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ABSTRACT

Many learning algorithms generate highly complex models
that are difficult for a human to interpret, debug, and ex-
tend. In this paper, we address this challenge by proposing a
new learning paradigm called correctable learning, where the
learning algorithm receives external feedback during learn-
ing about which data examples are incorrectly learned. We
define a set of metrics which measure the correctability and
performance of a learning algorithm. We then propose a sim-
ple and efficient correctable learning algorithm which learns
local models for different regions of the data space. Given an
incorrect example, our method samples data in the neigh-
borhood of that example and learns a new, more correct
local model over that region. Our experiments over multi-
ple regression, classification and ranking datasets show that
our correctable learning algorithm offers significant improve-
ments over state-of-the-art techniques. Our method can be
extended to correctable ranking algorithms, in particular for
Web search.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]|: Learning; H.3.3 [Information

Systems and Retrieval]: Search Process

General Terms

Algorithms, Experimentation, Theory

Keywords

Classification, Regression, Correctable learning

1. INTRODUCTION

Large machine learning systems have become increasingly
common across a variety of tasks including Web Search, Ad-
vertising, Social Networking, Collaborative Filtering, and
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Medical systems. For example, ensemble methods such as
boosted trees [12] and random forests [6] are widely used
for these tasks due to their competitive performance, see for
example [19, 7]. Despite their success, these algorithms have
several drawbacks:

e Training and testing is slow,
The learned models are difficult to interpret,
The models are not well-suited for parallelization,
It is difficult to incorporate feedback without retrain-
ing.
Consequently, debugging and correcting these models can
be challenging, and existing algorithms are not well-suited
to these tasks.

A particularly poignant example of the need for correctabil-
ity stems from Web Search. Commercial search engines are
trained over millions of example queries and corresponding
result URLs. The training and debugging process can be
time-consuming and tedious. When a search engine user
reports that a query has failed, meaning that the returned
URLs do not fulfill the intent of the query, it can be diffi-
cult to incorporate the fix for that particular query into the
training of the ranking model. Namely, feedback on a single
query has very little effect when considered among a pool
of millions of training examples, so even if upon retraining
of the model the feedback is added to the training set, it is
unlikely to change the learned model at all. Furthermore,
in a complex model, determining why the query failed is
almost impossible. The models are extremely complicated,
non-linear, and non-intuitive to a human assigned the task
of debugging a failing query. How can we learn a model that
is easier to correct, and what are the desired properties of
such a model?

In response to these challenges, we formalize a new learn-
ing paradigm called correctable learning. Our focus is three-
fold: (1) we focus on learning in the presence of feedback,
(2) we focus on addressing the poor-performing regions high-
lighted by this feedback by “learning from our mistakes”, and
(3) we develop criteria and metrics with which to evaluate
the correctability of a model. In addition, given an example
on which the current model makes a mistake, denoted by
MSTK, we aim to fix the MSTK without hurting perfor-
mance on other examples.

Our approach is based on localizing the effect of a train-
ing point, such that a training point will only affect the
performance of its local model and points within that neigh-
borhood. Although previous research has studied localized



learning [22], it has not addressed the issue of correctability.
Our method first partitions the data-space into different re-
gions, and then learns separate local models for each region.
The key insight is that there are relatively few points that are
“close” to the decision boundary defined by any local model,
as compared to a single global model, so that changing the
boundary of a local model is likely to have less impact on
other points than changing the boundary of a global model.
Leveraging this observation, we achieve correctability by in-
crementally adding MSTK points to our training data as
they are available. We also explore adding neighbors of the
MSTK points, which can yield additional performance im-
provements and robustness. We show theoretically why a
non-uniform sample of training points can be beneficial and
lead to improved performance.

We perform experiments on multiple classification, regres-
sion and ranking datasets, to show the ability of our algo-
rithm to correct and learn from mistakes. Our method is ro-
bust and comprehensively outperforms the correctability of
existing methods. Furthermore, the method achieves gains
in performance while using less training data than existing
methods, resulting in large savings in labeling costs. We
also study the specific case of using linear models in our
correctable learning framework, in part because the models
produced are far easier to interpret than models produced
by existing ensemble/non-linear methods, and in part due to
their fast training and testing speeds. Finally, we show that
a linear, correctable model can nearly achieve the same per-
formance as far more complicated non-linear models, such
as RBF-Kernel SVMs or Boosted Trees, while being signifi-
cantly faster to train.

2. RELATED WORK

Our work relates to several areas of machine learning.

Active Learning: Unlike passive supervised learning meth-

ods, active learning techniques identify which data points to
label and then proceed by learning on those points. The
goal of active learning is to not only learn a good model,
but also to use as few labeled examples as possible to do so.
A common technique used to determine the next point to
be labeled is to choose the point with the most uncertainty
in the label [11]. While correctable learning also requires
learning incrementally as points are added, there is no con-
trol over which point is received next. The feedback points
cannot be chosen in advance; they are simply provided when
feedback is received.

Online Learning: Another related problem is online
learning [17, 8], where examples are revealed one at a time.
Here too the goal is to learn incrementally and as efficiently
as possible, which is typically achieved with simple updates
to the learned model. However, one key difference between
(stochastic) online and correctable learning is that online
learning methods typically assume that the points in the
sequence are drawn from the same underlying distribution,
while correctable methods cannot make this assumption since
the sequence of mistake points need not match the underly-
ing distribution. A second key difference is that most online
learning methods do not store previously seen data and are
prone to making mistakes on previously seen points after a
few iterations of learning, while not necessarily predicting
the correct label for the newer points. In the correctable
learning framework, we neither assume an underlying distri-
bution, nor allow degradation of performance on previously

seen points and target generalization (unlike adversarial on-
line learning), thus making the problem of correctable learn-
ing far more challenging than online learning as well.

Localized Learning: Our approach is also motivated by
localized learning, a broad area that refers to methods that
explicitly consider the local neighborhood of a given point
when predicting its label. This idea has been successfully
applied in several forms in conjunction with various under-
lying learning techniques [23, 20]. While many approaches
over the years [10] have used this principle, recent work on
localizing linear methods such as SVMs [9, 16] have achieved
performance comparable to more complex methods while re-
taining the simplicity and efficiency of linear methods. Fur-
thermore, [22] have shown that consistent classifiers must be
localized. Lazy Learning [1, 13] is an extreme form of local-
ized learning, where there is no a priori training. However at
test time, a classification rule is quickly determined based
on the region around the test point. In our approach, we
will use ideas similar to lazy learning, since learning meth-
ods that use a single, monolithic model tend to be difficult
to correct, as we show.

We emphasize here that our main focus is to introduce
and define the problem of correctable learning, which to the
best of our knowledge has not been studied before, and pro-
pose ways to measure correctability of a learned model. Our
proposed algorithm belongs to the family of local learning
algorithms; we introduce it here in part to study its cor-
rectability properties and demonstrate the effectiveness of
our correctability measures.

3. CORRECTABLE LEARNING

Today’s large-scale learning systems use complex learning
algorithms and vast amounts of training data to maximize
performance. However, the models learned typically use a
complicated mapping from numerous parameters and fea-
tures to outputs. Hence, aside from retraining an entirely
new model, it is almost impossible to modify the learned
models in an intuitive, straight-forward manner; this makes
it very difficult to leverage human knowledge, such as that of
a domain expert, in the learning of such systems and limits
their improvement.

T Held-out Test set

t: {0<t<n} Time

K ={ki1,..,kn}  Random Stream of MSTKs

ki = (zi,y]) it" Mistake, i.e at time 1.

T; Feature representation of k;

yi True Label of k;

T Mistake Threshold

My Initial model learned

M; {i>1} Model after i*" MSTK seen

yi = Mi—1(x;) Predicted (Wrong) Label for ith
MSTK (i.e., just before seeing it)

Aly,y") €R Loss function

Pr(M) Performance of model M on test set
i€ D yer AM(2),y")

Table 1: Notation Used

This is particularly problematic when we would like to
correct mistakes that the system makes upon deployment
or testing. For example, consider the following real-world



scenario: a senior administrator of a large search engine dis-
covers one morning that the ranking results for an important
query (e.g., british airlines) are of poor quality. Due to the
scale of the search engine, there is no easy, principled way
to fix this query. While we could try using a whitelist (list
of known important results for such queries), doing so would
not generalize. Learning a new model typically would take
hours, if not days, which would be too long and may not
even fix the issue. Even if it did, retraining may very likely
adversely impact the ranking quality of another important
query, say superbowl sunday. In addition, the administrator
would hope that fixing the original mistake on british air-
lines would result in improvements to most similar queries
with mistakes, fixing say delta airlines if it also was of poor
quality.

Such a scenario motivates the need for what we refer to as
Correctable Learning. To the best of our knowledge, this
problem has not been previously identified or studied in the
literature. We believe this is a key problem that could be of
significant interest to the learning community, and especially
the IR community, in particular due to its potential for high
impact on today’s large-scale learning systems.

More formally, we define a mistake point and thus cor-
rectable learning as follows.

DEFINITION 1. Given learned model M, we define point
(z,y") to be a mistake point (MSTK), where x is the fea-
ture vector and y* is the true label, iff A(y,y*) > 7, where
M(x) =y, y is the predicted label, A is the loss function,
and T is a pre-defined “error” threshold.

Note that for binary classification A(y,y*) is the 0-1 loss
function with 7 = 1, for regression we use the Lo loss func-
tion, while for ranking we use 1 — NDCG@3. Our notation
is detailed in Table 1. Def 1 essentially says a MSTK is a
point that the model performs poorly on, where 7 quantifies
how poorly.

DEFINITION 2. Given the current learned model M and a
MSTK point k = (zk,ys), we define correctable learning
to be the learning of a new model M’ (via modification of
model M) such that the following hold:

e MSTK corrected: A(M'(zx),y;) <.

e Stability maintained: M'(z) = M(z) is guaranteed
for a previously known (large) fraction of the training
samples, and also for a known (large) fraction of the
already observed test samples.

e Similar MSTKs fixed: Empirical risk of M’ on test
samples in the neighborhood of xy is reduced.

e Similar complexity: Model complezity increase s
bounded by a small (pre-determined) amount.

As illustrated in the search engine example, only when all
of the conditions are met can we be satisfied with the cor-
rectability of the algorithm®. Given such an algorithm and a
stream of MSTKs, we can hope to improve the performance
of the learned system over time, without having to retrain a
new model from scratch every time a MSTK is received.

4. A CORRECTABLE LEARNING ALGO-
RITHM

Tt may not be possible to satisfy all of the conditions for
every MSTK point. However, a good correctable learning
algorithm should do so for most MSTK points.
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Figure 1: Left: Classification boundaries using one
classifier. Right: Two separate classifiers: one above
the x-axis, the other below. The gray diamond is a
MSTK. Solid lines represent old boundaries; dashed
lines are the new ones.

We would like an algorithm that, given a MSTK point,
updates the current model in a simple manner while achiev-
ing the conditions required for correctability. A simple, ini-
tial response is to use an existing algorithm and add MSTK
points to the training data as they are received in an online-
learning fashion. However, this approach may not satisfy
the first and second conditions of correctability, i.e., it may
not be able to correct the MSTK itself and may adversely
impact the performance of other points.

Consider the left pane of Fig. 1. The solid line represents
the decision boundary of a linear classifier for the two-class
classification problem (red stars and green circles). Now con-
sider receiving feedback: let the gray diamond be a MSTK
point that is improperly classified as a red star. We add
the point to the training data, yet even upon retraining (the
new classification boundary is denoted by the dashed line)
the corresponding change in the decision boundary is unable
to correct the MSTK.

This is a common problem for existing methods, due to
the fact that the learned model is designed for use on all
data-points. Hence adding a MSTK point may change the
model, but may (1) not be enough to correct the point (since
there are a lot of other points influencing the model as well),
or (2) cause performance on other points to drop (if there are
many points close to the decision boundary, then changing
the boundary can impact performance). Furthermore, the
distribution of the MSTK points may not match that of the
underlying data, and thus training on this data will likely
worsen the performance of the learned model.

Now imagine if in the above example we had instead used
two separate classifiers, one each for above and below the
z-axis (as shown in the right of Fig. 1). The initial bound-
aries are denoted by the solid lines. Adding the MSTK point
(gray diamond) to the training set for the top classifier ad-
justs the boundary and corrects the mistake, as indicated by
the updated decision boundary (dashed line). This leads to
the following key observation: Using disjoint models for dif-
ferent regions of the data space can overcome the two afore-
mentioned problems, which affect current methods. Having
different models for each region reduces the number of points
affecting each decision boundary (thus allowing for correc-
tion of a point), while also reducing the number of points



close to any boundary (hence reducing the risk of worsening
the performance of other points near the boundary).

Algorithm 1 Correctable Learning Framework.
Notation: D: Training Data,
N: No. Regions,
L: Learning Method,
F:D—{l,.,N}: Region Function,
{My,...,Mn} : Local Models,
D; = {(z,y)|z € D,F(z) = j} : Local Training Data
TRAINING:
for j =1to N do

Output: M; = Trainz (D;)

TESTING:

Input: Datapoint x
Output: Testr(Mp(,) , )

CORRECTION:

Input: MSTK k = (z,vy)

Dp(z) = Dr@) U{(z,y)}
Update: Mp(,) = Traing (Dp(s)).

In response, we propose a localized-learning-based algo-
rithm LocCL, detailed in Algorithm 1. First, we precom-
pute a good region function, which partitions the data-space
into N regions?. For instance, this can be done using any
clustering algorithm, where the regions are given by the clus-
ters. Next, we train separate models over each region, which
we call local models, using an existing learning algorithm L3.
Testing returns the predicted label of a given point using the
model for the region in which the point belongs. To achieve
correctability, we add the MSTK point x to the training set
of the region in which it belongs and update that local model
using the modified training set (as done in online learning).

If we have some unlabeled data, we can extend the correc-
tion step of our algorithm, by adding points similar* to the
MSTK point along with the MSTK. In other words, we first
find ¢ unlabeled neighbors of the MSTK, which belong to
the same region as the MSTK (where ¢ is a parameter). Af-
ter requesting labels for them, we add them with the MSTK
to the training set (as in active learning). Adding these
neighboring points has two advantages:

1. Correction: Adding more points similar to k effectively
increases the weight of x in the training set, enabling
correction of z.

2. Robustness: If a point was wrongly labeled as a MSTK
(noisy feedback) or is an outlier, then adding points
close to k adds robustness to the method®.

Note that while the proposed algorithmic framework is
simple, it is a step towards obtaining an efficient algorithm

2In our experiments, this is computed only once at the start.
However this can be very easily extended to be a dynamic
partitioning which changes as more data is received or de-
pends on the task as done in [3, 18].

SWe assume that Trainz (D) returns a model trained on
dataset D; Testr (M, x) returns the predicted label for test
point x using model M. We refer to L as the Base Learn-
ing Method.

4Similarity can be measured for example by Euclidean close-
ness of the feature vectors.

5While the definition of correctable learning assumed no
noise, this trick allows us to counter any noise in the MSTKs.

for this new learning paradigm. We also note that since
this framework relates closely to importance weighting, there
may exist alternate approaches to this problem as well.

Benefits of Method: In addition to correctability, our
proposed method has the following advantages:

e Training is faster since each training set contains
fewer elements. Thus for example with IV regions, an
order d polynomial-time algorithm roughly achieves a
speed-up factor of N¢ with parallelization and N¢~*
without it.

e Parallelization is easy since training each local model
is an independent process. This is especially useful for
methods that are inherently hard to parallelize.

e Labeling cost savings are large since like active
learning, desired performance can be achieved using
much less labeled data.

e Flexibility is inherent since local models are inde-
pendent; this allows for different feature sets to be used
in different parts of the data space. This is particularly
desirable for a search engine, where different queries
may require different features.

Further, our experiments show that using linear meth-
ods for learning can result in more interpretable models and
achieve comparable performance to ensemble methods while
improving training times. Furthermore, due to the parti-
tioning of the data, performance in any region depends only
a single model, thus allowing for a better understanding of
why we perform poorly over a region, thus making it easier
to fix. However, one should refrain from having too many re-
gions which will result in excess model complexity and over
fitting. Overfitting can be controlled (to an extent), using
the validation set. Additionally having a good partitioning
of the data can greatly help avoid overfitting. For further
robustness, smoothness of models across regions could help.

4.1 Learning Theoretic Justification

After multiple iterations of receiving MSTKs as feedback
and adding them to the training data, the training distri-
bution will no longer match that of the test data. Instead
it will be biased toward regions with more mistakes i.e.,
regions of low performance will occupy a higher fraction of
the training data, and similarly, regions of high performance
will have contributed fewer MSTKs to the training data. We
justify why such a biased sample can lead to better perfor-
mance as compared to an unbiased sample of the same size,
using arguments from statistical learning theory.

Consider the case with just two regions, R and Ra, with
equal probability mass and hence the same number of points
in an unbiased sample. Suppose the initial size of the train-
ing set is 25 (S points from each region) and we add S’ = pS
new training points. Let this new set be a biased sample
with s1 = @S’ (0 < @ < 1) points from Ry and sz = (1—a)S’
points from Rs. As described earlier, we train separately
on both regions to classify points belonging to a region.
Since our method allows different models to be used in dif-
ferent regions, let the local model for R; belong to family
H, and correspondingly H> to R». Further, let the Vapnik-
Chervonenkis (VC) dimension [5] for R: and Rz be di and
ds for their respective families, with d2 = vd;.

A well-known fact from learning theory [2] is that the
gap between the empirical error and true error for a family

of models is roughly proportional to either \/g (when the



best model from the family has non-zero true error) or g
(when the best model has near-zero true error), where s is
the training set size and d is the VC-dimension. Assuming
the former, in the above example we derive the error rate

for R as roughly sd+151 and for R2 as & 51252.
Thus, the overall error rate is approximately:
E =p/2% 51131 +B/2 x ;j;z (1)
_ BVdi 1
- 2\/§1 * (\/1+pa + \/H—p&—a))’ (2)

where 3 is the common proportionality constant. It is not
hard to see that the minimum of this function is not the
unbiased sample (with a=0.5), but rather a bias towards
the region with higher complexity. Our algorithm uses a
similarly biased sample since more MSTK points come from
the region with higher error which in this case is the one
with higher complexity.

Similarly, for the case when true error is nearly zero, we
obtain the optimal « as ;*7’:17). For large enough p this
leads to the same distribution obtained by examples propor-
tional to the initial error rate of the regions; our algorithm
performs in this manner, by eventually having a training
sample distribution that is proportional to the initial error
rate of the various regions. Even if the MSTKs are sam-
pled non-uniformly, under rather weak assumptions, it can
be shown that the eventual training distribution of the al-
gorithm lies closer to the biased optimal distribution rather
than the unbiased distribution. Therefore this bias in the
training sample helps our algorithm improve the overall er-
ror rate. Additionally, due to this decrease in the error rate,
the number of MSTKs will likely decrease. Further, as per
the algorithm, the addition of a MSTK can affect the predic-
tions of only a fraction of the data, thus providing stability,
while not drastically changing the model complexity.

5. MEASURING CORRECTABILITY

A key contribution of our work is a set of metrics with
which to measure the correctability of a learning algorithm.
In this section, we describe our three new metrics for cor-
rectability.

METRIC 1. Average Correction Rate (ACR) is de-
fined as the average change in error of a MSTK after correct-

ing it: ACR=L1%"" (A(Mifl(xi)a yi ) — A(Mi(zq), yf)>.

METRIC 2. Average Performance Instability (API)
is defined as the average drop in test-set performance, i.e.,
API = W Yiew (PT(Mifl) - PT(Mi))7 where W = {i :
PT(Mz) < PT(MZ'_l)}.

METRIC 3. Overall Performance Gain (OPG) is de-
fined as the overall increase in test-set performance over the

correction process, i.e., OPG = %(PT(MO) — PT(Mn)).

These metrics are used to evaluate the following three key
aspects required for correctable learning:

e Correct the MSTK: The ACR measures how of-
ten the learning method corrects a MSTK. A higher
value indicates the ability of the method to easily fix
MSTKs.

e Do not hurt others: As we do not want performance
to worsen elsewhere, we use the API metric to measure
any decrease in test-set performance. A lower value
indicates the method is less likely to negatively impact
performance of others.

e Learn from the MSTK: As we eventually would like
to learn from the MSTK and correct other similar er-
rors, we use the OPG to measure the improvement in
performance over the duration of the correction pro-
cess. A higher value indicates better learning from the
MSTKs.

Note that the definitions for these metrics are not task
dependent and are applicable across multiple learning tasks,
such as ranking, binary and multi-class classification, and
regression.

6. EXPERIMENTS

In this section, we employ our correctability metrics to
evaluate the correctability of different learning methods ver-
sus our proposed LocCL algorithm. We also evaluate the
performance of the algorithms across several datasets (in
terms of accuracy, RMSE, or NDCG). We study correctabil-
ity across three different learning tasks: binary classification,
regression and ranking. We also determine the robustness
of our method against different baseline learning methods
and various settings of bias within the incoming stream of
MSTKs.

Experimental Setting: To evaluate correctability of
MSTKs in a fair and realistic setting, we divide each dataset
into four parts:

e Start-Train (STr): Data for training the initial models
(at t =0).
e MSTK-Pool (MP1): Data from which MSTKs and its
(unlabeled) neighbors are drawn.
e Validation (Val): Data for parameter validation.
e Test (Tes) : Held-out data used for evaluation.
This split is performed randomly so that each part is a ran-
dom sample. For the ranking datasets though, we used the
provided validation and test sets, and instead randomly split
the train set into the STr and MPI sets.

We first train a base learning model on the STr set. Next,
we iteratively draw a MSTK from the MPI set (at random)
and call the correction routine of the algorithm. Among
all possible MSTKSs in the current MSTK pool, we choose
one at random (unless otherwise mentioned). Note that the
set of MSTKs depends on the current classifier, and hence
this set will vary for the different methods. This process is
repeated until the total number of labeled points used for
training reaches the predetermined budget (or there are no
more MSTKs found).

We experimented on multiple standard datasets for these
tasks, whose statistics are given in Table 2. For classifica-
tion, we chose multiple handwriting recognition datasets due
to the natural match between classification of handwriting
and correctable learning, since a human can easily recognize
classification errors and provide feedback to the system. We
performed binary classification on these datasets by arbitrar-
ily splitting the true labels into positive and negative sets.
For binary classification, we consider all misclassifications as
possible MSTKs.

We report correctability performance using the three met-
rics proposed in Section 5 and also report performance on the



Dataset | Description Task #Feat | [STr| | |Val| | [MP]| | |Tes| | Budget
MNIST | Digit-Recognition Classification | 784 2400 | 12000 | 45600 | 10000 | 5960
USPS Digit-Recognition Classification | 256 210 465 3975 4650 | 690
OptDig Digit-Recognition Classification | 64 172 383 3440 1800 | 400
Letter Letter-Recognition Classification | 16 800 2000 | 15200 | 2000 | 1800
Cal Property Price Prediction Regression 8 370 1860 18200 | 2065 | 800
Park Parkinson Score Prediction | Regression 26 230 590 4490 590 500
MQO7 LETOR4-Million Query 07 | Ranking 46 50 339 967 336 300
MQO08 LETOR4-Million Query 08 | Ranking 46 50 157 421 156 200
YLTR1 Yahoo LTR Set 1 Ranking 519 200 2994 | 19744 | 6983 | 320
YLTR2 Yahoo LTR Set 2 Ranking 596 50 1266 | 1216 3798 | 150
Table 2: Datasets Used in experiments
Data Existing Methods - Baseline LocCL
Base Method ACR API OPG Perf | NoCL || ACR API OPG Perf NoCL
Perceptron 87.50 5.13 7.40 82.80 | 79.73 81.64 0.28 4.25 89.52 86.44
MNIST | Linear-SVM (LSVM) | 32.45 0.138 -0.57  85.68 | 86.75 79.56  0.027  1.87 95.63 94.36
Kernel-SVM - - - 96.20 | - 99.1*% 0.024 3.50 97.73* | 96.10
Boost-Tree - - - 96.63 | -
Perceptron 87.50 248 9.20 80.20 | 79.58 83.80 0.25 7.31 90.65 86.15
USPS Linear-SVM (LSVM) | 55.60 0.448 0.45 82.92 | 85.22 88.17 0.140 4.43 95.53 94.25
Kernel-SVM - - - 95.28 | - 97.9% 0.130 7.23 96.26* | 92.51
Boost-Tree - - - 94.99 | -
Perceptron 89.80 1.63  4.47 79.65 | 79.30 90.50 0.69 2.46 92.42 87.70
OptDig Linear-SVM (LSVM) | 57.14 0.528 -1.00  84.70 | 86.03 76.34 0.220 1.95 94.33 91.99
Kernel-SVM - - - 96.33 | - 79.40 0.240 4.79 96.39 | 93.43
Boost-Tree - - - 96.04 | -
Perceptron 81.90 212 4.2 64.95 | 66.27 82.10 2.04 -0.80  67.70 71.00
Letter Linear-SVM (LSVM) | 29.30 0.575 -3.01  69.41 | 71.42 66.60 0.189  3.25 82.12 82.06
Kernel-SVM - - - 90.41 | - 98.8% 0.110 10.27 94.58* | 88.25
Boost-Tree - - - 92.67 | -

Table 3: Correctability Performance for different existing classification methods and their corresponding
LocCL method (with that method as the base learning methods). Perf refers to the test-set accuracy. NoCL
indicates performance on an unbiased dataset, (i.e., a dataset created by uniform sampling, not by the
addition of MSTKSs). The Kernel and Boost-Tree Perf values refer to classification accuracy when trained
just once on an unbiased sample of the data (with size equal to the budget). Bold denotes the best value, *
denotes statistical significance over best baseline (only applicable for the Perf and ACR metrics.).

task (i.e., Accuracy/RMSE/NDCG@3) denoted by Perf®.
We choose parameters using the validation set. To partition
the data-space, as required by our method, we used the K-
Means-++ algorithm [4] (k = 207). In the correction step
of our method we add only the MSTK point to obtain a
new model (though we study the effect of adding neighbors
later). Results reported are an average across four indepen-

dent runs®.

6.1 Correctability of Existing Methods

First we study how existing learning methods perform
on the task of correctable learning for the task of classifi-
cation. For classification, we used linear SVMs® [21], two

S Accuracy, ACR and OPG are reported as percentages.

"k = 20 was chosen arbitrarily, though k& = 10 produced
similar results. For OptDig we used kK = 10 as k = 20
produced many empty clusters.

8We do not report the variance in the numbers for brevity,
but found them to be small.

“http: //svmlight.joachims.org/svm_perf.html

non-linear methods: Kernel SVMs and Boosted Trees [12]
(representative of supervised learning) and the perceptron
(representative of online learning). Since we want to learn
from the MSTKSs, the simplest correction step is retraining
on all given training data (including the incoming MSTK
points). We then computed the different correctability met-
rics, as shown in Table 3.

As shown by the OPG measure, on many of the datasets
performance of the existing methods actually decreases over
the duration of this correctability process. In particular,
for the linear SVM we find that the correction rate for the
various datasets is low — on average less than half of the
MSTKs are corrected. Furthermore, we observe that for all
datasets, performance of the linear SVM after the correction
process (shown in the Perf column) is worse than using an
unbiased sample of the dataset of the same size (shown in the
NoCl column). Note that the results in the Perf and NoCl
columns are on the same test set. The poor performance of
these methods under correction shows that they are not well-
suited to learn from such an adversarial data distribution,
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Figure 2: Change in (MNIST) test-set accuracy on adding mistakes for a) Baseline; b) LocCL-LSVM ; c¢)

LocCL-Kernel

which is created due to the addition of MSTKs.

We find that the perceptron exhibits slightly better cor-
rectability, where the method is able to improve overall per-
formance, and achieve high correction and low volatility.
However, although the perceptron has high OPG values, it
still performs poorly overall and is significantly worse than
the Linear SVM in terms of overall performance. While it
achieves a high correction rate, it does so by overcompensat-
ing for the MSTKs, and hence performs poorly on the rest
of the data. This is clearly seen via the large API values,
which indicate that the performance is volatile and tends to
oscillate. This holds true even for Linear SVMs (albeit on
a smaller scale) as seen in the left panel of Figure 2. This
overcompensation is the primary reason why online learning
methods are unsuitable for this correctable learning task.

We found the use of Kernel SVMs or ensemble methods
(such as boosted trees) for correctability to be infeasible
due to the very large computational overhead incurred by
the constant retraining of models as MSTKs are added (even
for the small datasets). Thus the correctability metrics
are missing for them. This is the main reason why more
complex methods, such as mixture-of-experts or nearest-
neighbor based methods, are not suitable for this task (and
hence not compared against). While there exists significant
literature from the classification domain regarding different
localized learning algorithms, our focus is on studying a sim-
ple efficient approach to solve this problem, while also being
general enough to apply across other tasks such as ranking
and regression. Furthermore there is no reason to believe
that these methods will correct MSTKs efficiently. Hence
we restrict our baselines to those mentioned above.

6.2 Correctability of LocCL

To overcome the problem of learning from a biased dis-
tribution, we use our localized correctable learning method
(LocCL) which benefits from such a biased distribution, as
justified theoretically in Section 4.1. We experimented with
using different base-learning methods: Linear SVMs, Per-
ceptron and Kernel SVMs for classification.

As seen in Table 3, the proposed method LocCL performs
significantly better on the correction metrics as compared
to the corresponding base-learning method. In particular,
LocCL-LSVM outperforms the Linear SVMs on all correc-
tion metrics for all datasets, indicating that it is not only
more stable, but also better at correcting MSTKs while im-
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proving overall performance. In fact for three datasets, we
find our method is able to significantly outperform compu-
tationally more intensive methods, like Kernel SVMs and
Boosted Trees. Furthermore, our method has complexity
similar to Linear-SVMs'%(since the training sets for each
SVM is much smaller than the original set) and the added
advantage of being parallelizable. Given that Perf is better
than NoCL for all cases, it is apparent that mistake-based
learning provides significant advantages in the LocCL frame-
work.

°Tn most cases we found that the LocCL-LSVM method
to be significantly (order of magnitude) faster than Kernel-
SVMs or boosting without parallelization.
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Data Linear Regression LocCL
ACR API OPG Perf | NoCL || ACR API OPG Perf NoCL
Cal 8.2e8 56.2 -3.6e3  T.ded | 7.1le4 8.3e8 180.3 8.1e3 6.9e4* | 6.9e4

8.6e-3 -0.036 10.02 | 9.91

149.1* 1.9e¢-2 1.54  8.50* 9.17

Table 6: Correctability performance of LocCL for the regression datasets with Perf referring to RMSE error

(similar to Table 3).

Bias ACR API OPG Perf
No bias 79.56  0.0274 1.87 95.63
Digit bias 79.88  0.0283 1.86 95.62
Coarse Cluster bias | 79.91  0.0283 2.08 95.84
Finer Cluster bias 80.54  0.0285 2.09 95.85

Table 4: Correctability after adding bias in MSTKs

Bias ACR API OPG Perf
Only MSTK 72.85 0.0261 1.36 95.12
MSTK + 1 Nbr | 69.44 0.0288 1.72 95.48
MSTK + 4 Nbr | 65.83 0.0299 1.82 95.58

Table 5: Correctability after adding neighbors

Next, we ran experiments with Kernel SVMs as the base-
learning method, to see if we could improve on the perfor-
mance of the state-of-the-art. This is possible as LocCL-
Kernel is computationally much less intensive than Kernel-
SVMs. As seen in Table 3, not only do we find the correction
rates to be the highest (with almost perfect correction every
iteration), but we also observe the volatility to be the lowest
for 3 of the 4 datasets. We observe trends similar to those
in Linear-SVMs . This is further seen in Figure 2 (Right),
where LocCL-Kernel improves on the already low volatil-
ity of the LocCL-LinearSVM method (Middle) and perfor-
mance of nearly 98%. Finally, we note that the performance
achieved by the LocCL-Kernel method is the highest across
all datasets, amongst the methods studied, despite using far
less training data than the others''. This clearly is a promis-
ing result, though we do not delve deeper as our focus here
is on correctability.

6.3 Effect of Neighbors and Bias

We also study the effect that adding neighbors of MSTKs
has on robustness. This is important due to potential noise
in the mistakes caused by real users. To measure this, we ex-
perimented with the LocCL-LSVM method on the MNIST
dataset and added varying numbers of neighbors at each
correction phase. As seen in Figure 3 (Top), performance
improves at a faster rate when 4 neighbors of the MSTK
are labeled and added with the MSTK. This corresponds
with the intuition of higher importance for the MSTK, which
leads to improved performance. We also found the correc-
tion metrics do not change significantly despite adding more
neighbors as seen in Table 5. In fact we find that the correc-
tion rate (ACR) actually drops on adding more neighbors.
This can be explained by the fact that the added neighbors
need not have the same label as the MSTK. We also observed

HThere are not enough MSTKs, hence the final training data
size is 4400/490/365 for MNIST/USPS/OptDig.

a decreasing marginal benefit of adding more neighbors with
regards to performance improvement every iteration, since
the neighbors being added get progressively further from the
MSTK point.

Next we study the sensitivity of our method to bias in
the stream of MSTKs. This is particularly important as
real-world users would find it hard to provide mistakes in an
unbiased fashion. We ran experiments (with LocCL-LSVM
on MNIST) with different biases controlling the stream of
MSTKs. To introduce bias, we added a prior on which par-
ticular mistakes would be flagged. This prior was randomly
generated in the different methods mentioned:

e Digit Based Bias: Mistakes on some digits have higher
probability as compared to those on others.

e Coarse Cluster Based Bias: Mistakes from some clus-
ters are considered more important, where the set of
clusters are the same as those used in the initial par-
titioning.

e Fine-grained Cluster Bias: Using a clustering with k =
50, some (random) prior over clusters, determined the
importance of different mistakes.

We see in Figure 3 (Bottom) that the method is largely
agnostic to these biases, with the performance remaining
steady, showing the robustness of our method. We observed
minimal change in both performance and correctability met-
rics as seen in Table 4, across all the bias. We also found
similar trends for other base learning methods and datasets.
Thus these experiments indicate that the method is robust
and likely to perform well under real user conditions.

6.4 Correctability for Regression

One of the key attributes of the proposed LocCL frame-
work is that it is applicable across a wide variety of learn-
ing tasks. We therefore analyze the correctability of the
proposed framework in a regression task. We evaluate the
framework for regression over two different datasets from the
UC-Irvine repository as shown in Table 2. In this setting,
MSTKSs for the current model are those examples (from the
MSTK-Pool) with the highest 10% RMS error values. As
a baseline we used regularized linear regression [14], where
the regularization parameter is determined using the valida-
tion step at all times. This also serves as the base learning
method in the LocCL framework.

As seen in Table 6, we find that the baseline performs
worse at the end of the correction process, with the RMSE
error increasing on both datasets. Furthermore, we also
find that the performance (shown in the Perf column) is
worse than when using an unbiased sample (shown in the
NoCL column), mainly because it is ill-suited to learn from
a skewed distribution. (Note that a lower performance met-
ric for regression (RMSE) is better.)

We also observe that in this setting that the LocCL frame-
work outperforms the baseline across most correctability



Data SVM-Rank LocCL

ACR API OPG Perf | NoCL || ACR API OPG Perf | NoCL
MQO7 1.39 0.26 0.78 39.90 | 44.70 5.51% 0.26 6.14  41.90 | 41.90
MQO08 4.30 0.53 1.30 37.40 39.10 7.50%* 0.28 1.90 37.51 | 36.52
YLTR1 | 9.17 0.20 0.58 59.65 | 59.75 10.90 0.05 1.60 5885 | 57.40
YLTR2 | 6.45 0.33  0.57 62.11 | 61.92 19.30* 0.17 2.50 61.05 60.90

Table 7: Correctability performance of LocCL for the ranking datasets; Perf represents NDCG@3 (all values
are multiplied by 100). Notation is the same as Table 3, with * representing statistical significance at p = 0.1
using a two-tailed unpaired t-test (applicable only for the ACR metric)
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Figure 4: Change in NDCG@3 for MQO7 dataset
on adding mistakes for a) Baseline method (SVM-
Rank) ; b) LocCL method

metrics and the overall performance. It benefits from mistake-
based learning and therefore significantly outperforms the
baseline. However, we note that volatility is increased. This
can be explained by the small number of training instances
in the clusters, which tend to lead to larger changes in the
predictions due to the volatility of the matrix inverse opera-
tion, as compared to the baseline (which has a significantly
larger training set size and thus is less volatile).

It is worth noting that a key difference in the regression
setting compared to the aforementioned classification setting
is the semantics of the partitioning. While the clusters in
the classification data could potentially map to something
meaningful (i.e., digits/letters), here it is far less clear what
clusters correspond to. Thus the strong performance may
indicate that the method can work well even if clusters do
not correspond to meaningful, human-intuitive partitions.

6.5 Correctability for Ranking

We next performed experiments on the ranking datasets.
We chose four large-scale, popular LETOR datasets, shown
in Table 2. We used SVM-Rank[15] as a baseline and as
the base learning method for our LocCL method, since it
is a well-accepted baseline for these datasets. We validated
the C' parameter (over the range le — 5 to le3) using the
validation data.

To obtain a partitioning, we clustered queries using Query-
only features (features which depend only on the query).
While the Million Query(MQ) 2007 and 2008 datasets have
5 such features, the Yahoo LTR Setl and Set 2 have 20 and
18 such features, respectively. For the MQ2007/08 datasets,
we used the unnormalized data to partition the queries, but

used the normalized features for SVM-rank. For all datasets,
we ran the clustering algorithm after normalizing the query-
only features to zero mean, unit variance. Since the number
of queries is not very large, we set k = 5 in the clustering
algorithm for all of the datasets.

In these experiments, MSTKs for the current ranker are
those examples (from the MSTK-Pool) with an NDCG@3
below 0.2. This corresponds to queries for which the initial
set of results is of poor quality (and thus corresponds well
to what a human would flag as a MSTK). All 4 datasets
have graded relevance labels, which we use to compute the
evaluation performance, measured by NDCG@3.

The results are shown in Table 7. We see that the baseline
is unable to improve much via the mistake-based learning
as seen from the low OPG scores. Comparing the Perf and
NoCL values, confirms this as we find that it does not benefit
from knowledge of mistakes, with performance worsening on
3 of the 4 datasets. As seen from the API and ACR values,
the baseline SVM-Rank model is quite volatile and is unable
to significantly correct the MSTKs.

On the other hand, we find that the LocCL method is able
to significantly outperform the baseline with regards to the
ACR, API and OPG correctability metrics. In particular, we
find the ACR scores to be significantly better on all datasets,
thus validating the claim that the method can better fiz the
MSTK points. We also find that the method is far less
volatile on 3 of the 4 datasets, and is able to gain from the
mistake-based learning with much larger OPG scores.

We also note that the performance of the localized method
appears to be limited by the poor clustering quality. This
is clearly seen by comparing the NoCL scores of the base-
line and the localized version. In particular we find that
for the given clustering, training multiple local SVMs is far
worse than training a single SVM (which does not hold true
for any of the classification or regression datasets and meth-
ods). The clustering quality is likely affected by the paucity
of query-only features in these datasets, as well as the rel-
atively small number of instances (queries) used to obtain
the clusters. Regardless as seen by their Perf values we find
that LocCL method is able to leverage the MSTKs and out-
performs the correctable learning baseline on both Million-
Query datasets. Figure 4 clearly illustrates this difference
between the two methods: While the baseline tends to oscil-
late it does not improve significantly as mistakes are added.
On the other hand the LocCL methods continues to improve
as more MSTKs are added.

7. CONCLUSIONS AND FUTURE WORK

We have defined a new machine learning paradigm, cor-
rectable learning, that is strongly motivated by real-world



challenges faced by machine learning practitioners, but that
has so far not benefited from the attention of machine learn-
ing researchers. To define and evaluate characteristics of
algortihms within this new paradigm, we have introduced
three novel correctability metrics. We find that existing al-
gorithms do not perform well under our correctability met-
rics, so in response, we have proposed a localized-learning-
based framework that partitions the data-space into regions
and learns local models over each region while correcting the
models based on feedback.

Given a new MSTK point, our correctable learning algo-
rithm updates the model only for the region corresponding
to the MSTK point by adding the point (and potentially
some of its’ neighbors) to the training set for that region. In
addition to yielding improved correctability, our method has
many benefits over existing methods, including interpretabil-
ity of models and easy parallelization. We have also provided
theoretical insight as to why our correctable method works
better, despite the bias in the training data. Our experi-
ments indicate that existing methods are poorly-suited for
this new paradigm, while our proposed method, LocCL, ex-
hibits statistically significant improvements in performance
and correctability.

As future work, we would like to dynamically determine
the partitioning of the data space. This would entail split-
ting regions that seem to have more MSTKs and low cor-
rectability scores into smaller regions. Alternatively, this
could also lead to shifting the region boundaries if the model
for the neighboring region is a better fit for some points.
Lastly, we would also like to be able to share model infor-
mation across region boundaries, to achieve continuity in the
decision boundaries and possibly more robustness.
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