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Abstract

Coactive Learning is a model of interaction
between a learning system (e.g. search en-
gine) and its human users, wherein the system
learns from (typically implicit) user feedback
during operational use. User feedback takes
the form of preferences, and recent work has
introduced online algorithms that learn from
this weak feedback. However, we show that
these algorithms can be unstable and ineffec-
tive in real-world settings where biases and
noise in the feedback are significant. In this
paper, we propose the first coactive learning
algorithm that can learn robustly despite bias
and noise. In particular, we explore how pre-
senting users with slightly perturbed objects
(e.g., rankings) can stabilize the learning pro-
cess. We theoretically validate the algorithm
by proving bounds on the average regret. We
also provide extensive empirical evidence on
benchmarks and from a live search engine
user study, showing that the new algorithm
substantially outperforms existing methods.

1. Introduction

A growing number of interactive systems use machine
learning to adapt their models to different environ-
ments, different users, or different user populations.
Examples of such systems range from search engines
and recommender systems, to personal assistants and
autonomous robots. Ideally, these system should learn
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directly from their users in a manner that is unobtru-
sive, robust, and efficient.

A model of such learning processes is Coactive Learning
(Shivaswamy & Joachims, 2012), combining a bound-
edly rational model of user behavior with an online
learning model that formalizes the goal of learning. In
particular, Coactive Learning models the interaction be-
tween the user and a learner using weaker assumptions
about the user feedback than in standard supervised
learning. At each step, the learner (e.g. search engine)
receives a context (e.g. query) for which it predicts
an object (e.g. ranking, say [d1, d2, d3, d4, ...]). This
object is presented to the user. If this object is sub-
optimal, the user responds with a slightly improved
object, but not necessarily the optimal object as typi-
cally assumed in supervised learning. This means the
user merely provides a preference, which can typically
be inferred from implicit feedback (e.g., clicks on d2

and d4 imply that the user would have preferred the
ranking [d2, d4, d1, d3, ...]). The goal of learning is to
minimize regret, which is the cumulative suboptimality
of predictions over the life of the learning system.

While learning algorithms exist for the Coactive Learn-
ing model (Shivaswamy & Joachims, 2012), we show in
this paper that they can perform poorly in the presence
of noise. To overcome this problem, we propose a new
learning algorithm that is robust to noise and performs
well even in an agnostic setting. Our algorithm – called
the Perturbed Preference Perceptron – produces greatly
improved generalization performance both in simula-
tion experiments, as well as in a live user study on
an operational search engine. Furthermore, we prove
regret bounds for this algorithm that characterize its
behavior and provide explicit guidance for its appli-
cation in practice, especially for ranking problems in
search and recommendation.
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2. Related Work

Our work follows the coactive learning model proposed
in (Shivaswamy & Joachims, 2012), which we discuss
in Section 3. Feedback in coactive learning lies be-
tween the Multi-Armed Bandit problem (Auer et al.,
2002b;a; Flaxman et al., 2005) (payoff only for selected
action) and the Expert-Advice problem (Cesa-Bianchi
& Lugosi, 2006; Zinkevich, 2003) (payoff for all actions).
However, the coactive learner never observes absolute
payoffs, but merely a preference between two actions.
This aspect of preference feedback is similar to the du-
eling bandits model (Yue et al., 2009; Yue & Joachims,
2009), but the algorithm choses both actions in the
dueling bandits model, while the user and algorithm
chose one action each in the coactive learning model.

Coactive learning also differs from other preference
learning problems. For example, in ordinal regression
(Crammer & Singer, 2001) a training example (x, y)
provides an absolute rank y. Ranking with pairwise
preferences (Herbrich et al., 2000; Freund et al., 2003;
Chu & Ghahramani, 2005) is another popular problem.
However, existing algorithms require an iid sample in
a batch setting, while coactive learning works with
no-iid data in an online setting. Listwise approaches to
ranking (see (Liu, 2009)) differ from coactive learning as
they require the optimal ranking for a query, not just
a preference between typically suboptimal rankings.
Partial monitoring games (Bartók et al., 2010) also
differ from coactive learning, as they require that loss
and feedback matrices are revealed to the learning
algorithm. Furthermore, partial monitoring games
have no explicit notion of context that is available at
the beginning of each round.

The work in this paper is based on perturbing the
output of a predictor for improved feedback. In infor-
mation retrieval, this idea has been proposed for at
least two purposes. First, search results from two re-
trieval functions are interleaved (Chapelle et al., 2012)
to elicit unbiased user preferences. Second, the “Fair-
Pairs” perturbation strategy (Radlinski & Joachims,
2006) was proposed for de-biasing click data in search.
We use the FairPair idea, and provide the first explo-
ration and learning algorithm for this type of feedback.

3. Coactive Learning Model

The coactive learning model, as proposed in (Shiv-
aswamy & Joachims, 2012), is used in the rest of this
paper. At each iteration t, the user states a context
xt (e.g., query) and the learning algorithm makes a
prediction yt ∈ Y (e.g., ranking) in response. The
user draws some utility U(x,y) from this prediction,

Algorithm 1 Preference Perceptron.

Initialize w1 ← 0
for t = 1 to T do

Observe xt
Present yt ← argmaxy∈Yw>t φ(xt,y)
Obtain feedback ȳt
Update: wt+1 ← wt + φ(xt, ȳt)− φ(xt,yt)

and provides an improved prediction ȳt ∈ Y as feed-
back. Denoting the optimal prediction for iteration t as
y∗t = argmaxy∈YU(xt,y), the quality of the users’ feed-
back ȳt in response to yt is characterized as expected
α-informative,

Eȳt
[U(xt,ȳt)]≥U(xt,yt)+α(U(xt,y

∗
t)−U(xt,yt))−ξt. (1)

The expectation is under Pxt
[ȳt|yt]. The definition

characterizes by how much the feedback provided, in
expectation, is an α-factor improvement over the pre-
sented object relative to the maximum possible im-
provement U(xt,y

∗
t ) − U(xt,yt), while allowing for

slack ξt. Characterizing the feedback from boundedly
rational users through Eq. (1) is sensible: a boundedly
rational user may satisfice and not search the full space
Y for the optimal y∗ (captured by α), and may make
imperfect assessments of utility (captured by ξt).

We define the (average) regret of a learning algorithm
after T iterations as:

REGT =
1

T

T∑
t=1

(U(xt,y
∗
t )− U(xt,yt)) . (2)

The goal of a coactive learning algorithm is to mini-
mize regret. In the rest of this paper, we assume a
linear model of utility U(x,y) = w>∗ φ(x,y), where
w∗ ∈ RN is an unknown vector. Here, φ(x,y) ∈ RN

represents the joint feature vector of context x and
object y. We assume that this vector is bounded, i.e,
∀x,y; ‖φ(x,y)‖`2 ≤ R. Note that true utility U and
weight vector w∗ are never revealed to the learning
algorithm. They are only used in their evaluation.

This paper focuses on coactive learning for ranking.
However, the model itself is more general and has
applications in machine translation, robotics, etc.

4. The Instability Problem

The Preference Perceptron (Shivaswamy & Joachims,
2012) is a simple algorithm for coactive learning. Nev-
ertheless, it can be shown to have tight regret bounds
when the user feedback has no noise. However, we
will show in the following subsection that it can fail
catastrophically in noisy environments.
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The Preference Perceptron (Algorithm 1) maintains a
weight vector wt which is typically initialized to 0. At
each time step t, the algorithm observes the context xt
and presents an object yt that maximizes w>t φ(xt,y)
over y ∈ Y . The algorithm then observes user feedback
ȳt and updates the weight vector wt in the direction
φ(xt, ȳt)− φ(xt,yt).

Theorem 1 (Shivaswamy & Joachims, 2012) The ex-
pected average regret of the preference perceptron can
be upper bounded, for any α ∈ (0, 1] and any w∗ as

E[REGT ] ≤ 1

αT

T∑
t=1

ξt +
2R‖w∗‖
α
√
T

. (3)

The above bound is tight in the noise-free case and
does not make any assumptions, as any user behavior
can be characterized by appropriate values of α and ξt.

In this paper, we focus on rankings of documents D =
{d1, d2, ..., dn} as outputs y ∈ Y . For such rankings, we
construct the feature vector φ(x,y) as the discounted
sum φ(x,y) =

∑n
i=1 γiφ(x,y(i)) of document feature

vectors φ(x, d), where y(i) is the i-th document in the
ranking. The γi are decreasing position discounts, such
that sorting by document utility U(x, d) = w>φ(x, d)
provides a ranking of maximum U(x,y) for a given w.

4.1. Instability: User Study on Search Engine

We implemented the Preference Perceptron on the full-
text search engine of arxiv.org, constructing feedback
rankings ȳt from yt by moving the clicked documents
to the top (more details in Section 7). Unfortunately,
the Preference Perceptron did not learn a good ranking
function in this online experiment, and Figure 1 shows
the comparison against a hand-tuned baseline using
Interleaving (Chapelle et al., 2012). The black line
shows that the Preference Perceptron (i.e., PrefP[top])
only barely improves over the baseline (a value of 1
would indicate equivalence).

Figure 2 gives some insight into this disappointing
performance. It shows that the learned rankings do
not stabilize and that the learning process oscillates.
In particular, even after thousands of updates, the top
10 documents of the same query before and after 100
update steps only overlap by 4 documents on average.

Figures 1 and 2 also show (in red) the behavior of the
algorithm we introduce in this paper, the Perturbed
Preference Perceptron for Ranking (3PR). Note that
it achieves substantial improvements over the baseline
and that it does not oscillate.

4.2. Instability: Illustrative Example

Why did the Preference Perceptron oscillate? Con-
sider the following toy problem, where the goal is to
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Figure 1. Results of the user study showing the ratio of
wins versus the hand-tuned baseline.
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Figure 2. Number of common results in the top 10 for the
same query using two different models that are 100 learning
iterations apart(i.e., wt, wt+100). Results are binned over
intervals of size 50 and averaged over 100 random queries.

learn rankings using the feature vector construction
from above. In this toy example, document utility
is independent of the context x and only document
d1 has utility U(x, d1) = 1, all others have utility
−1. Feature vectors φ(x, d) have 2 binary features
that exactly reflect utility (i.e., φ(x, d1) = [1, 0] while
∀i ∈ [2, n] : φ(x, di) = [0, 1]). Now let us consider the
following simple user model: Each iteration, users view
the current yt (i.e., documents ranked by w>t φ(xt, d)).
They examine each y(i) in order, click the first one they
deem to have utility 1, and then stop. However, users
being an imperfect judge of utility, make each +1/−1
judgment with only 80% accuracy. We construct the
feedback ranking ȳt from yt by swapping the clicked
document into rank 1.

Let us analyze the behavior of the Preference Per-
ceptron on this toy example. In fact, let us assume
that the algorithm is initialized with the weight vector
w1 = [1,−1], which correctly ranks d1 first. If the
user correctly clicks y(1), the Preference Perceptron
makes no change to wt. However, whenever the user
selects an incorrect y(i) below (for which there is a
∼20% chance), the first weight decreases and the sec-
ond weight increases. Eventually, the ranking will “flip”
and d1 will move to the last position. Even if the sys-
tem eventually recovers from this catastrophic failure,
the same sequence of events will lead to d1 being placed
at the bottom again. Thus, the system oscillates.

The gravity of the problem can be seen in the following
simulation results. For n = 10 documents and DCG
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discounting for γi (see Section 6), the average rank of
d1 within the first 1000 iterations of the Preference
Perceptron is 9.36 (1 is best, 10 is worst). In fact,
y(1) is in the worst position for most of the time steps,
since it takes a low-probability event of 0.29 to correct
the ranking, but a high-probability event of 0.2 almost
immediately flips it back. Note that “averaging” does
not fix this oscillation problem, since it is not a result
of unbiased noise. In fact, an Averaged Perceptron
(Collins, 2002) showed an average rank of 9.37.

5. Stable Coactive Learning

How can we prevent these oscillations to ensure conver-
gence and improve regret? The key problem in the toy
example from above is that the user feedback incurs
large slack ξt in (1) when d1 is in the top position –
even though it is perfectly α-informative without slack
in all other cases. We now develop the Perturbed Pref-
erence Perceptron to handle this bias in the feedback
and guarantee stability.

To motivate the algorithm, consider what happens if
we run the Preference Perceptron, but present the user
a perturbed ranking where, with 50% probability, we
swap the top two documents. Even for the optimal
weight vector w∗, note that feedback on the perturbed
ranking is now expected α-informative without slack
under the given user model. This stabilizes the learn-
ing process, since preferences now often reinforce w∗ –
namely whenever the relevant document d1 is at rank
two and the user clicks on it. Running the simulation
from Section 4.2 using the perturbed rankings greatly
improves the average rank of y(1) from 9.36 to 2.08.

5.1. Perturbed Preference Perceptron

Following the idea of using perturbation to combat feed-
back bias, Algorithm 2 defines the Perturbed Preference
Perceptron. It is analogous to the conventional Prefer-
ence Perceptron with two changes. First, the algorithm
accepts a subroutine Perturb(ŷt) for perturbing the
object ŷt = argmaxy∈Yw>t φ(xt,y). Second, since a
perturbed object yt is presented to the user, the user’s
preference feedback – and the subsequent update – is
relative to yt, not ŷt.

5.2. Theoretical Analysis

We now characterize the regret of the Perturbed Prefer-
ence Perceptron as a function of the perturbation strat-
egy. The following theorem bounds the expected regret
of the Perturbed Preference Perceptron in terms of two
quantities. First, consider expected α-informativeness
of the user feedback analogous to Eq. (1),

Algorithm 2 Perturbed Preference Perceptron.

Input: Perturb(· · · ), GetFeedback(· · · )
w1 ← 0 {Initialize weight vector}
for t = 1 to T do

Observe xt
Compute ŷt ← argmaxy∈Yw>t φ(xt,y)
yt ← Perturb(ŷt) {Perturb Object}
Present yt
Obtain feedback ȳt ← GetFeedback(yt)
Update: wt+1 ← wt + φ(xt, ȳt)− φ(xt,yt)

Eȳt,yt

[
w>∗ φ(xt, ȳt)

]
−Eyt

[
w>∗ φ(xt,yt)

]
(4)

≥ α
(
w>∗ φ(xt,y

∗
t )−Eyt

[
w>∗ φ(xt,yt)

])
− ξt.

Note that the feedback ȳt is relative to the perturbed
yt, and that expectation is taken over perturbations.

Second, consider affirmativeness w.r.t. a perturbed yt,

Eȳt,yt

[
w>t φ(xt, ȳt)

]
−Eyt

[
w>t φ(xt,yt)

]
.

Affirmativeness reflects the relationship between noise
in the user feedback and noise from perturbation rela-
tive to the current model wt. Positive affirmativeness
indicates that the user feedback typically confirms the
ordering based on the current wt, while negative affir-
mativeness indicates the opposite. Based on these two
quantities, we state the following regret bound.

Theorem 2 The expected average regret of Algo-
rithm 2 for a perturbation strategy satisfying the fol-
lowing bound on the average affirmativeness,

1

T

T∑
t=1

(
E
[
w>t φ(xt, ȳt)

]
−E

[
w>t φ(xt,yt)

])
≤ ∆, (5)

can be upper bounded as

E[REGT ] ≤ 1

αT

T∑
t=1

ξt +

√
4R2 + 2∆ ‖w∗‖

α
√
T

. (6)

All proofs are provided in the supplementary material.
Note that the average affirmativeness defined in (5) is
a quantity that can be estimated by the learning algo-
rithm, implying a dynamic strategy that determines
how to perturb. Note further that in the bound ∆
is always zero in the absence of perturbation, which
recovers the conventional Preference Perceptron and
its regret bound as a special case. The above bound
can be substantially tighter than that of the conven-
tional Preference Perceptron, since it allows trading-off
between ∆ and

∑
ξt. In the toy example from above

perturbation reduced
∑
ξt to zero at a modest increase

in ∆.
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We also state two corollaries that give bounds on the
regret w.r.t. an additive/multiplicative bound on the
amount of perturbation.

Corollary 3 The expected average regret of Algo-
rithm 2 for a perturbation strategy satisfying

1

T

T∑
t=1

(
w>t φ(xt, ŷt)−E

[
w>t φ(xt,yt)

])
≤ Ω, (7)

can be upper bounded as

E[REGT ] ≤ 1

αT

T∑
t=1

ξt +

√
4R2 + 2Ω ‖w∗‖

α
√
T

. (8)

Corollary 4 The expected average regret of Algo-
rithm 2 for a perturbation strategy satisfying

∀t : E
[
w>t φ(xt,yt)

]
≥ (1− β)w>t φ(xt, ŷt) (9)

for 0 ≤ β ≤ 1, can be upper bounded as

E[REGT ] ≤ 1

αT

T∑
t=1

ξt+
βR‖w∗‖

α
+

√
2(4−β2)R‖w∗‖

α
√
T

.

Corollary 3 follows immediately from Theorem 2, and
Corollary 4 follows the structure of the proof in (Raman
et al., 2012) for (unperturbed) coactive learning with
approximate inference.

The bounds presented above not only provide a the-
oretical sanity check for Algorithm 2, but also give
explicit guidelines for designing effective perturbation
strategies that we will exploit in Section 6.

6. Perturbed Preference Perceptron for
Ranking

Ranking is one of the most common learning tasks
for online systems, since it is the basis for search and
recommendation. These systems are ideally suited
for coactive learning, since they can easily sense user
interactions that provide (noisy) feedback. We now
develop perturbation and feedback strategies for the
Perturbed Preference Perceptron that ensure stable
learning of ranking functions.

For a perturbed ranking y, let ȳ be a feedback ranking
that is derived from interactions (e.g., clicks) in y. Our
goal is a perturbation and feedback strategy such that
ȳ fulfills Eq. (4) with large α and small ξ. Let us
consider some properties such a strategy should have.

First, it is desirable to perturb uniformly throughout
the ranking, so that any user experiences the same
amount of perturbation no matter how deep they ex-
plore. Second, we would like to make only local per-
turbations to minimally alter the ranking. Third, the

Algorithm 3 Perturbation and feedback for the Per-
turbed Preference Perceptron for Ranking (3PR).

Function FORMPAIRS()
With prob 0.5: return ({1, 2}, {3, 4}, {5, 6} · · · )
else: return ({1}, {2, 3}, {4, 5}, {6, 7} · · · )
Function PERTURB(ŷ, p)
y← ŷ {Initialize with top-scoring ranking}
Pairs← FORMPAIRS()
for i = 0 · · · len(Pairs) do
{j, j + 1} ← Pairs[i] {Get Pair}
With prob p:

swap(y[j],y[j+1]); swap(Pairs[i][0],Pairs[i][1])
return (y, Pairs)

Function GET-FEEDBACK(y, clicks, Pairs)
ȳ← y {Initialize with presented object}
for i = 0 · · · len(Pairs) do
{jupper, jlower} ← Pairs[i] {Get Pair}
if y[jlower] ∈ clicks AND y[jupper] /∈ clicks then

swap(ȳ[jupper], ȳ[jlower])
return ȳ

construction of the feedback ranking ȳ should be robust
to noisy clicks, limiting the increase in ξ in Eq. (4).

These desiderata naturally lead to the perturbation
and feedback strategy in Algorithm 3, which fol-
lows the FairPairs method proposed in (Radlinski &
Joachims, 2006). The top-scoring ranking ŷ (e.g.,
ŷ = [d1, d2, d3, d4, d5, d6, ...]) is split into adjacent
pairs of documents (e.g., [(d1, d2), (d3, d4), (d5, d6), ...]),
and each pair is flipped with probability p to
produce the perturbed ranking y (e.g., y =
[(d2, d1), (d3, d4), (d6, d5), ...]). Whenever the user
clicks on the bottom document of a pair, top and
bottom document are swapped to produce the feed-
back ranking ȳ (e.g., for clicks on {d1, d4, d6} in y, we
construct ȳ = [(d1, d2), (d4, d3), (d6, d5), ...]). We call
Algorithm 2 using the functions from Algorithm 3 the
Perturbed Preference Perceptron for Ranking (3PR).

We now establish regret bounds for the 3PR algorithm,
using the joint feature map φ(x,y) for queries x and
rankings y described in Section 4. In particular, we
use position-discounting factors γi = 1

log2(i+1) as in the

DCG metric (Manning et al., 2008).

Proposition 5 The 3PR with swap prob. p has regret:

≤
∑T
t=1 ξt
αT

+
p(1−γ2γ1)R‖w∗‖

α
+

√
2(4−p2(1−γ2γ1)

2)R‖w∗‖

α
√
T

.

On the one hand, the 3PR algorithm provides the first
exploration strategy with a regret bound for FairPair
feedback. On the other hand, the regret bound implies
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that the swapping of pairs does not need to necessarily
be “fair” (i.e., p = 0.5). For example, consider a dy-
namic swap strategy that, at iteration t, determines its
perturbation based on the cumulative affirmativeness
Rt =

∑t−1
i=1 w>i φ(xi, ȳi) − w>i φ(xi,yi) and the maxi-

mum perturbation Dt = w>t φ(xt, ŷt) − w>t φ(xt,y
′
t),

where y′t is the ranking obtained by swapping all pairs
in ŷt. Note that Dt is an apriori bound on the maxi-
mum affirmativeness of the user feedback at iteration
t. Based on these observable quantities, we propose
the following dynamic adaptation rule for the swap
probability with the following regret bound.

Proposition 6 For ∆ ≥ 0, dynamically setting the
swap prob. of 3PR to be pt≤max(0, ∆·t−Rt

Dt
) has regret:

≤ 1

αT

T∑
t=1

ξt+
‖w∗‖
α
√
T

√
4R2 + 2∆+(γ1−γ2)R

√
4R2+2∆

T
.

7. User Study on Search Engine

To investigate the real-world effectiveness of the 3PR
algorithm compared to the conventional Preference
Perceptron (PrefP), we performed a user study (al-
ready alluded to in Section 4.1) on the full-text search
engine of arxiv.org. Results were collected in two
subsequent runs, one for each method. We used a
query-document feature vector φ(x, d) of length 1000,
which included various query-dependent features (e.g.,
query-title match) and query-independent features (i.e.
the age of a document).

Users coming to the search engine were randomly as-
signed one of two groups with equal probability. For
users assigned to the learning group, we used the clicked
documents of their query to construct the feedback
rankings as described previously (i.e. move clicked
documents to top for PrefP, and paired feedback with
swap probability 0.5 for 3PR). For users assigned to
the evaluation group, the ranking induced by the cur-
rent weight vector was compared to a baseline ranking
that was generated with manually selected weights.
We employed Balanced Interleaving (Joachims, 2002;
Chapelle et al., 2012) for this comparison, which is a
paired and blind test for eliciting a preference between
two rankings. We record how often a user prefers a
learned ranking over the baseline (i.e. wins a pairwise
comparison). Both learning algorithms were initialized
to start with the weights of the baseline ranker.

Figure 1 shows the results of the experiment, plotting
the win/loss ratio of each learning method over the
baseline. While PrefP initially performs well, its win
ratio eventually hovers only slightly above 1. The 3PR
method, on the other hand, converges to a win-ratio
of 1.9, which is large (and highly significant according
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Figure 3. Average affirmativeness of 3PR in user study.

to a Binomial Sign Test) compared to the experiments
in (Chapelle et al., 2012). Finally, Figure 3 shows the
average affirmativeness ∆ from Theorem 2. It shows
that ∆ is positive and stabilizes, indicating that the
amount of perturbation was appropriate.

8. Experiments on Benchmark Data

To get more detailed insights into the empirical per-
formance of the proposed methods, we also conducted
offline experiments on benchmark datasets.

First, we use the Yahoo! learning to rank dataset
(Chapelle & Chang, 2011) (abbreviated Websearch),
which consists of roughly 28k queries and 650k doc-
uments (i.e., URLs). For each query-url pair in the
dataset, there is a joint feature vector φ(x, d) of 700
features and a relevance rating in the range 0-4. In
each iteration, the system is given a query and presents
a ranking. In total, the system was run for over 28k
iterations. All our results are averaged over 20 different
runs (by randomizing the query stream order).

Second, we simulate two news recommendation tasks,
using the RCV1 (Lewis et al., 2004) and the 20 News-
groups datasets (abbreviated News). The RCV1 corpus
contains over 800k documents that each belong to one
or more of 103 topics, while the News dataset contains
20k documents that each belong to one of 20 topics. We
used TFIDF features, with a total feature set of size 3k
for RCV1 and 1k for News1. In these experiments, we
simulated user interests by equating users with single
topics. The algorithms were run for 50K iterations for
RCV and 10K for News (by cycling through the data),
and the results are averaged over all users (i.e. topics).

We assume the following model of user interaction. The
user scans the ranking from the top down to the tenth
result and clicks on up to five results. To study the sta-
bility of the different algorithms, clicks are corrupted
by noise. For RCV1 and News, a user goes down the
ranking and clicks on relevant documents, but with η
chance of incorrectly assessing the relevance of a doc-
ument (η = 0.2). On the search dataset, the user’s
relevance assessment are corrupted by adding indepen-
dent Gaussian noise (σ = 1) to the true relevance of

1Feature selection as per the max. class χ2 metric similar
to (Lewis et al., 2004).
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Figure 4. Learning curves for all algorithms on Websearch (left), RCV1 (middle), and News (right).

each document; the user then clicks on the 5 documents
with highest (corrupted) relevance in the top 10.

8.1. What is the Generalization Performance
of the Perturbed Preference Perceptron?

First, let us compare the 3PR against alternative algo-
rithms, including the conventional Preference Percep-
tron where clicked documents are moved to the top of
the feedback ranking (PrefP[top]). We also consider a
variant of the conventional Preference Perceptron that
uses the same paired feedback as 3PR, but has swap
probability zero (PrefP[pair]).

To compare with a regularized batch learner, a rank-
ing SVM with move-to-top feedback was trained at
(10,100,1k,10k,20k) iterations using a setup similar to
(Shivaswamy & Joachims, 2012). Between training
steps, the current predictor is used to present rankings.
For this experiment, we retrospectively pick the best C
value (per run) and report the NDCG@5 corresponding
to that C (i.e., we are biasing in favor of the SVM).

As a (rough) upper bound, we consider a Structured
Perceptron (Collins, 2002) that is trained with the opti-
mal y∗ without added noise. This simulates clean and
exhaustive expert feedback, which is typically unob-
tainable in practice. As a lower bound, we report the
performance of uniformly random lists of documents.

The results for this experiment are shown in Figure 4.
It can be seen that the 3PR achieves a significantly
higher NDCG@5 compared to other online algorithms
PrefP[top] and PrefP[pair] at the end of the runs. In
fact, PrefP[top] fails catastrophically on two of the
datasets like in the toy example from Section 4.2.
PrefP[pair] is more stable, but shows similar deteri-
oration as well. An interesting extension could be the
combination of aggressive move-to-top feedback in early
iterations with more conservative 3PR updates later.

Due to the biased training data that violates the iid
model, the SVM performs poorly. We conjecture that
more frequent retraining would improve performance,
but be orders of magnitude more computationally ex-
pensive (especially with realistic model selection).

Table 1. NDCG@5 of presented and perturbed rankings
after maximum number of iterations.

Websearch RCV1 News
Presented y .717 ± .002 .286 ± .028 .386 ± .035
Predicted ŷ .723 ± .002 .291 ± .028 .397 ± .035

The Structured Perceptron learns faster than 3PR, but
despite receiving much stronger training data (optimal
y∗ without feedback noise) its eventual performance is
worse than 3PR on two tasks. This may be surprising
at first glance. However, it is known that Perceptron-
style algorithms tend to work less well on multiclass/
structured problems without good linear fit, and that
they can even degenerate (Lee et al., 2004; Chen &
Xiang, 2006). Intriguingly, the 3PR seems less affected
by this problem.

8.2. How does the Perturbed Ranking
Compare to the Optimal Prediction?

In the case of 3PR, the algorithm first computes the
argmax ranking ŷ but then presents the perturbed
ranking y. While the previous section showed the
NDCG@5 of the presented rankings y, Table 1 shows
the NDCG@5 for both y and ŷ. As expected, the
presented rankings are of slightly lower quality than ŷ
due to perturbation. However, this small loss in quality
leads to a big gain in the overall learning process in the
long run — as demonstrated by the poor performance
of PrefP [pair].

8.3. How much Perturbation is Needed?

While complete lack of perturbation leads to diver-
gence, it is unclear whether a swap probability of 0.5
is always optimal. Intuitively, we expect that with
low noise, smaller perturbation suffices to achieve high
performance, while at higher noise levels, perturbation
probabilities need to be higher to overcome the noise.

Figure 5 explores the effect of different perturbation
rates p in Alg. 3 on the performance of the 3PR. It ap-
pears that a swap probability of more than 0.5 usually
hurts. While 0.5 typically performs reasonably well,
0.25 produces the best performance on RCV1.
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Figure 5. NDCG@5 of the 3PR algorithm for different swap probabilities and the dynamically adapted swap probability
on Websearch (left), RCV1 (middle), and News (right).
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Figure 6. Change in average swap probability of the dy-
namic method with ∆ = 0 low and high feedback noise.

8.4. Can we Automatically Adapt the
Perturbation Rate?

Ideally, we would like to automatically select an appro-
priate swap probability. Note that this does not need
to be a single fixed number, but can change over the
learning run. Proposition 6 defined such a perturbation
strategy that accounts for the current affirmativeness
and adjusts the swap probability to optimize the re-
gret bound in Theorem 2. The results of this dynamic
strategy using ∆ = 0 are also included in Figure 5. As
we see from the figure, the method is able to adjust
the swap rates to achieve performance among the best.

Figure 6 shows how the swap probability chosen by
the dynamic strategy varies. It can be observed that
the swap probability first increases and then eventually
decreases to exploit more often. When changing the
noisiness of the user feedback, we find that the strategy
automatically accounts for larger noise by increasing
the swap rate relative to the low noise setting.

8.5. How does Noise Affect the Perturbed
Preference Perceptron?

Our motivation for the 3PR algorithm was the inability
of PrefP[top] to handle the noise in the feedback it en-
countered in the user study. Therefore, all benchmark
experiments we reported included feedback noise as
described in the beginning of Section 8. But how does
the 3PR algorithm perform without added noise?
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Figure 7. Performance of PrefP[top], PrefP[pair] and 3PR
at the max. no. of iterations with and w/o feedback noise.

Figure 7 compares the performance of 3PR to that
of PrefP[top] and PrefP[pair] with and without user
feedback noise. Even with no feedback noise, 3PR
outperforms PrefP[top] and is at least comparable to
PrefP[pair]. Furthermore, the performance of 3PR de-
clines much less when noise is introduced, as compared
to the other algorithms.

Note that “no noise” is somewhat of a misnomer. While
we did not add any noise, even the expert provided
ratings probably contain some amount of noise. More-
over, any feedback that cannot be explained by a linear
model appears as noise to the algorithm, which is likely
to be a substantial source of noise in any real-world
application. The 3PR algorithm handles this gracefully.

9. Conclusions

We presented the Perturbed Preference Perceptron, an
online algorithm for learning from biased and noisy
preferences in the coactive learning model. Unlike ex-
isting methods, the algorithm is stable and does not
oscillate. The key idea lies in a controlled perturba-
tion of the prediction, and we give theoretical regret
bounds that characterize the behavior of the new al-
gorithm. Focusing on learning to rank, we develop
perturbation strategies for ranking and show that the
new algorithm substantially outperforms existing meth-
ods in an online user study, as well as in benchmark
experiments. This work was supported in part by NSF
Awards IIS-0905467, IIS-1142251, and IIS-1247696.
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