect of using models trained on balanced sets but tested on an unbalanced
test set. More specifically, we changed the class ratio for the test (and validation) set
by simply adding more negative examples to the original validation and test sets.
Figure 8(a) shows how performance varies with the class ratio (skew) in the test set.
Not surprisingly, increasing skew causes performance to drop. However, in all cases, we
outperform a random classifier (1:1 = 50% prec, 1:2 = 33%, 1:5 = 16.7%, 1:15 = 6.25%).
Estimating the class skew correctly in the training set helps improve classification
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Table XIV. Change in Precision and Recall
on Changing Kernel

Linear Poly-2 RBF
Rec@90%Prec 5.9 5.9 8.1
Rec@80%Prec 18.3 13.8 13.5
Prec@10%Rec 84.9 84.8 84.4
Prec@40%Rec 72.8 65.5 66.7

Table XV. Effect of Regularization Parameter

C Rec@80%Prec Prec@40%Rec
0.02 19.0 71.2
0.05 18.3 72.8
0.1 16.6 73.1
0.2 14.8 72.4

Fig. 8. (a) Effect of class bias on ID initiator classification performance of initiator queries for models trained
on balanced datasets; (b) effect of difference in train-test class biases on classification performance of initiator
queries.

performance somewhat, as shown in Figure 8(b). However, further improvements may
require the use of cost-sensitive classifiers or the use of alternate learning techniques
that are well suited to such imbalanced settings. Incorporating additional training
data could also lead to improvements, as seen earlier in Section 4.6. Using cascaded
models and more sophisticated feature sets could also lead to further improvements in
classification accuracy.

4.9. ID Task Identification in Operational Settings

In a practical setting, we would have to determine on-the-fly if a user-issued query
is initiating an ID session or not. Queries that are predicted to be ID initiators could
have their retrieval process altered, for example, by reranking results, as in Section 6.
Thus, to estimate the practical impact of any alteration to the retrieval process, we
create datasets of sessions that are predicted to be ID based on their initiators. More
specifically, we mixed an equal10 number of (mined) ID sessions (sampled from either
MINED3+, MINED4+, or MINED5+) and regular sessions. We then used an SVM
classifier11 on this mixture of sessions to identify those predicted to be ID, based on
their initiator query, resulting in a PREDID dataset. Table XVI provides statistics of
the different Predicted ID datasets. The accuracy of the resulting datasets is similar
to the classification results from earlier in this section.

An interesting finding is that the classification accuracy improves on increasing the
number of distinct aspects threshold used to train the SVM. This implies that sessions
with more aspects are likely easier to identify. This also suggests that we could train
a regression model that, given an initiator query, could estimate the number of query
aspects the user is interested in finding. This in turn could potentially be used to inform
the reranking/prefetching that is performed.

10We chose an unbiased mixture, as the classification results in Section 4.8 indicated deterioration in accuracy
on adding class skew, which would require further training data to rectify.
11Trained using a 45-10-45 training-validation and test split of the mixed set.
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Table XVI. Session Datasets Predicted to be ID (PREDID) When an SVM Was Run on a
Mixture of Regular Sessions and Those from a Corresponding MINED Dataset

Dataset Total Sessions Accuracy
PREDID5+ 6,501 (4,470 from MINED5+, 2,031 from Regular) 68.8%
PREDID4+ 22,238 (14,960 from MINED4+, 7,278 from Regular) 67.3%
PREDID3+ 59,013 (38,687 from MINED3+, 20,326 from Regular) 65.6%

Fig. 9. Distribution of query positions in session across both classes for (all) intrinsic diversity query
identification.

5. USING CONTEXT TO PREDICT ID TASK ENGAGEMENT

The previous section (Section 4) discussed how we can identify queries that initiate
intrinsically diverse sessions. While such identification could be used for altering re-
trieval for initiator queries, it does not address the problem of the subsequent successor
queries issued by the user, in the case where the user is not fully satisfied by the im-
proved retrieval for the initiator. If we want to alter retrieval for all queries of an ID
session as well, then we need to be able to identify any query within an ID session. In
this section, we address this more general question: Can we identify if a query is part
of an intrinsically diverse session? While studying this classification task, we focus on
the effect of context. In particular, we will demonstrate that short-term context, in the
form of using previous queries in the session, can greatly help us identify a user’s need
for intrinsic diversity.

5.1. Experimental Setting

Data. Similar to the initiator identification from Section 4, we sampled 30.5K queries
from the MINED4+ ID session dataset as our positive examples. More specifically, we
sampled a random query from within the intrinsically diverse part of each session.
For the negative examples, we sampled 30.5K random queries from regular sessions.
To ensure fairness in terms of the availability of the context across the two classes,
we only considered regular sessions that were of length 4 or more, that is, using the
REG4+ session dataset from Section 3.2. Figure 9 shows the distribution of the positions
(within session) of the 61K positive and negative examples considered for this task.
While the positive examples tend to have a little more context, the distributions are
not significantly different across the two classes.

In the construction of this dataset, we again dropped queries that occurred as both
positive and negative examples. As with initiator queries, this was an infrequent event,
occurring less than once for every 5K queries. We also downsampled to obtain a bal-
anced dataset, containing 30.5k positive and negative examples each. The dataset was
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Fig. 10. Effect of contextual features on classification
of (all) ID queries.

Table XVII. Recall at Different Precision
Levels and Vice-Versa for Predicting All ID
Queries Using ALL Features Compared to

Using Only Text Features

Recall @ Precision Precision @ Recall
ALL Text Prec ALL Text Rec
8.6 0.0 90 88.9 76.2 10

25.5 0.4 85 86.2 73.2 20
44.6 2.4 80 83.3 70.0 30
65.1 13.3 75 81.2 65.9 40
80.6 30.0 70 78.1 63.7 50
87.2 44.5 65 76.6 61.1 60
92.7 62.9 60 73.5 57.4 70

then split into a training set of size 44k, a validation set of size 5k, and a (balanced)
test set of size 12k examples12 for which performance is reported.

Classification. We again used SVMs for this classification problem and performed
model selection using the validation set.

Features. Our goal in this section was to study the effect of query context. Thus, in
addition to the standard context-independent bag-of-words (Text) features, we used
two context-dependent feature sets (AllSim and PrevSim).

(1) Text. Unigram count of query terms. This led to a set of ∼44K features. While this
is a significantly larger set of features than the context-dependent feature sets,
unlike the context-dependent features, these features are sparse.

(2) AllSim. This comprises a set of five features. These features measure the trigram co-
sine similarity of the current query with all previously issued queries in the session.
Each of the query similarities is placed in one of five equal-sized buckets: in this
study, we used buckets with ranges [0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8], (0.8, 1.0].
The fraction of the similarities with the previously issued queries that lie in each
bucket correspond to the values of the five features belonging to this feature set.
For example, a query in position 5, with similarity values of 0.1 (first query), 0.9
(second query), 0.35 (third query), and 0.7 (fourth query) would have a vector for
these five features of ( 1

4 , 1
4 , 0, 1

4 , 1
4 ).

(3) PrevSim. This is another set of three context-dependent features. However, this
uses the immediate context of the three previous queries. In particular, the aver-
age trigram cosine similarity with the previous 1, 2, and 3 queries gives us the
three different feature values. For the preceding example, these values would be
(0.7, 0.7+0.35

2 , 0.7+0.35+0.9
3 ).

Since our focus was primarily on the effect of context, we did not consider other kinds
of features, such as those used in the earlier section. As all the features fall in a similar
range, we did not perform any normalization or rescaling.

5.2. Can We Predict ID Task Engagement? Does Context Help?

We again plot the precision-recall trade-off observed on using the SVM in Figure 10.
The black (Text) curve shows the performance on using just the unigram Text features.

12We chose a larger test set here so as to better estimate the effect of context and dependence of performance
on position within session.
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Fig. 11. Effect of query position for classification of all intrinsically diverse queries using all features.

While it performs better than random, there is room for improvement, as we can only
identify 73.2% of the ID queries correctly at 20% recall levels, as shown in Table XVII.

However, on adding the eight context-based features (five AllSim + three PrevSim
features), we find a significant improvement in classification performance, as shown in
Figure 10 from the blue (ALL) curve. Classification precision improves to 86.2% (from
73.2%) at the 20% recall level. In fact, we find an improvement at all levels of precision
and recall with the addition of the contextual features, thus confirming the value of
context for this classification task.

Figure 10 also shows the classification performance achieved when using only the
individual context feature sets. We find that for both kinds of context-based features,
performance is (largely) better than random. In particular, we find that an SVM using
only the AllSim features tends to be quite competitive compared to the Text-only SVM.
We observe a >70% precision up to recall levels close to 80%, compared to the 30% ob-
tained by using only Text features, indicating that these features are relatively robust
and informative. These results also indicate that using contextual information from
across the whole session is more potent than using just the immediate history of pre-
vious queries. Incorporating more context features may further improve classification
performance. Similarly, using more sophisticated features, such as those used in the
literature for identifying queries on the same task [Radlinski and Joachims 2005; Jones
and Klinkner 2008; Kotov et al. 2011; Lucchese et al. 2011] may also be beneficial.

5.3. Effect of Query Position in Session on Performance

We would like to determine the effect of the query’s position within a session on the
classification performance of the SVM. As shown previously, position becomes particu-
larly important given the important role context plays, since the later a query occurs in
a session, the more context we have available. Figure 11 shows how precision and recall
vary with the query position for the SVM classifier that uses all features. We find that
the later the query occurs in the session, the larger the precision of the classification.
In particular, we observe near-perfect precision for later query positions. Recall also
improves drastically from the case of no context, that is, the 0th position (∼6% recall) to
the case of having three queries as context (∼85% recall). Note that we do not provide
any information about the query position as a feature to the SVM.

Next, we studied how this effect varies for the different feature sets. Figure 12 shows
how precision and recall change for the SVM trained on each one of the different
feature types. For both sets of contextual features, we find that both precision and
recall increase rapidly with a small amount of context. Surprisingly, we find that for
the text features as well, precision continues to increase. This may be attributed to the
increase in query length typically seen later in the session as more topical terms are
added to refine the search. A key difference that is evident is the difference in recall
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Fig. 12. Effect of query position on classification performance of all intrinsically diverse queries using
(a) AllSim features, (b) PrevSim features, (c) Text features.

level between contextual features (recall around 80%) and text features (recall around
60%), reinforcing the earlier observation that as more context becomes available, the
contextual features become more valuable.

Implications. The results from this section clearly show that added context can
greatly help improve the identification of ID session queries. Thus, these contextual
signals can help in determining if a session is ID, and in turn help trigger the use of
alternate rankings for such ID sessions, such as the reranking method proposed in Sec-
tion 6. This approach can also be used to trigger a switch back to the regular rankings
when the classifier detects that the ID part of the session is likely to be complete, or to
avoid ID-optimized rankings for off-topic queries that occur in such sessions.

6. RERANKING FOR INTRINSIC DIVERSITY

So far, we have discussed mining authentic ID sessions from search logs and the iden-
tification of ID initiator and successor queries that lead to, and occur in, ID tasks,
respectively. In this section, we focus on changes that can be made to the search results
page to support retrieval for queries in intrinsically diverse tasks. As ID tasks tend to
be complex and involve significant user effort (a finding supported by the statistics in
[Bailey et al. 2012]) we would like to reduce user effort and correspondingly time spent
searching, as emphasized in recent work [Smucker and Clarke 2012; Sakai and Dou
2013]. To this end, we propose a reranking scheme that aims to reduce user effort by sat-
isfying the information need of both the current query issued as well as future queries
that the user is likely to issue on other aspects of the task. To the best of our knowl-
edge, we are the first to address this problem of pro-active search augmentation, that is,
jointly satisfying the current query as well as future queries. This is in contrast to the
work on anticipatory search [Liebling et al. 2012], which focuses solely on the latter.

We base our approach on an interactive ranking of aspect-document pairs. Given an
issued query representing the start of an ID task with multiple aspects, we consider
rankings where each result can be attributed to some aspect. We represent each aspect
of the ID task using a related query of the issued query. One way this could be surfaced
on a results page for a user is in a manner similar to the two-level rankings proposed
in Raman et al. [2011], where the related query (representing a specific aspect) is
placed adjacent to its corresponding search result (representing the best result for that
aspect). In such a setting, clicking on the related query could lead to the full set of
results for that query being presented, thus enabling the user to explore documents for
that aspect. This leads to the question of how to find such a joint ranking.

6.1. Ranking via Submodular Optimization

We first describe precisely what we consider as an interactive ranking. In response to
an initial query q, an interactive ranking y = (yD, yQ) comprises two parts: a ranking
of documents yD = d1, d2, . . . , which we refer to as the primary ranking; and a corre-
sponding list of related queries yQ = q1, q2, . . . , which represent the aspects associated
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with the documents of the primary ranking. The ith query in the list, qi, represents
the aspect associated with di. Structurally, y can also be thought of as a ranked list of
(document, related query) pairs (di, qi)i=1,2,....

Given this structure, let us consider four conditions that comprise a good interactive
ranking of document-related query pairs.

(1) Since the documents di in the primary ranking were displayed in response to the
issued query q, they should be relevant to q.

(2) As document di is associated with the aspect represented by the related query qi,
document di should also be relevant to query qi.

(3) Aspects, represented by related queries qi, should be relevant to the ID task being
initiated by the query q.

(4) At the same time, the aspects should not be repetitive, that is, there should be
diversity in the aspects covered.

We now design a ranking objective function that satisfies these four conditions to
jointly optimize the selection of documents and queries (yD, yQ). Suppose we have an
existing interactive ranking y(k−1) that has k − 1 (document, related query) pairs; our
goal is to construct a new ranking y(k) by adding the optimal (document, related query)
pair to y(k−1): an operation we denote by y(k) = y(k−1) ⊕ (dk, qk).

Condition 1 can be met by selecting dk such that R(dk|q) is large, where R(d|q) denotes
the probability of relevance of document d given query q. Condition 2 can be met by
selecting dk such that its relevance to the corresponding related query qk, R(dk|qk),
is large. Conditions 3 and 4 imply a standard diversification trade-off, but here we
have that the aspects qk should be related to the initial query q and diverse. If we use a
similarity function Sim(·, ·) between queries to estimate the relevance between queries,
Condition 3 implies that the similarity between qk and q should be large. Condition 4
requires that the diversity should be maximized between qk and all previous queries
Q(k−1) = q1, . . . , qk−1. Both Conditions 3 and 4 can be jointly obtained by optimizing an
MMR-like diversity function [Carbonell and Goldstein 1998], Divλ(qk,Q(k−1)), described
as follows:

Divλ(qi,Q(k−1)) = λ · Sim(qi, Snip(q)) − (1 − λ) max
q′∈Q(k−1)

Sim(Snip(qi), Snip(q′)), (1)

where λ ∈ [0, 1] controls the trade-off between relevance of the related query aspect
and diversity across aspects. In this study, we define Sim(a, b) as the cosine similarity
between word-TF representations of a and b, and Snip(q′) is the bag-of-words repre-
sentation of caption text from the top-10 search results for a simple relevance-based
retrieval for q′ (i.e., using R(d|q′) alone).

We now need to combine these different mathematical terms to obtain a joint objective
function. Intuitively, we would also like the change in the objective function on adding
a document-query pair (di, qi) to the ranking y to be no smaller than what we would
gain if adding the pair to a larger ranking y ⊕ y′: that is, the objective function should
be monotone and submodular. Consider the following objective function:

Fβ,λ(d1, q1, . . . , dn, qn) =
n∑

i=1

R(di|q) · R(di|qi) · eβDivλ(qi ,Q(i−1)), (2)

where β > 0 is a parameter controlling the rate at which returns diminish from
additional coverage. This parameter, along with the diversity trade-off parameter λ,
need to be learned during training. The Divλ(· · · ) term appears within the exponent to
ensure the objective is monotone, which in turn leads to the following theorem.
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THEOREM 6.1. The resultant objective Fβ,λ(·) is a submodular function.

The proof is provided in Appendix C. To compute the interactive, document-relevant
query ranking given query q, we need to optimize this objective F:

y = (yD, yQ) = argmax(d1,...,dn),(q1,...,qn) Fβ,λ(d1, q1, . . . , dn, qn). (3)

This optimization problem can be interpreted as maximizing an expected utility (the
exponential term involving Divλ(·)) of covering related and diverse aspects where the
expectation is over the maximum joint relevance of a document to both the initial
query and the related query aspect. Furthermore, the joint probability is assumed to
be conditionally independent to factor into the two relevance terms. Note that while
the final objective optimizes for an interactive ranking, the primary ranking itself aims
to present results from other aspects, which we validate empirically in Section 6.4.

ALGORITHM 1: Greedy-DynRR(Query q; Relevance R(·|·); Documents D; Params
β, λ)

1: (yD, yQ) ← (φ, φ) � Initialize to be empty
2: for all q′ ∈ RelQ(q) do � Iterate over aspects/related queries
3: Next(q′) ← Rank documents in D by R(·|q) · R(·|q′) � Ordering for q′

4: for i = 1 → n do � Get ranking of size n
5: bestU ← −∞
6: for all q′ ∈ RelQ(q) \ yQ do � Iterate over queries not in yQ
7: d′ ← Top(Next(q′) \ yD) � Highest document not in yD

8: v ← R(d′|q) · R(d′|q′) · eβDivλ(q′, yQ) � Marginal benefit
9: if v > bestU then � Check if best so far

10: bestU ← v � Update values
11: bestQ ← q′

12: bestD ← d′

13: (yD, yQ) ← (yD ⊕ bestD), (yQ ⊕ bestQ) � Add best pair
14: return (yD, yQ)

To solve the optimization problem in Eq. (3), we shall use the fact that F is submod-
ular and hence can be optimized using a simple and efficient greedy algorithm. The
corresponding greedy algorithm for this problem is presented in Algorithm 1, which
we refer to as the DynRR reranking method. The algorithm begins by finding RelQ(q),
that is, all the aspects/related queries for query q (Line 2). Iterating over each of them,
it precomputes an ordering of the candidate documents by R(·|q)R(·|q′) (Line 3). This
precomputation helps us avoid repeating computation during the greedy algorithm’s
iterations. Next the greedy algorithm computes the ranking, by iteratively finding the
next best element (i.e., (d, q) pair) to add to the ranking at each step (Lines 5–13). To
do so, it iterates over uncovered aspects (Line 6), finding the marginal benefit of the
best uncovered document related to that aspect (Line 8): Top(y′ \ yD) returns the top
element in the ranking y′ that is not covered in yD. Finally, the overall best solution is
appended to the ranking (Line 13).

In addition to being simple, easy-to-implement, and efficient, this algorithm has the
benefit of theoretical guarantees that ensure that the computed solution is comparable
to the optimal, as described by the following theorem.

THEOREM 6.2. The greedy algorithm (Algorithm 1) has an approximation factor of
η = e−β(1−λ)

2 . Thus the greedy solution is at least η times as good as the optimal solution.

The proof for Theorem 6.2 is also provided in Appendix C. In addition to theoretical
guarantees, we evaluate this reranking algorithm empirically later in this section. For
these empirical studies, we next discuss the evaluation measures used.
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Fig. 13. Illustrative example of the reranking algorithm. The ranking on the left is a conventional ranking
produced by a search engine. This ranking covers few aspects of the query. On the other hand, the ranking on
the right is the reranking for intrinsic diversity. The ranking promotes documents about different (uncovered)
aspects leading to a more diverse ranking. Alongside each of these documents, the ranking also presents the
aspect corresponding to that result.

To better understand what this reranking seeks to achieve, we can consider the
illustrative example shown in Figure 13.

6.2. Evaluation Measures

As the problem of presenting results for both the current as well as future queries is
a new one, we first discuss the evaluation methodology used. In particular, we use two
kinds of evaluation metrics.

Primary Ranking Metrics. To compare against standard non-interactive methods of
ranking, we simply evaluate the quality of the primary ranking, that is, completely
ignore the related query suggestions attributed to documents. Since our goal is whole-
session relevance, documents are considered relevant if and only if they are relevant
to any query in the session. Given this notion of relevance, we compute the Precision,
MAP, DCG, and NDCG values. We evaluate these metrics at rank cutoffs of 1 (precision
of top result); 3, which emphasizes the typical fold, that is, number of search results
visible without having to scroll down; and 10, the classical cutoff used which signifies
the number of search results per page.

Interactive Ranking Metrics. To evaluate the offline effectiveness and accuracy of the
predicted future aspects (queries) and results (documents), we need to assume some
model of human interaction. Consider the following search user model.

(1) Users begin at the top of the ranking.
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Fig. 14. Illustrative example showing how a user can interact with the results of such a dynamic ranking
(with k = 2). This user is interested in learning about facts on Kelly Clarkson and about the Grammy Awards
she has won. The user therefore clicks on the facts aspect as the corresponding primary result is relevant.
They also click on the awards aspect since the second result for that aspect is relevant to that user. The
figure also shows the relevance of the different documents to this user along with the order in which we
model the user as perusing the results.

(2) They click the related query attributed to a document if and only if the document
is relevant or the query is relevant. We say a query is relevant if the top-k results
of the query contain a (new) relevant document.

(3) On clicking the related query, the user views the top-k results for that related query,
before returning to the original document ranking, and continuing on.

(4) Users ignore previously seen documents and click on all new relevant documents.

An example of a user’s interaction with the ranking under this model is shown in
Figure 14, which illustrates how users skip and click different (related query) aspects.
Under this 4-step user model, we can easily trace the exact ranking of documents that
such a user would have navigated and thus evaluate Precision@10 and DCG@10 for
this ranking. We refer to these metrics as PrecUk and DCGUk, and compare them with
the primary Prec@10 and DCG@10 metrics.

Note that we do not claim that this user model accurately captures all online users,
nor that it is sophisticated. This is simply a well-motivated model for analyzing a ratio-
nal user’s actions, assuming the user is relatively accurate at predicting the relevance
of an aspect based on either the top document or its related query. This, in turn, is in-
tended to inform us about trends and relative differences we may see in online studies.

6.3. Experimental Setup

Data. To evaluate the efficacy of the method, we used the data obtained from mining
the search logs, as described in Section 3. We used four main datasets as shown in
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Table XVIII. Datasets Used in Reranking
Experiments

Dataset # Train # Test
MINED5+ 8,888 2,219
MINED4+ 33,004 8,247
PREDID5+ 4,120 1,027
PREDID4+ 13,608 3,401

Table XVIII: The first two were sampled13 from the MINED datasets involving at
least four or five distinct aspects; the latter two were sampled from the corresponding
PREDID datasets, which were obtained by running an SVM classifier on the initiators
as described in Section 4. The training-test splits are shown in the table.

Obtaining Probability of Relevance. For our algorithm, we required the computation
of the conditional relevance of a document given a query, that is, R(d|q). Thus, to enable
easier reproducibility by others, we learned a model using Boosted Regression Trees,
on a dataset labeled with the relevance values for query-document pairs with 20,000
queries using graded relevance judgments (∼60 documents per query). The features
used are given in Table XIX. All features were normalized to have zero mean and unit
variance. To obtain the relevance model, we optimized for NDCG@5.

Baselines. As baselines, we used the following methods.

—Baseline. A state-of-the-art commercial search engine ranker, also used to compute
the rank feature mentioned earlier.

—RelDQ. Ranking obtained by sorting as per the conditional relevance model R(d|q).

We also experimented with other baselines including relevance-based methods, such
as BM-2514, cosine similarity using TF-IDF and KL-Divergence based methods, and
diversity-based methods such as MMR. We used the weighted anchor text of the docu-
ments as the textual representation required to run these methods. However, we found
that all these methods perform far worse than the baseline ranker, as well as the
RelDQ method, as seen in Table XX15, which shows the performance on a sample of
3,000 sessions of MINED4+. The underlying reason for this is that these methods rely
solely on a text representation of the documents and cannot utilize additional features.
The same is true for other classical diversification methods [Zhai et al. 2003; Chen
and Karger 2006; Clarke et al. 2008; Swaminathan et al. 2009; Agrawal et al. 2009],
making them ill-suited for this problem. While there are methods that can use richer
feature representations [Raman et al. 2011; Raman and Joachims 2013], coming up
with meaningful features to reflect the required intrinsic diversity is a hard problem
itself. Hence we do not present any further results for these other baseline techniques.

Related Queries. To study the effect of the related queries, we used four different
sources.

—API. We used the publicly available API of a commercial search engine. The API
returns 6–10 related queries per input query.

13A fraction of the datasets (∼30%) was missing anchor text for a few documents (due to issues obtaining
this from the server) and hence left out from this evaluation.
14Parameter validation was performed for BM25 with the k parameter varied from 1.2 to 2.0 and the b
parameter varied from 0.6 to 0.9.
15Due to company policy, we unfortunately cannot provide absolute performance measures and thus report
relative performance. To help readers gauge the effectiveness of the baseline ranker, we note that it’s
performance on the ID sessions is comparable to its average performance.
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Table XIX. Features Used to Train the Relevance Model
R(d|q) via Boosted Trees

Query Length
Website Log(PageRank)

Baseline Ranker
Reciprocal Rank

(if in top 10)

URL

Length
# of Query Terms Covered
Fraction of Query Covered

TF-Cosine Similarity
LM Score (KLD)

Jaccard
Boolean AND Match
Boolean OR Match

Anchor (Weighted) Same as URL

Anchor (Unweighted)
TF-Cosine Similarity

KLD Score

Table XX. Performances of Commonly
Used Ranking Techniques (Using the
Weighted Anchor Text) as a Ratio with

the Corresponding Performance
Measure of the Baseline Ranker

DCG
Method @1 @3 @10

KLD .255 .415 .739
Cosine (TF) .236 .425 .787

Cosine (TF-IDF) .272 .407 .768
BM-25 .159 .267 .608
MMR .275 .404 .735

—Click-Graph. Using click data from a previous time span, we built a graph of queries
and the corresponding results that were clicked on. We obtained a set of 10–20 related
queries from this co-click graph by finding queries that had the greatest overlap in
the results clicked on as the issued query, while also ensuring some diversity in the
queries.

—Co-Session Graph. Using data of queries cooccurring in the same session, we built a
graph and obtained 10–20 related queries by finding queries most frequently cooc-
curring with the issued query, while maintaining diversity in the queries.

—Oracle. As an approximate upper bound, we used the actual queries issued by the
user during the intrinsically diverse part of the session.

As the session data used in our experiments was collected during the period of April
1–May 31, 2012, to ensure a fair evaluation, the just-mentioned click and co-session
graphs were constructed using search log data collected prior to April 2012, in the
period December 2011–March 2012. For most experiments, we use either the first
three related query sources described previously, or only the second and third sources,
which we distinguish by the suffix C+S.

Settings. The parameters for DynRR were set by optimizing for DCGU3 on the train-
ing data.16 All numbers reported are for the test sets. We considered all SAT clicked
results in the session as relevant documents. Since our comparison is relative to the
baseline search engine, the assumption is that placing the SAT-clicked documents
higher is better, rather than being an indication of absolute performance. Unless oth-
erwise mentioned, the candidate document set for reranking comprises the union of
(a) the top-100 results of the initiator query, and (b) the top-10 results from each related
query, using the baseline ranking method.

6.4. Results

Primary Evaluation. We first study the reranking without any interactivity, using the
primary ranking metrics to evaluate the quality of the top-level ranking. As seen in the
results of Table XXI, the reranking leads to improvements across the different metrics
for both datasets. Thus, even without interactivity, the method is able to outperform
the baselines in predicting future results of interest to the user, while also providing

16We varied the λ parameter from 0 to 1 in increments of 0.1, while the β parameter was varied across the
values {0.1, 0.3, 1, 3, 10}.
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Table XXI. Primary Effectiveness of Different Methods, Reported as a Ratio Compared to the Corresponding
Effectiveness Measure for the Baseline Ranker

Prec MAP DCG NDCG
Dataset Method @1 @3 @10 @1 @3 @10 @1 @3 @10 @1 @3 @10

MINED5+
RelDQ 1.00 0.94 0.99 1.00 0.97 0.98 1.00 0.97 0.99 1.00 0.97 0.99
DynRR 1.06 1.03 1.04 1.06 1.05 1.04 1.06 1.04 1.04 1.06 1.05 1.05

DynRR C+S 1.10 1.10 1.12 1.10 1.10 1.10 1.10 1.10 1.11 1.09 1.10 1.11

MINED4+
RelDQ 1.00 0.97 0.98 1.00 0.98 0.98 1.00 0.98 0.98 1.00 0.98 0.99
DynRR 1.07 1.05 1.10 1.07 1.06 1.07 1.07 1.05 1.08 1.07 1.06 1.09

PREDID5+
RelDQ 1.00 0.94 0.99 1.00 0.98 0.98 1.00 0.96 0.98 1.00 0.97 0.98
DynRR 1.03 1.02 1.05 1.03 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.05

PREDID4+
RelDQ 1.00 0.97 0.99 1.00 0.98 0.99 1.00 0.98 0.99 1.00 0.98 0.99
DynRR 1.06 1.02 1.06 1.06 1.03 1.03 1.06 1.04 1.04 1.05 1.03 1.05

Table XXII. Interactive Performance of DynRR for Different User Models (as Ratios Compared to the
Baseline Prec@10 and DCG@10)

PREC@10 DCG@10
Dataset Method PrecU1 PrecU2 PrecU3 PrecU5 DCGU1 DCGU2 DCGU3 DCGU5

MINED5+
DynRR 1.093 1.247 1.347 1.401 1.075 1.188 1.242 1.254

DynRR C+S 1.166 1.310 1.413 1.464 1.146 1.251 1.306 1.313
MINED4+ DynRR 1.152 1.292 1.380 1.438 1.114 1.212 1.258 1.277
PREDID5+ DynRR 1.103 1.223 1.295 1.345 1.074 1.153 1.190 1.204
PREDID4+ DynRR 1.097 1.207 1.271 1.311 1.075 1.147 1.182 1.191

results for the current query. In particular, we found the DynRR method works best
using the C+S related queries (which we return to later) with 9–11% gains over the
baselines at position 10 across the various metrics, and 3–5% in relative gains. We also
find that the method improves on the PREDID datasets, suggesting that the method
can be robustly used in practical scenarios. These performance differences were also
found to be statistically significant: across all four datasets, a binomial test shows that
the difference between the DCG@10 performance of the DynRR and the baseline is
statistically significant at the 99.99% significance level. Thus, we improve an important
segment of tasks while maintaining high levels of performance elsewhere. Further
improvements to the initiator classification model are likely to result in additional
robustness gains.

Interactive Evaluation. Next we evaluate the performance of the method when in-
corporating user interactivity. As seen in Table XXII, accounting for interactivity leads
to large increases in both the precision and DCG of the user paths navigated across the
different user models and datasets. In fact, we find 30–40% improvements in precision
and 20–25% improvements in DCG, indicating that our approach is able to do a far
better job in predicting future relevant results (and potentially, queries). These results
also show that the method improvements are relatively robust to the user model. We
also confirmed that the DynRR improvement (for DCGU3) is statistically significant
compared to the baseline at the 99.99% significance level, using a binomial test.

Robustness. A key concern when comparing a new method against a baseline is
the robustness of the method. In particular, we are interested in the number of queries
that are either improved or hurt on switching from the baseline method to the proposed
reranking method. This is particularly crucial for the PREDID datasets, since we would
not want retrieval effectiveness on non-ID sessions to be adversely affected. Table XXIII
displays the % of examples for which the method either gains or loses above a certain
threshold, compared to the baseline. We see that the percentage of queries with a
performance gain exceeds those with a performance loss, especially while interactivity
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Table XXIII. Distribution of (Absolute) Performance Difference between DynRR and the Baseline
DCG@10 across Individual Sessions

% Sessions Improved % Sessions Worsened
Dataset � = Difference in evaluation metrics ≥0.2 ≥0.5 ≥1.0 ≤−0.2 ≤−0.5 ≤−1.0

MINED5+
DynRR DCGU3 - Baseline DCG@10 34.4 13.0 1.6 9.9 2.7 0.1
DynRR DCG@10 - Baseline DCG@10 19.6 5.2 0.3 12.7 3.8 0.3

MINED4+
DynRR DCGU3 - Baseline DCG@10 31.8 13.1 2.1 9.5 2.7 0.2
DynRR DCG@10 - Baseline DCG@10 17.7 5.6 0.8 13.0 4.0 0.2

PREDID5+
DynRR DCGU3 - Baseline DCG@10 29.1 12.0 1.6 10.8 3.7 0.2
DynRR DCG@10 - Baseline DCG@10 17.7 6.0 0.8 12.9 4.0 0.2

PREDID4+
DynRR DCGU3 - Baseline DCG@10 27.5 11.0 2.0 10.5 3.1 0.3
DynRR DCG@10 - Baseline DCG@10 16.8 5.3 1.4 11.5 3.5 0.4

Table XXIV. Examples of Sessions with Significant Increase in the Primary DCG@10 of Reranked Results
Compared to that of the Baseline

Initiator Query ID Successor Queries
what does a positive r wave
in avr look like

avr on ekg; r wave in avr with tricyclic od; terminal
r wave in avr; what is 3mm on ekg

is a high level of dhea a
sign of cancer

what can be done to lower dhea levels in women;
affects of elevated dhea; high dhea numbers

accomplishments kirk
franklin

kirk franklin gospel songs; kirk franklin gets
married; when did kirk franklin make his first cd;
where did kirk franklin go to college at

Table XXV. Performance Change on Varying the Related Queries for the
MINED5+ Dataset

RelQ Prec DCG PrecU3 DCGU3

A 0.927 0.880 1.082 0.997
C 1.039 1.014 1.333 1.214
S 1.076 1.074 1.248 1.198
O 1.511 1.397 2.211 1.827

AS 0.984 0.961 1.271 1.157
AC 1.010 1.013 1.244 1.176
CS 1.115 1.106 1.413 1.306

ASC 1.019 1.039 1.347 1.242
ASCO 1.207 1.144 1.580 1.386

Note: All measures are @10 and reported as a ratio to the baseline values.
(A = API; C = Co-click; S = Co-Session; O = Oracle).

is incorporated in the comparison. Table XXIV contains examples of sessions (initiator
and successors) where the method shows improvements over the baseline.

Effect of Related Query Set. Next, we study how varying the nature of the related
queries affects retrieval performance, using the MINED dataset. To do this, we con-
structed different combinations of the four related query sources: API (A), Click-Graph
(C), Co-Session (S), and Oracle (O).

The results are summarized in Table XXV. As we clearly see, the choice of related
query source has a large impact on both the primary ranking performance and the
interactive performance. In particular, one result that stands out is the extremely
strong performance using the Oracle-related queries. This suggests that if we were
able to improve the quality of the suggested related queries, it would only increase
our algorithm’s effectiveness. On the other hand, we see that using the API-related
queries almost always hurts retrieval effectiveness. In fact, simply using only the
related queries from the click-graph and the co-session data leads to much better
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Table XXVI. Effect of the Candidate Document Set Quality on DynRR Performance (for the MINED5+ Dataset)

DynRR DCG DynRR DCGU j % di ∈ T op − k(qi)
Candidate Doc Set D @1 @3 @10 j = 2 j = 3 j = 5 k = 1 k = 3 k = 10
Top-10 (Baseline) of query q 1.080 1.088 1.039 1.258 1.300 1.290 23.3 36.3 51.0
Top-10 (Base) of q ∪ Top-10
(Base) of all q′ ∈ RelQ(q)

1.055 1.041 1.039 1.188 1.242 1.254 78.9 89.7 93.7

Top-100 (Base) of q 1.080 1.084 1.054 1.254 1.292 1.287 34.7 50.8 63.9
Top-100 (Base) of q ∪ Top-10
(Base) of q′ ∈ RelQ(q) (Default)

1.055 1.041 1.039 1.188 1.242 1.254 78.9 89.7 93.7

Note: All measures are reported as a ratio to the baseline values.

Table XXVII. Effect of the Candidate Document Set Quality on DynRR Performance for the Other Datasets

DynRR DCG DynRR DCGU j % di ∈ T op − k(qi)
Dataset Candidate Doc Set D @1 @3 @10 j = 2 j = 3 j = 5 k = 1 k = 3 k = 10

MINED4+
Top100(q)∪ Top10 q′ ∈ RelQ(q) 1.066 1.054 1.075 1.212 1.258 1.277 75.4 87.0 92.7

Top-100 of q 1.086 1.089 1.071 1.261 1.294 1.294 35.2 51.4 64.3

PREDID5+
Top100(q)∪ Top10 q′ ∈ RelQ(q) 1.027 1.029 1.033 1.153 1.190 1.204 74.0 85.5 90.8

Top-100 of q 1.055 1.030 1.019 1.196 1.225 1.226 31.8 45.9 58.4

PREDID4+
Top100(q)∪ Top10 q′ ∈ RelQ(q) 1.057 1.035 1.041 1.147 1.182 1.191 74.0 85.3 90.6

Top-100 of q 1.084 1.076 1.050 1.197 1.218 1.216 34.9 50.6 63.2

Note: All measures are reported as a ratio to the baseline values.

performance compared to using the API queries as well. Further analysis reveals that
this is due to two reasons: (a) in many cases, the queries returned by the API are spelling
corrections or reformulations, with no difference in aspect; (b) more importantly, there
is little to no diversity in the queries obtained from the API as opposed to those from
the other sources.

Effect of Candidate Document Quality. As the proposed approach is a reranking
approach, performance is affected by the quality of the original candidate documents.
Ideally, we would like the method to work well both when the starting candidate
document set is low quality (containing many irrelevant documents but easy to obtain)
or when the candidate set is of high quality (but requires running a computationally
heavier ranking/filtering algorithm to obtain). Table XXVI shows the change in some of
the performance measures as we change the quality of the candidate set. We find that
starting with a less-noisy candidate set, by restricting to the top 100 without documents
from other queries, tends to improve performance. Encouragingly, our approach does
well even if the candidate set contains a large fraction of irrelevant documents, as
our default experimental setting does. This robustness is also observed on the other
datasets, as shown in Table XXVII.

However, the trade-off of adding more diverse documents into the candidate set, as
seen in Tables XXVI and XXVII, is that the documents of the ranking are less relevant
to the query aspect to which they are attributed. The last three columns of both tables
indicate how common it is for the document di of the ranking to be in the top-k for the
corresponding query aspect qi, for different k. We find that when documents from the
related query aspects are included, a large fraction of the time the document attributed
to the query aspect turns out to be the most relevant document. This comes at the cost
of a slight reduction in the ranking effectiveness of the primary ranking.

6.5. TREC Session Data

We also ran experiments using the publicly available TREC 2011 Session data using
only publicly reproducible components. To do so, three annotators labeled the different
sessions as potentially being intrinsically diverse or not, based on (a) only the queries
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Table XXVIII. Annotator Agreement on TREC Data

Task Fleiss Kappa % All agree % 2 agree
IsTopicID? .423 85.5 100

AreQueriesID? .452 67.1 100
BestInitiatorQ .694 55.3 98.7

Table XXIX. Absolute Performance on TREC Session Data

Initiator Method Pr@1 Pr@3 DCG@1 DCG@3
Title Baseline 0.58 0.60 0.84 2.13
Title DynRR 0.71† 0.60 1.39† 2.41
First Baseline 0.53 0.47 0.94 1.94
First DynRR 0.5 0.48 0.92 1.97
Label Baseline 0.55 0.51 0.87 1.95
Label DynRR 0.61 0.5 1.13 2.09

Note: †indicates significance at p = 0.05 by a paired one-tailed t-test.

issued; and (b) the narration and title of the session as well. We also asked annotators
to label their opinion on the query best suited to be the initiator query, among the
queries issued. Annotators were provided the description of ID sessions as described at
the start of Section 3 and provided with the information sheet given in Appendix D.2.

We found good agreement among the different annotators for all of the different
labeling tasks, as seen from Table XXVIII. In fact, in 63 of the 76 total sessions, all three
annotators agreed the sessions were ID based on the narration, title, and queries.17

For training, we used a 50-50 training-test split on all sets, with the training data
used for selecting the parameters of the ranking methods. To obtain the conditional
relevance R(d|q), we trained a regularized linear regression model with features based
on the scores of two standard ranking algorithms: BM-25, and TFIDF. As labeled data,
we used the TREC Web data from 2010 and 2011 by converting the graded relevance
scores for relevant and above from the {1, 2, 3} scale to { 1

3 , 1, 1}. We used related queries
from the Van Dang-Croft [Dang et al. 2010] method (Q) on the ClueWeb ’09 anchor text,
where the starting seed for the random walk would use the most similar anchor text to
the query by tf.idf-weighted cosine if an exact match was not available. Our candidate
document pool was set similar to the previous experiments.

To evaluate, we again use the same metrics as before, but using the TREC assessor
relevance labels instead of clicks. We considered three different candidates for the
initiator query: (a) topic, (b) first query in the session, and (c) labeled initiator query.
As a baseline, we considered the method that ranked as per R(d|q). For the DynRR
method, we used the titles of the top-10 results of a query (as per the baseline), as the
snippet of the query.

The results for the primary metric comparison are shown in Table XXIX. As we see
from the table, the method improves in precision and DCG for most of the cases with
particularly large improvements when the title of the topic is used as the initiator
query. This matches feedback the annotators gave us, that the titles looked much more
like the general queries issued by Web users. In contrast, the TREC sessions would
often start with a specific query before moving to a more general query. It could be that
supplying the user with a well-formulated topic description before starting the search
task influences the users to search for a particular aspect rather than issue a more
general query, as they might when no topic description is explicitly formulated.

17Using a slightly different classification scheme, Liu et al. [2011] also found 66 of the 76 sessions to have
the same type.
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7. WHOLE SESSION RELEVANCE, PROACTIVE SEARCH, AND FUTURE WORK

Our work is a first step toward whole-page relevance, as motivated in Bailey et al.
[2010], and eventually the goal of whole-session relevance. Just as whole-page relevance
considers how the entire set of elements on a result page can work together to address
a user’s information need, whole-session relevance aims to optimize an effectiveness
objective based on the entire series of past, present, and future queries and result pages
shown to a user over time. Such whole-session objectives can capture important longer-
term qualities of search needs beyond a single query, such as time-evolving information
needs, task- and subtask-completion, and this article’s focus on intrinsic diversity in
exploring a topic. As this is just the first step into this problem, this also opens many
interesting future directions, a few of which we now summarize.

In the initial stages of our pipeline, we could consider iterative ways to combine
or jointly optimize the mining and query identification processes, so that information
gained in one stage could be used to improve the accuracy of the other. Also, various
aspects of the filtering algorithm in Section 3 could be implemented with more general
mechanisms. For example, Step 6 relies on identifying pairs of related queries using
co-surfaced URLs as evidence, but this could be replaced with improved methods for
identifying related queries that could improve identification of tasks and proactive re-
trieval performance. In other work, identifying more “general” definitions of initiators
would help improve robustness and applicability: in this article, we weighted heavily
toward temporal precedence as a key feature of a broader initiator query, but some users
may start with specific queries (e.g., in order to reduce ambiguity) and then generalize
once the specific area of interest has been accurately identified. In the search interface
itself, we envision richer display elements or modes of interaction for supporting re-
sult exploration for intrinsically diverse tasks. Extending these techniques to related
problems like exploratory search is another fruitful direction for future research.

Looking beyond single sessions, identifying intrinsically diverse tasks that bridge
session boundaries (i.e., cross-session intrinsically diverse tasks) is a natural extension.
Moreover, the ability to detect cross-session tasks could be combined with our ability
to predict future queries. This would provide a form of proactive search that uses the
time between sessions to pre-fetch result elements likely to be of use when the task
is contined in a future session. In these more extended search time scales, human
computation could play a significant role in our pipeline, either for query mining and
prediction, or to provide entirely new capabilities for interpreting complex or difficult
intrinsically diverse queries or optimizing whole-page results. Even for the specific
subtask of selecting likely future queries, it would be interesting to see how using more
time, via human computation or other means, could help close the existing gap against
oracle performance that we identified in Section 6.3.

8. CONCLUSIONS

Our work is the first to characterize the nature of intrinsically diverse tasks in in-
formation retrieval and to develop algorithms that support such tasks. Intrinsically
diverse tasks are those that typically require multiple user queries to a search en-
gine to cover different aspects of the same information need. First, we motivated our
work using real-world data and presented an algorithm to mine intrinsically diverse
sessions from search logs, using behavioral interaction signals within a session. We
then examined the question of predicting when a query has initiated the start of an
intrinsically diverse task, by casting the problem in terms of binary classification. We
conducted an analysis of the resulting queries, sessions, and classification results. We
also looked at the more general problem of predicting which queries were part of an
ID task engagement within a session, and examined the role of session context in
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prediction effectiveness. Finally, we presented a new class of algorithm designed to
optimize retrieval for intrinsically diverse tasks. Our approach alters the search result
rankings presented to the user so as to provide information relevant to aspects of the
ID task for which the user is likely to search in the future. We validated our approach
empirically using search log data, as well as TREC data, demonstrating significant
improvement over competitive baselines in both cases.

APPENDIXES

A. MINING ALGORITHM

Appendix A contains the detailed algorithm used for mining ID sessions from query
logs (Alg. 2).

ALGORITHM 2: Obtaining Intrinsic Diversity Data
1: function REMOVECOMMONANDLONG(Session s = {q1, q2, . . .}, QueryLength l) � Removes

Common Queries as well as Long Queries from Query Session s
2: s′ = {}
3: for all qi ∈ s do
4: if IsCommon(qi) = false and len(qi) ≤ l then � Discards common/long query
5: s′ = s′ ∪ {qi}
6: return s′

7:
8: function REMOVEDUPS(Session s = {q1, q2, ...}) � Removes Repeated Query Instances i.e.,

Duplicate Queries
9: s′ = {}

10: for all qi ∈ s do
11: if qi ∈ s′ then � Discards the query if it is a common query
12: Merge SAT Clicked Results in s′[qi]
13: else
14: s′ = s′ ∪ {qi}
15: return s′

16:
17: function GETNUMDISTINCT(Session s = {q1, q2, ...qn}, Threshold η) � Counts number of

distinct queries
18: s′ = {}
19: for i = 2 → n do
20: f lag ← true
21: for all q ∈ s′ do
22: if Sim(q, qi) ≥ η then � Don’t add if similar to previous query
23: f lag ← false
24: break
25: if f lag = true then
26: s′ = s′ ∪ {qi}
27: return len(s′)
28: function GETIDSESSION(Session s = {q1, q2, ...}, Similarity Threshold η) � Gets all related

ID queries with q1 as Initiator.
29: s′ = {q1}
30: hasSat ← hasSatResult(q1) � Set to true if ∃ SAT click for qi
31: for i = 2 → n do
32: if Sim(q1, qi) ≤ η and Top10Results(q1) ∩ Top10Results(qi) �= φ then � Syntactically

not too similar to initiator but at least 1 common result in Top 10
33: s′ = s′ ∪ {qi}
34: hasSat ← hasSat ∨ hasSatResult(qi)
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35: if hasSat = true then
36: return s′
37: else
38: return φ

39:
40: numDistinct ← new Dict()
41: for all QuerySessions {q1, q2...} do
42: {q′

1, q′
2...} ← RemoveCommon({q1, q2...}, ql) � ql is parameter for max query length.

43: {q′′
1 , q′′

2 ..., q′′
n} ← RemoveDups({q′

1, q′
2...})

44: best ← φ � At most 1 ID Session per actual session and thus choose longest
45: bestVal ← −1
46: for i = 1 → n + 1 − l do � l is parameter for Minimum ID Session Length
47: {q∗

1, q∗
2 ..., q∗

m} ← GetIDSession({q′′
i , q′′

i+1..., q′′
n}, η1) � η1 and η2 are similarity

threshold parameters
48: if m ≥ l and bestVal < m then � Has to meet minimum length condition
49: best ← {q∗

1, q∗
2 ..., q∗

m}
50: bestVal ← m
51: if bestVal > 1 then
52: numDistinct[best] = GetNumDistinct(best, η2) � Add the best seen
53: Sort numDistinct in descending order of value and choose top k.

B. STATISTICAL PROPERTIES OF ID INITIATORS

Table XXX provides a breakdown of aggregate statistical properties of the two kinds
of queries: ID initiators and regular queries. While their lexical length is roughly the
same, we find that ID initiators tend to appear more frequently and in longer sessions
(in the Dec. 2011–Mar. 2012 period) that last up to 50% longer on average (Figure 15(c)).
For the same date range, if we look at the average similarity of a query to all the
queries it co-occurred with, we find that regular queries tend to have slightly higher
similarity on average. Further analysis reveals that regular queries are more likely
to have very low (e.g., for off-topic queries) or very high (e.g., for reformulations) simi-
larities (Figure 15(b)). Note that since this analysis uses data from a non-intersecting
date range, compared to that used for mining the data, we can conclude that these
query characteristics are intrinsic to ID initiators and not a function of our mining
algorithm.

Table XXX. Mean and Standard Deviation of Different Query Characteristics

REGULAR ID
Query Characteristic Mean Dev. Mean Dev.
Total number of characters 23.01 13.82 22.11 10.40
Total number of words 3.73 2.50 3.70 1.85
Log(Number of sessions) previously occurred in 2.30 1.29 3.08 1.75
Avg. length of sessions previously occurred in 10.02 15.21 15.22 19.26
Avg. similarity with all co-session queries (from logs) 0.188 0.167 0.152 0.193
Fraction of co-session similarities ∈ [0, 0.25) 69.83 27.20 67.15 25.69
Fraction of co-session similarities ∈ [0.25, 0.5) 12.29 17.13 16.77 17.46
Fraction of co-session similarities ∈ [0.5, 0.75) 11.53 17.24 11.69 15.47
Fraction of co-session similarities ∈ [0.75, 1] 6.35 14.09 4.39 10.52
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Fig. 15. Differences between regular and ID initiator queries for (a) lexical statistics; (b) for each query,
the fraction of co-session similarity pairs that fall within different ranges; (c) session frequency and length
statistics of previous occurrences in logs.

C. SUBMODULARITY OF OBJECTIVE & APPROXIMATION GUARANTEE

C.1. Proof of Theorem 6.1

PROOF. To show that the objective function Fβ,λ from Eq. (2) is submodular, we will
construct a ground set of elements, define a set-based function on this set matching
the objective, and show the marginal benefit to be decreasing. Recollect the following
objective:

Fβ,λ(d1, q1, . . . , dn, qn) =
n∑

i=1

R(di|q) · R(di|qi) · eβDivλ(qi ,Q(i−1)).

Given a set of related query aspects Q, a set of candidate documents D, and a ranking
length n, we define B—the ground set of elements—to be B = D × Q × K, that is, the
set of all possible triples of document d, query aspect q′, and ranking position k:

B = {(d, q′, k) : d ∈ D ∧ q′ ∈ Q ∧ k ∈ [1, 2, . . . , 2n]},
where K = [1, 2, . . . , 2n].

Let g1(q1) denote Sim(q1, Snip(q)) and g2(q1, q2) = Sim(Snip(q1), Snip(q2)). Given a
subset of the ground set S ⊆ B, we can write the objective function as

G(S)=
∑

(d,q′,k)∈S

R(d|q) · R(d|q′) · exp
(
βλ · g1(q′) − β(1 − λ) · max

(d′,qi ,k′)∈S∧k′<k
g2(q′, qi)

)
.

Given a set S = {(d1, q1, 1), . . . , (di, qi, i), . . . , (dn, qn, n), we find that G(S) =
Fβ,λ(d1, q1, . . . , dn, qn). Thus, in other words, G(S) generalizes the objective function
defined over a subset of the ground set B. It is not hard to see that G(S) is a valid set
function, as it is agnostic to the order of elements within the set S.
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We now try to prove a submodularity-like property of this set function G(S). To do
so, let us define the maxpos function for a set S as mp(S) = max(d,q′,k)∈S k. We can now
state the following monotonicity lemma.

LEMMA C.1. The function G is not monotone in general, that is, for S ⊆ B: G(S ∪
(d, q′, k)) � G(S). However this function is monotone in a specific order (order-monotone):

∀S ⊆ B, (d, q′, k) ∈ B : G(S ∪ (d, q′, k)) ≥ G(S) if k > mp(S).

Thus in other words, the function is increasing when an element at a later position is
added to the set. We refer to this as order-monotone.

PROOF. Let us consider the marginal benefit �G(S)({(d, q′, k)}) of adding {(d, q′, k)} to
S, where k > mp(S):

�G(S)({(d, q′, k)}) = G(S ∪ {(d, q′, k)}) − G(S)

= R(d|q) · R(d|q′) · exp
(
βλg1(q′) − β(1 − λ) max

(d′,qi ,k′)∈S
g2(q′, qi)

)
. (4)

The expression in Eq. (4) is a product of three positive terms, and hence is ≥0, thus
completing the proof.

We now state our main lemma about the submodularity of G.

LEMMA C.2. The function G is not submodular in general, that is, for sets S1 ⊆
S2 ⊆ B: �G(S1)({(d, q′, k)}) � �G(S2)({(d, q′, k)}). However, this function is submodular in
a specific order (order-submodular):

∀S1 ⊆ S2 ⊆ B, (d, q′, k) ∈ B : �G(S1)({(d, q′, k)}) ≥ �G(S2)({(d, q′, k)}) if k > mp(S2).

PROOF. To prove this let us revisit the marginal benefit expressions:

�G(S1)({(d, q′, k)}) = R(d|q) · R(d|q′) · exp
(
βλg1(q′) − β(1 − λ) max

(d′,qi ,k′)∈S1

g2(q′, qi)
)
,

�G(S2)({(d, q′, k)}) = R(d|q) · R(d|q′) · exp
(
βλg1(q′) − β(1 − λ) max

(d′,qi ,k′)∈S2

g2(q′, qi)
)
.

Since both of these terms are positive (from Lemma C.1), consider the ratio of the two
marginal benefits:

�G(S1)({(d, q′, k)})
�G(S2)({(d, q′, k)}) = exp

(
β(1 − λ)

[
max

(d′,qi ,k′)∈S2

g2(q′, qi) − max
(d′,qi ,k′)∈S1

g2(q′, qi)
])

. (5)

However, since S1 ⊆ S2, we have that max(d′,qi ,k′)∈S2 g2(q′, qi) ≥ max(d′,qi ,k′)∈S1 g2(q′, qi).
Hence the RHS of Eq. (5) is at least 1, thus completing the proof.

Since we add elements to the ranking only in the order of their positions, we thus get
that our objective function F is submodular.

C.2. Proof of Theorem 6.2

PROOF. To prove an approximation guarantee for the greedy algorithm on the ob-
jective function Eq. (3), we will instead consider a constrained optimization problem
involving the generalized set function G. In particular, while trying to maximize G(S),
we are dealing with three matroid constraints here.

(1) Documents Cannot Be Repeated. This constraint ensures that we do not present
the same document twice in the ranking. This can be represented as a matroid
constraint ID (set of all independent sets), where ∀S ∈ ID: S ∪{(d, q′, k)} ∈ ID if and
only if �(d, q1, k′) ∈ S.
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(2) Queries Cannot Be Repeated. This constraint ensures that we do not repeat the
same related query aspect in the interactive ranking. As a matroid constraint IQ,
this requires ∀S ∈ IQ: S ∪ {(d, q′, k)} ∈ IQ if and only if �(d′, q′, k′) ∈ S.

(3) Ranking Positions Cannot Be Repeated. This constraint ensures that there is at
most one document-related query pair at each position of the ranking. As a matroid
constraint IK, this requires ∀S ∈ IK: S∪{(d, q′, k)} ∈ IK if and only if �(d′, q1, k) ∈ S.

Thus the optimization problem reduces to

argmaxS:S∈ID∧S∈IQ∧S∈IKG(S).

It is a well-known result that the greedy algorithm has an approximation guarantee
of 1

p+1 for submodular maximization under the intersection of p matroids [Fisher et al.
1978]. However, we do not use this result as it requires G to be submodular (which it
is not). Instead, we prove a stronger result by exploiting the structure of our problem.

Let Tm (1 ≤ m ≤ n) be the solution of the greedy algorithm after m steps. Let
(dm, qm) represent the document-query pair selected by the greedy algorithm (and we
can safely assume that this was at position m). Let δm represent the marginal benefit of
this element: δm = GTm−1 ({(dm, qm, m)}). By order-submodularity, we have ∀m : δm ≤ δm−1.

Consider the optimal solution for a ranking of length n : O. Let (d∗
m, q∗

m) represent the
mth (ordered) document-query pair in O. Without loss of generality, we can assume that
O = {(d∗

1 , q∗
1, n + 1), (d∗

2 , q∗
2, n + 2), . . . , (d∗

i , q∗
i , n + i), . . . , (d∗

2n, q∗
n, 2n)}, since the function

value of G does not depend on the specific position value of the highest-position element.
Let ei represent (d∗

i , q∗
i , n + i)

It is not hard to show that O can be partitioned into n subsets (each of size at most
2) : O1, . . . , Oi, . . . , On, where the elements in Oi are valid document-query pairs such
that Ti−1 ∪ Oi ∈ (ID ∩ IQ ∩ IK). The existence of such a partitioning can be shown using
an argument similar to that used in Appendix B of Călinescu et al. [2011].

Given such a partition, we can show that

|Oi|δi ≥
∑
e∈Oi

GTi−1 (e) ≥
∑
e∈Oi

GTn(e), (6)

where the first inequality utilizes the fact that the greedy algorithm always chooses
the element maximizing the marginal benefit. The second inequality utilizes the order-
submodularity of G. We now obtain

G(Tn) =
n∑

i=1

δi ≥ 1
2

n∑
i=1

|Oi|δi ≥ 1
2

n∑
i=1

∑
e∈Oi

GTn(e) = 1
2

∑
e∈O

GTn(e), (7)

where the first equality uses the definition of G and δ, the next inequality the fact that
∀i : 0 ≤ |Oi| ≤ 2, the next using Eq. (6), and the last by realizing that O1∪O2 · · ·∪On = O.

We can now use order-submodularity as follows:

∑
e∈O

GTn(e) =
n∑

i=1

GTn(ei) ≥
n∑

i=1

GTn∪{e1,e2,...,ei−1}(ei) = G(Tn ∪ O) − G(Tn), (8)

where the first inequality uses the order-submodularity property and the last equality
by realizing that we have a telescoping sum of marginal benefits.

Using the definition of G and the fact that 0 ≤ g2(·, ·) ≤ 1, we have that

G(Tn ∪ O) − G(Tn) ≥ e−β(1−λ)G(O). (9)
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Combining Equations (7), (8), and (9), we obtain the required bound:

G(Tn) ≥ e−β(1−λ)

2
G(O).

D. INSTRUCTIONS FOR LABELING INTRINSICALLY DIVERSE SESSIONS

This appendix contains the information sheet provided to the annotators for labeling
sessions as Intrinsically Diverse or Regular as used in the analysis of the filtering
process (Section 3.1) and the TREC data (Section 6.5). This sheet contains information
about what constitutes an ID session and an initiator query. It also contains instruc-
tions for the labeling process. We provide here the different instruction sets used for
the different tasks. A key difference in the instructions is the absence of an initiator
query identification task in the annotation of the filtered sessions.

D.1. Guidelines for Filtered Session Labeling

Goal of the Study: Intrinsic Diversity
The goal behind this study is to identify intrinsic diversity. Intrinsic diversity

in queries is when there are multiple queries about different aspects of the same
information need.

For example, suppose I wanted to learn about “Why Kelly Clarkson is popular?”, I
can issue queries about her, her participation at American Idol, her performances, the
awards she has won and so on.. Such a set of queries would be considered intrinsically
diverse.

Another example of intrinsic diversity is suppose you wanted to learn about “snow
leopards (the animals)”. Here you could issue queries like: “what habitats are snow
leopards found in”, “what do snow leopards eat”, “how long do snow leopards live”

To determine if a set of queries (or a topic) is intrinsically diverse, follow this general
rule of thumb: If the required information can be obtained more efficiently by issuing
multiple queries (about different aspects of the same topic) instead of any single query,
then the set of queries/topic is considered intrinsically diverse.

Note: If there is more than one aspect/requires more than one query then it is
considered intrinsically diverse.

Labeling Guidelines

You will be given a set of queries from a single user session (in the order they were
queried).

Based on this information you will be asked to label each of these sessions with the
following information:

Are the queries intrinsically diverse?: Taking into account all the queries listed
for the session, please label if you believe the set of queries is intrinsically diverse or
not (Yes=1/No=0). You may place the label next to the first query listed for the session
only one label is necessary per session (demarcated by a row with “———-”). NOTE:
Even if there are multiple queries, the set of queries need not be intrinsically diverse.
For example, when the queries are simply spelling corrections or reformulations that
do not provide evidence of multiple aspects, it is conceivable that a single well-formed
query would have retrieved information to satisfy the users need.

Thank you for your participation in this study!
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D.2. Guidelines for TREC Labeling

Goal of the Study: Intrinsic Diversity

The goal behind this study is to identify intrinsic diversity. Intrinsic diversity
in queries is when there are multiple queries about different aspects of the same
information need.

For example, suppose I wanted to learn about “Why Kelly Clarkson is popular?”, I
can issue queries about her, her participation at American Idol, her performances, the
awards she has won and so on.. Such a set of queries would be considered intrinsically
diverse.

Another example of intrinsic diversity is suppose you wanted to learn about “snow
leopards (the animals)”. Here you could issue queries like: “what habitats are snow
leopards found in”, “what do snow leopards eat”, “how long do snow leopards live”

To determine if a set of queries (or a topic) is intrinsically diverse, follow this general
rule of thumb: If the required information can be obtained more efficiently by issuing
multiple queries (about different aspects of the same topic) instead of any single query,
then the set of queries/topic is considered intrinsically diverse.

Note: If there is more than one aspect/requires more than one query then it is
considered intrinsically diverse.

Initiator Queries

A secondary goal of this study is to identify initiator queries for the intrinsically
diverse sessions.

Given a set of intrinsically diverse queries, the query among them that is most general
and likely to have been the first among these set of queries is called the initiator query. If
multiple such queries exist, then the first among them from the actual sequence (issued
by the user) is considered the initiator.

Labeling Guidelines

You will be given a set of queries from a single user session (in the order they were
queried). The session will also contain information about the underlying topic behind
these queries, namely the title, description and narration of the topic.

Based on this information you will be asked to label each of these sessions with the
following information:

(a) Is the topic intrinsically diverse?: Based only on the topic (i.e., title, description
and narration) please label if you believe the session is intrinsically diverse or not
(Yes/No/Maybe).

(b) Are the queries intrinsically diverse?: Now taking into account the queries
(along with the topic), please label if you believe the set of queries is intrinsically
diverse or not (Yes/No/Maybe). NOTE: Even if the topic is intrinsically diverse,
the queries need not be intrinsically diverse. For example, when the queries are
simply spelling corrections or reformulations, they are not intrinsically diverse
regardless of the topic being intrinsically diverse or not.

(c) Best Initiator Query: For all sessions (including those marked as No for b) please
indicate which of the queries you would consider to be the best initiator query.

(d) Comment: If you have any additional comments for any of the sessions, then please
enter it in the comment field.
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