
Online Learning to Diversify from Implicit Feedback

Karthik Raman
Cornell University

Ithaca, NY
karthik@cs.cornell.edu

Pannaga Shivaswamy
Cornell University

Ithaca, NY
pannaga@cs.cornell.edu

Thorsten Joachims
Cornell University

Ithaca, NY
tj@cs.cornell.edu

ABSTRACT
In order to minimize redundancy and optimize coverage of
multiple user interests, search engines and recommender sys-
tems aim to diversify their set of results. To date, these di-
versification mechanisms are largely hand-coded or relied on
expensive training data provided by experts. To overcome
this problem, we propose an online learning model and al-
gorithms for learning diversified recommendations and re-
trieval functions from implicit feedback. In our model, the
learning algorithm presents a ranking to the user at each
step, and uses the set of documents from the presented rank-
ing, which the user reads, as feedback. Even for imperfect
and noisy feedback, we show that the algorithms admit the-
oretical guarantees for maximizing any submodular utility
measure under approximately rational user behavior. In ad-
dition to the theoretical results, we find that the algorithm
learns quickly, accurately, and robustly in empirical evalua-
tions on two datasets.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models; I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation, Theory

Keywords
Online Learning, Diversified Retrieval, Submodularity

1. INTRODUCTION
Modeling the dependencies between items in a ranking of

results is one of the most promising directions for improving
the quality of retrieval and recommendation systems. First,
consider the example of a search engine and a query such
as “jaguar” or “apple”. For such queries, it is important to
present a diverse set of results since diversity hedges against

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’12, August 12–16, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1462-6 /12/08 ...$15.00.

uncertainty about the users intent. Such hedging against
uncertainty about the user’s information need is called ex-
trinsic diversity [10]. A second reason for diversity is called
intrinsic diversity [10] where it is important to avoid redun-
dancy and provide a set of results that cover multiple aspects
of an information need. For example, of all the articles in
the NY Times on a given day, a user only has time to read a
small subset. Therefore, even if the user is interested in the
European Debt Crisis, he may not want to read exclusively
about this one topic, but rather read one article and also
cover other topics. In the following, we focus on problems
where such intrinsic diversity is important.

In this paper, we extend the recently proposed coactive
learning model [14] to learn diversified results from implicit
user feedback. In particular, we develop two algorithms for
learning both relevance and the desired amount of diversity
from set-valued preference data that can be derived from
implicit feedback. The algorithms proposed in this paper
are easy to implement and allow theoretical analysis. Fur-
thermore, the ability to learn the desired amount of diversity
based on user feedback makes the algorithms attractive for
a wide range of applications where the required amount of
diversity is not determined apriori. A crucial extension over
the methods in [14] is that we now consider models with
submodular structure, whose diminishing returns property
makes it possible to avoid redundancy and increase novelty.

Coactive learning proceeds in the following online fash-
ion. In each step, a ranking is presented to the user that
(approximately) maximizes the current estimate of the sub-
modular utility function. As feedback, the algorithm ob-
serves the (possibly diverse) set of documents the user reads
in the presented ranking. After receiving this feedback, the
algorithm updates its model. Even though we allow user
feedback to be imperfect, noisy, and only “weakly informa-
tive” (in a specific sense), we are able to prove guarantees on
the performance of the algorithm. Unlike the theorems in
[14], our guarantees apply even though submodular models
only allow for approximate inference. Finally, experiments
demonstrate the empirical effectiveness of the proposed ap-
proach in learning both relevance and diversity.

2. RELATED WORK
Presenting a diverse set of results is an important goal

in both web-search ranking as well as recommender systems
research. While much prior work on diversity has focused
on non-learning approaches (e.g. [2, 19, 3, 16, 4]), recently
developed supervised learning methods for diversity have
shown a lot of promise (e.g. [13, 18, 12, 8]). Unfortunately,

supervised learning relies on manually judged training data
with multi-topic annotations, which are expensive and dif-
ficult to obtain. El-Arini and Guestrin [6] proposed an ap-
proach to discover relevant scientific literature based on a
set of scientific papers. They retrieve a set of papers based
on both diversity and relevance. While their approach also
makes use of submodular influence measures, they assume
noise-free feedback, which is unrealistic for our problem.

While some online learning methods exist that can exploit
click data, those methods either cannot generalize across
queries [11] and/or have a hard-coded notion of diversity
that cannot be adjusted through learning [15]. Recently,
Yue and Guestrin [17] proposed online learning algorithms
to maximize submodular utilities and applied them to di-
versified retrieval. However, their model relies on observing
cardinal utilities whereas in our model we only rely on im-
plicit preference feedback. User studies for web search [7]
have shown that such preference feedback can be extracted
reliably from observable user behavior (e.g. clicks), while at-
tempt to interpret click-data as cardinal utility statements
were found to be biased and unreliable.

3. LEARNING PROBLEM AND MODEL
To illustrate our learning model, consider the example of

a personalized news reader that users visit on a daily basis.
On day t, the news reader suggests a list of articles yt =
(d1, d2, d3, d4, d5, ...) and observes which of these articles are
actually read by the user. We assume that the decision
to read an article is influenced by two factors. First, the
article must be relevant to the user’s interest. Second, the
decision may have dependencies with other articles in y. For
example, the user may be interested in the European debt
crisis. But the user may only want to read one article related
to this issue, even if y contains 5 relevant articles.

In this paper, we design an online learning algorithm that
can model both relevance as well as interdependencies be-
tween documents. The training data we exploit are the
sets of documents read by the user each day. Continu-
ing the example from above, the system may observe that
the user read articles d3 and d5. Obviously, we cannot
conclude that {d3, d5} was the optimal set of articles the
user wanted to read on day t, since there may have been
other articles far down the list that the user never saw.
However, we can conclude that the user would have pre-
ferred the ranking ȳt = (d3, d5, d1, d2, d4, ...) over the rank-
ing yt = (d1, d2, d3, d4, d5, ...) that was presented. We refer
to ȳt as the user feedback ranking.

We now define the learning problem and the user-interaction
model more generally. At each round t, our algorithm presents
a ranking yt from a corpus xt ∈ X of candidate documents1.
We assume that the user acts (approximately) rational ac-
cording to an unknown utility function U(xt,yt) that models
both relevance of the documents as well as their dependen-
cies (e.g. redundancy). In the context of such a utility
function, we can interpret the user feedback as a preference
between rankings. This type of preference feedback over
multiple rounds t is the input for our learning model. Given
the set of candidate documents xt, the optimal ranking is
denoted by

y∗t := arg max
y∈Y

U(xt,y). (1)

1In general, xt can also represent a query/context.

Since the user’s utility function U(xt,y) is unknown, this
optimal ranking y∗t cannot be computed. The goal of the
learning algorithm is to predict rankings with utility close to
that of y∗t . Note, however, that the user feedback does not
even give the optimal y∗t to the algorithm (as in traditional
supervised learning), but only the user feedback ranking ȳt
is observed. To analyze the learning algorithms in the sub-
sequent sections, we refer to any feedback that satisfies the
following inequality as strictly α-informative feedback:

U(xt, ȳt)− U(xt,yt) ≥ α (U(xt,y
∗
t)− U(xt,yt)) . (2)

The above inequality states that the utility of the user feed-
back ranking ȳt must be slightly better than the utility of
the ranking yt that was presented as a fraction of the dif-
ference between the utility of y∗t and the utility of yt. As
demonstrated in the example above, such a slightly improved
rankings ȳt can be constructed as a reordering of yt based
on user clicks. The amount of improvement is quantified by
α ∈ (0, 1], which is (an unknown) parameter in the above
inequality that controls by what fraction the utility of the
feedback ranking ȳt is higher than that of the predicted
ranking yt as compared to the maximum possible utility
gain. To allow noisy feedback, we introduce slack variables
ξt which allow violations of the above condition. This gives
the following user feedback, referred to as α-informative
feedback:

U(xt, ȳt)− U(xt,yt) = α (U(xt,y
∗
t)− U(xt,yt))− ξt. (3)

The above feedback model can be further relaxed, requiring
that it merely holds in expectation over feedback. We refer
to this as expected α-informative feedback

E[U(xt, ȳt)−U(xt,yt)]=α (U(xt,y
∗
t)−U(xt,yt))− ξ̄t, (4)

and many of our results can be generalized to his weaker
form of feedback as well. Note that the above expectation
is over user’s choice of ȳt given yt for corpus xt (i.e., distri-
bution Pxt [ȳt|yt]). Moreover, ξ̄t denotes the corresponding
slack variable.

To measure the performance of our method we define a no-
tion of regret based on the utility of the ranking we present
with respect to the utility of the best possible ranking y∗t
that could have been presented in each step:

REGT :=
1

T

T−1∑
t=0

(U(xt,y
∗
t)− U(xt,yt)) . (5)

Note that regret is measured with respect to the user’s true
utility function U(xt,yt) and the optimal ranking y∗t , even
though neither is ever explicitly revealed to the algorithm.
Thus a decreasing regret indicates the utility of the predicted
ranking improves over time.

4. MODELING RELEVANCE AND DIVER-
SITY

A key step in designing a learning algorithm that models
both relevance and diversity lies in the design of an appro-
priate hypothesis space for modeling U(x,y). In short, the
learning algorithm needs to learn an accurate model of how
the user values a ranking y for a given x. Since this relates to
metrics for evaluating retrieval systems, we start our design
of U(x,y) based on existing retrieval measures.

While traditional IR metrics are oblivious to diversity (e.g.
NDCG, Precision), more recent additions account for diver-
sity in some form (e.g. [16, 11, 18, 1, 5]). We define our hy-
pothesis space based on the family of performance measures
proposed in [12], since it subsumes many existing measures.
These measures exhibit a diminishing returns property (i.e.
submodularity), which means that the marginal utility of a
document is lower if the intents the document is relevant to
are already represented in the ranking.

While [12] focuses on the case of extrinsic diversity, the
same model structure also applies to problems with need
for intrinsic diversity. In particular, we model U(x,y) as
a function that is linear in its parameters w ∈ Rm with
w ≥ 0,2 but submodular (and non-linear) in a feature map
φ(x,y) ∈ Rm with φ(x,y) ≥ 0:

U(x,y) := w>φ(x,y). (6)

The parameters w will be learned by the learning algorithm.
The feature vector φ(x,y) describes the ranking, but for
simplicity of exposition we will consider y to be the set con-
sisting of the top k results that were viewed by the user,
not the full ranking3. The function φ(x,y) generates a fea-
ture vector describing the set y = {di1 , di2 , ..., dik} under
context x = {d1, d2, ..., d|x|} in the following manner: We
assume that each document d itself is described by a feature
vector φ(d). These feature vectors are aggregated into the
feature vector φ(x,y) of y using an aggregation function F .
Let φj(x,y) be the j-th feature of φ(x,y) and φj(d) the j-th
feature of φ(d), then

φj(x,y) = F ({φj(di1), φj(di2), ..., φj(dik)}). (7)

Examples of the per-feature aggregation function F are:

Name F (A) Subsumes
LIN F (A) =

∑
a∈A a Precision, DCG

MAX F (A) = maxa∈A a Coverage

The MAX variant, but not LIN, encourages diversity in
the following way. As example, consider a boolean bag-of-
words representation of documents φ(d). The first document
to contain a term t will increase the feature value of t in
φ(x,y) by 1. The second document to contain t, however,
will not cause any increase. This models the redundancy of
multiple occurrences of t, as it does not give any benefit to
all but the first occurrence of t. Note that multiple aggrega-
tion functions F can be stacked into φ(x,y), which allows
the linear model to select a desired diminishing-returns pro-
file. Note also that our model is not restricted to the F
listed above, but rather any F can be used that is mono-
tone and submodular [12], including less stringent functions
which allows for some redundancy (like square root).

To compute the ranking that maximizes a utility function,
i.e. y := arg maxy∈Y w>φ(x,y), one can use the simple and
efficient Greedy Algorithm 1. At each step, the algorithm
greedily chooses the document with the highest marginal
utility to be added to the ranking. Note that y ⊕ d is used
to refer to the operator that appends document d to ranking
y. Also note that Algorithm 1 computes the exact utility

2Denotes component-wise non-negativity.
3A ranking can be viewed as a nested structure of top-k
sets, and the greedy algorithm we will later use to compute
rankings uniformly optimizes the utility of the sets at any
cutoff in the ranking.

Algorithm 1 GreedyRanking(w,x)

y← 0
for i = 1 to k do
bestU ← −∞
for all d ∈ x/ y do

if w>(x,y ⊕ d) > bestU then
bestU ← w>φ(x,y ⊕ d)
best← d

y← y ⊕ best
return y

optimizer yt for the modular measure LIN, whereas it finds
a 1−1/e approximate yt for any submodular and monotone
function F .

5. ONLINE LEARNING ALGORITHMS
In this section, we present our coactive learning algo-

rithms. In section 5.1, we present a perceptron style al-
gorithm and then a clipped version of it. In section 5.2 we
present an exponentiated gradient algorithm. We prove re-
gret bounds for all the proposed algorithms.

5.1 Diversified Perceptron
We now describe our first learning algorithm for mini-

mizing regret (5) for utility functions of the form (6). Al-
gorithm 2, which we call the Diversifying Perceptron
(DP), maintains a weight vector wt which is initialized to
0. At each time step t, DP presents a ranking yt from the
corpus xt using Algorithm 1 with the current estimate wt.
DP then uses the user feedback ranking ȳt (obtained as
outlined in Section 3) to update the weight vector wt in the
direction of φ(xt, ȳt) − φ(xt,yt). Note that the α used in
modeling user feedback (in Eqns. (2) and (3)) is unknown
to the algorithm; it only plays a role in the analysis.

The following theorem describes the generalization per-
formance of the Diversified Perceptron. Note that bound on
the worst-case regret is independent of the dimensionality
of the feature space, that the regret converges to its asymp-
tote at the rate of 1/

√
T (where T is equal to the number of

examples), and that the informativeness α of the feedback
enters the bound only linearly. The first term of the bound
captures the noise in the feedback.

Theorem 1. The average regret of the diversified percep-
tron algorithm can be upper bounded, for any w ∈ Rmwith
w ≥ 0 that defines the utility in Eq. (6), as follows:

REGT ≤
1

αT

T−1∑
t=0

ξt +
βR‖w‖
α

+

√
2
√

4− β2R‖w‖
α
√
T

. (8)

Here 1
β+1

is the approximation factor of the greedy algorithm

with β ≤ 2 and ‖φ(x,y)‖`2 ≤ R.

Proof. Consider the `2 norm of wT :

‖wT ‖2 = ‖wT−1‖2 + 2w>T−1(φ(xT−1, ȳT−1)− φ(xT−1,yT−1))

+ ‖φ(xT−1, ȳT−1)− φ(xT−1,yT−1)‖2

≤ ‖wT−1‖2 + 2β w>T−1φ(xT−1,yT−1) + 4R2

≤ ‖wT−1‖2 + 2β‖wT−1‖R+ 4R2 (9)

The first line comes from the update rule in Algorithm 2.
The second line is from the fact: w>T−1φ(xT−1, ȳT−1) ≤ (β+

Algorithm 2 Diversifying Perceptron.

Initialize w0 ← 0
for t = 0 to T − 1 do

Observe xt
Present yt ← GreedyRanking(wt,xt)
Obtain feedback ȳt
Update: wt+1 ← wt + φ(xt, ȳt)− φ(xt,yt)

1)w>T−1φ(xT−1,yT−1) since the greedy algorithm produces
an 1

β+1
approximation and that ‖φ(·, ·)‖ ≤ R. The third

line comes by using the Cauchy-Schwarz inequality.
Let us inductively assume that ‖wt‖ ≤ c1R(t+c2) for t =
{0, ...T − 1} where the values c1, c2 ≥ 0 will be determined
later. The base case is trivially shown as ‖w0‖ = 0. Thus
to complete the induction step, we have:

‖wT ‖2 ≤ ‖wT−1‖2 + 2β‖wT−1‖R+ 4R2

≤ ‖wT−2‖2 + 2βR(‖wT−1‖+ ‖wT−2‖) + 8R2

≤ ‖w0‖2 + 2βR

T−1∑
t=0

‖wt‖+ 4R2T

≤ βR2c1(T 2 − T) + 2βR2Tc1c2 + 4R2T

≤ R2
(
βc1T

2 + T (−βc1 + 2βc1c2 + 4)
)

We now choose c1 and c2 such that the induction step
holds. This is done by ensuring that the coefficients of T 2

and T in the above expression are smaller than the corre-
sponding terms in c21T

2+2c21c2T+c21c
2
2. First, set c1 = β+ε,

which will ensure the inequality for T 2. Next, we can ensure

−βc1 + 2βc1c2 + 4 ≤ 2c21c2, by setting c2 = 4−β(β+ε)
2ε(ε+β)

. We

therefore have ‖wT ‖ ≤ (ε + β)TR + (4−β2)R
2ε

− βR
2

. Mini-

mizing the above bound over ε, we get ε =
√

4−β2

2T
. Substi-

tuting this in the upper bound for ‖wT ‖, we get ‖wT ‖ ≤
(βT +

√
4− β2

√
2T)R.

Thus using the update rule of Algorithm 2, we have,

w>T w = w>T−1w + U(xT−1, ȳT−1)− U(xT−1,yT−1)

=

T−1∑
t=0

U(xt, ȳt)− U(xt,yt).

We now use the fact that w>T w ≤ ‖w‖‖wT ‖ (Cauchy-Schwarz
inequality) which implies,

T−1∑
t=0

U(xt, ȳt)− U(xt,yt) ≤ (βT +
√

4− β2
√

2T)R‖w‖.

The above inequality, along with the condition of α-informative
feedback gives:

αREGT −
1

T

T−1∑
t=0

ξt ≤

(
β +

√
4− β2

√
2

T

)
R‖w‖

from which the claimed result follows.

For the case of modular utility (LIN), β = 0 and the above
bound resembles the bound in [14]. For submodular utilities,
β = 1/(e+1) in the worst case, but is typically much smaller
in practice. When users provide “clean” feedback according
to (2), the first term in the bound (8) vanishes. We can also
show a result similar to the one above in the case of expected

Algorithm 3 Clipped Diversifying Perceptron.

Initialize w0 ← 0
for t = 0 to T − 1 do

Observe xt
Present yt ← GreedyRanking(wt,xt)
Obtain feedback ȳt
Update: w̄t+1 ← wt + φ(xt, ȳt)− φ(xt,yt)
Clip: wj

t+1 ← max(w̄j
t+1, 0) ∀1 ≤ j ≤ m.

α-informative feedback (4). We do not provide a proof for
this case due to space limitations.

While the above theorem holds whenever there is a 1
1+β

-
approximation for finding yt, there is a caveat. In the case of
submodular utility, to ensure that the approximation guar-
antee holds, all the weights in wt must be positive. This
can be done by an additional clipping step that modifies
each weight of wt by clipping it at zero if it is negative. The
clipped version of the algorithm is shown in Algorithm 3.

For Algorithm 3, assuming that the utility is also defined
using a vector w which has only non-negative components,
we can still give a regret bound similar to Theorem 1. Start
by observing that, for any t,

‖wt‖2 ≤ ‖w̄t‖2 and w>wt ≥ w>w̄t (10)

The first inequality holds because the product of any clipped
value with itself is positive. Since all the components of w
are positive and since only negative values in w̄T are set to
zero in the clipping step, the second inequality holds. With
these two steps, the remaining steps in the proof of Theorem
1 follow and we have the following corollary.

Corollary 2. The average regret of the diversified per-
ceptron algorithm can be upper bounded, for any w ∈ Rm

with w ≥ 0 that defines the utility, as follows:

REGT ≤
1

αT

T−1∑
t=0

ξt +
βR‖w‖
α

+

√
2
√

4− β2R‖w‖
α
√
T

, (11)

where 1
β+1

is the approximation factor of the greedy algo-

rithm with β ≤ 2 and ‖φ(x,y)‖ ≤ R.

We obtained the clipped version of the algorithm to avoid
non-negative weights. In the next sub-section, we provide
an elegant exponentiated algorithm that naturally maintains
non-negative weights.

5.2 Exponentiated Algorithm
Our exponentiated algorithm for learning to diversify from

implicit feedback is shown in Algorithm 4. In this algorithm,
the weights are initialized uniformly at the start. There is a
rate θ associated with each step. The rate depends on the
maximum `∞ norm of the feature vectors (i.e., ‖φ(·, ·)‖`∞ ≤
S) and time horizon T .

At each step, a context xt is observed and an object yt is
presented just like in the earlier algorithms. However, once
the feedback ȳt is obtained, the update rules are multiplica-
tive as shown in Algorithm 4. The weights are normalized to
one and the steps of the algorithm repeat. Since the updates
are multiplicative and the weights are initially positive, wt

is guaranteed to remain positive in this algorithm.
We now prove the regret bound for Algorithm 4. While

the regret bounds for Algorithms 2 and 3 depended on the
`2 norm of the features, and the `2 norm of w, the bound

Algorithm 4 Exponentiated Diversifying Algorithm.

Initialize wi
0 ← 1

m
∀1 ≤ i ≤ m.

θ ← 1

2S
√
T

for t = 0 to T − 1 do
Observe xt
Present yt ← GreedyRanking(wt,xt)
Obtain feedback ȳt
Update: wi

t+1 ← wi
t exp(θ(φi(xt, ȳt) − φi(xt,yt)))/Zt

where Zt is such that the weights add to one.

for the exponentiated algorithm depends on the `∞ norm of
the feature vectors and the `1 norm of w.

Theorem 3. For any w ∈ Rm such that ‖w‖`1 = 1,
w ≥ 0, the average regret of the exponentiated algorithm
can be upper bounded as follows:

REGT ≤
1

αT

T−1∑
t=0

ξt +
Sβ

α
+

2 log(m)S

α
√
T

+
S

2α
√
T
, (12)

where 1
β+1

is the approximation factor of the greedy algo-

rithm with β ≤ 2 and ‖φ(x,y)‖`∞ ≤ S.

Proof. We look at how the KL divergence between w
and wt evolves,

KL(w||wt)−KL(w||wt+1) =

m∑
i=1

wi log(wi
t+1/w

i
t)

=

m∑
i=1

wi(θ(φi(xt, ȳt)− φi(xt,yt)))− log(Zt)

= θw>(φ(xt, ȳt)− φ(xt,yt))− log(Zt). (13)

On the second line, we pulled out log(Zt) from the sum
since

∑m
i=1 wi = 1. Now, consider the last term in the

above equation. Denoting φi(xt, ȳt)−φi(xt,yt) by ∆iφt for
brevity, we have, by definition,

log(Zt) = log

(
m∑
i=1

wi
t exp(θ∆iφt)

)

≤ log

(
m∑
i=1

wi
t(1 + θ∆iφt + θ2∆iφt

2
)

)
≤ log

(
1 + θw>t ∆φt + θ2S2

)
≤ θw>t ∆φt + θ2S2. (14)

On the second line we used the fact that exp(x) ≤ 1+x+x2

for x ≤ 1. The rate θ ensures that θ(∆iφ) ≤ 1. On the last
line, we used the fact that log(1+x) ≤ x. Combing (13) and
(14), we get,

(w −wt)
>∆φt ≤

KL(w||wt)−KL(w||wt+1)

θ
+ θS2.

Adding the above inequalities, we get:

T−1∑
t=0

(w −wt)
>(φ(xt, ȳt)− φ(xt,yt))

≤
T−1∑
t=0

KL(w||wt)−KL(w||wt+1)

θ
+

T−1∑
t=0

θS2.

≤KL(w||w0)

θ
+ θS2T. (15)

Rearranging the above inequality, and substituting the
value of θ from Algorithm 4, we get:

T−1∑
t=0

(U(xt, ȳt)− U(xt,yt))

≤
T−1∑
t=0

w>t (φ(xt, ȳt)− φ(xt,yt)) + 2 log(m)S
√
T +

S
√
T

2

≤
T−1∑
t=0

βw>t φ(xt,yt) + 2 log(m)S
√
T +

S
√
T

2

≤βST + 2 log(m)S
√
T +

S
√
T

2
. (16)

In the above, we also used the fact that KL(w||w0) ≤
log(m) since w0 is initialized uniformly. On line three, we
used the fact that the greedy algorithm finds a 1

1+β
approx-

imation. Moreover, from a generalized version of Cauchy-
Schwarz inequality, we obtained

w>t φ(xt,yt) ≤ ‖wt‖`1‖φ(xt,yt)‖`∞ ≤ S.

The above inequality along with α-informative feedback gives
the claimed result.

Like the result in Theorem 1, Theorem 3 also bounds the
regret in terms of the noise in the feedback (first term),
the approximation factor of the inference algorithm (second
term), and additional terms which converge to zero at the

rate O(1/
√
T). The key difference to Theorem 1 is that the

regret bound of the exponentiated algorithm scales logarith-
mically with the number of features, and with the `1-norm
of w, which can be advantageous if the optimal w is sparse.

6. EXPERIMENTS
In this section we empirically study different aspects of

our proposed algorithms. In particular, we show how using
the submodular utility helps achieve diversity. Furthermore,
we explore the robustness of our learning method under de-
graded feedback quality and noise. We also explore learning
the amount of diversity a user wants and also compare our
method against a supervised method. Finally, we compare
the three algorithms that we proposed in this paper against
each other.

6.1 Experiment Setup
Since there is no large publicly available real-world corpus

containing intrinsic diversity judgments4, we created two ar-
tificial datasets from the RCV-1 [9] text corpus and from the
20 newsgroups dataset (abbreviated 20NG).

The RCV-1 corpus contains over 800k documents, each of
which is annotated as belonging to one or more of 100+ top-
ics. While the original RCV-1 topics are arranged hierarchi-
cally, to make the problem non-trivial, we considered only
topics from the second level. The 20NG dataset contains
about 19k documents (with duplicates removed) with a sin-
gle class label for each document. We simulate users with
multiple different interests, by forming super-users with 5
different interests corresponding to 5 different topics/classes.
Thus, if a document is relevant to any of these topics it is
relevant to that super-user, else it is not. We assume that

4Corpora like the TREC WEB corpus are small and contain
relevance judgments only for extrinsic diversity.

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f d
iffe

re
nt

 in
te

nt
s c

ov
er

ed

Number of Iterations

MAX
LIN

Random

 0

 10

 20

 30

 40

 50

 1 10 100

M
ed

ian
 S

ea
rc

h
Le

ng
th

Number of Iterations

MAX
LIN

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f d
iffe

re
nt

 in
te

nt
s c

ov
er

ed

Number of Iterations

MAX
LIN

Random

 0

 10

 20

 30

 40

 50

 1 10 100

M
ed

ian
 S

ea
rc

h
Le

ng
th

Number of Iterations

MAX
LIN

Figure 1: Comparison between the submodular (MAX) and independent (LIN) model for users that are
purely seeking diversity; top: RCV-1, bottom: 20NG.

all topics are equally important unless otherwise mentioned.
In addition, for a given super-user we removed documents
relevant to multiple interests. In this manner, producing a
diverse set of results would require being able to truly learn
each of the interests separately.

We ran the Diversifying Perceptron algorithm with a fresh
set of 1000 documents for RCV1 (100 for 20NG) in each
step as the corpus x and presented a ranking y from the
current corpus. In particular we focus on the top 5 results
for all evaluation measures for brevity, though the trends
reported in the following hold true for other ranking lengths
as well. All results we report are averaged over 50 runs of
the algorithm, each for a different super-user. Documents
are represented as TFIDF vectors. The joint feature map
φ(x,y) is an aggregation of the document vectors using one
(or multiple) of the aggregation functions F described in
Section 4.

6.2 Can the algorithm learn to diversify?
We first evaluate if the proposed DP algorithm is really

able to learn a function that combines relevance and diver-
sity. In particular, we generated users with 5 different and
disjoint interests, and each user wants to read exactly one
document relevant to each interest in every iteration. Note
that users of this type are seeking maximum diversity in
their rankings. To illustrate the performance of the algo-
rithm, we report two quantities. First, we computed how
many interests are covered in the top 5 documents of the
presented ranking in each iteration. Second, we considered
the median depth the user needs to search down the ranking
to find one document for each of his interests.

We ran the DP algorithm with the MAX feature map
as defined in Section 4. This is compared against another
instance of our algorithm that uses the conventional model
LIN, which focuses purely on relevance but cannot model
diversity directly. For simplicity, we assume α = 1 informa-

tive feedback. We also compare against a Random baseline,
which is the performance of a random ranking.

Figure 1 shows the average and standard error of the re-
sults for this experiment on the two datasets. The left col-
umn shows the number of intents covered in the top 5 po-
sitions over time. While the LIN method is far better than
the Random method and continues to improve over time, it
is outperformed by the MAX method, which is able to learn
better.

The right pane further illustrates this result, as it shows
how the median search length (required to find at least one
document for each intent) starts at high values, but quickly
drops to small values after a few iterations. Both learning
methods clearly outperform the Random baseline, the value
of which is too large to show. In all the plots, the standard
errors are small implying statistical significance.

It can be observed that the difference between the MAX
and the LIN is much higher in the case of RCV-1 compared
to 20NG dataset. This is due to the fact that 20NG has
only 20 categories, whereas RCV-1 has more than 100 and
is thus much harder to learn for LIN.

6.3 What is the effect of feedback quality?
We next study the effect of the quality of feedback (as

described by α) on the performance our method. As real-
world users are unlikely to provide perfect feedback, we
would like our algorithm to learn even in scenarios where
the user-feedback is far from ideal. We varied the quality
of the feedback by changing the value of α. A change in α
is achieved through the following mechanism: for any intent
not covered in the presented ranking, but covered in the op-
timal ranking, with probability 1 − α, documents covering
that intent are absent in the feedback ranking. This leads
to having α-informative feedback in expectation.

Figure 2 shows the results for this experiment. Most no-
tably, the performance is nearly unchanged for larger values
of α. In particular, we find that for α ≥ 0.6 the perfor-

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f I
nt

en
ts

Co
ve

re
d

in
To

p
5

Number of Iterations

Effect of Alpha on Number of Intents Covered

α=1.0
α=0.8
α=0.6
α=0.4
α=0.2
α=0.1

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f I
nt

en
ts

Co
ve

re
d

in
To

p
5

Number of Iterations

Effect of Alpha on Number of Intents Covered

α=1.0
α=0.8
α=0.6
α=0.4
α=0.2
α=0.1

Figure 2: Effect of α on performance of the algo-
rithm for users that are purely seeking diversity;
top: RCV-1, bottom: 20NG.

mance is very close to that with perfect feedback (α = 1.0).
At low values of α such as 0.2 or 0.1, the method still makes
reasonable progress over time, albeit at a slower rate. We
see that for α = 0.2 within 100 iterations the number of
intents covered more than doubles. These results indicate
that the proposed method is still able to learn even when
the informativeness of the user feedback is poor.

6.4 What is the robustness to noise?
While the experiments in the previous section showed ro-

bustness to imperfect feedback, we now test the robustness
of our algorithm to noisy feedback. One key difference be-
tween the two is that with noisy feedback, the user may
return a feedback ranking that is worse than the one he was
presented. Such a degradation in the quality of the ranking
will be captured by the slack variable seen in Eq. (3). We
would particularly like the noise introduced to be reflective
of that expected in the real-world, where users may some-
times be unsure of the relevance of some documents. Thus
we modify the user clicking mechanism that produces the
feedback in the following manner:

• Each irrelevant document encountered in the ranking
may be considered as relevant with probability η.
• Documents relevant to one of the user’s topics may be

confused for a different topic with probability η/5.

Like α, η affects only the quality of the user feedback
and not the learning algorithm itself. Figure 3 shows the
effect of varying the noise factor η. As seen in the figure,
the algorithm is quite robust to noise. For high values of η,
such as 0.2, we find that the algorithm is still able to learn
quite well. The figures also indicate the expected α of the
feedback received after adding noise. However, note that in
this scenario, unlike the experiments varying α, the feed-
back ranking can be significantly worse than the predicted
ranking. Thus we see that for η = 0.2, although α ∼ 0.4
in expectation, the performance is noticeably worse than for
the case of α = 0.4.

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f I
nt

en
ts

Co
ve

re
d

in
To

p
5

Number of Iterations

Effect of Noisy Feedback on Number of Intents Covered

η=0
η=0.02 (α = 0.94)
η=0.05 (α = 0.83)

η=0.1 (α = 0.66)
η=0.2 (α = 0.38)
η=0.5 (α = 0.04)

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f I
nt

en
ts

Co
ve

re
d

in
To

p
5

Number of Iterations

Effect of Noisy Feedback on Number of Intents Covered

η=0
η=0.02 (α = 0.93)
η=0.05 (α = 0.83)

η=0.1 (α = 0.68)
η=0.2 (α = 0.42)
η=0.5 (α = 0.06)

Figure 3: Effect of η on performance of the algorithm
for users that are purely seeking diversity (number
in bracket indicates the effective α of the feedback);
top: RCV-1, bottom: 20NG.

User-Utility
LIN MAX

RANDOM .862(±.007) .756(±.016)

Algo-Util
LIN .137(±.019) .447(±.005)
MAX .169(±.020) .274(±.011)

LIN +MAX .158(±.021) .310(±.010)

Table 1: Average Regret for different user utilities
and algorithm utility functions.

6.5 Learn the desired amount of diversity?
We next explore whether the algorithm can learn how

much diversity the user wants. Furthermore, it is interest-
ing to know how the algorithm performs in settings where
the utility that the user optimizes (to provide feedback) is
different from the one the algorithm uses.

To study this question, we experimented with the MAX
and LIN utility functions mentioned earlier. We varied the
user’s inherent utility as well as the algorithm’s utility to
either of these two values. We also experimented with a
combination method for the DP algorithm, which simply
takes the joint feature vector representations used in the
MAX and LIN functions and appends them to form a single
vector. We refer to this method as MAX+LIN . To ensure
difference in feedback between the two user utility functions,
we weight the different intents (as done in [18]), which results
in the utility being higher if a more popular topic is covered
instead of a less popular one. We ran the DP algorithm for
100 iterations, where at each iteration the feedback provided
by the user is as per the utility they optimize. We report
performance in terms of the the average regret over these 100
iterations of the user’s utility measure (since that is what the
true w captures), thus lower the better.

Table 1 shows the results for RCV15. First, consider the
cases where the algorithm is given the user’s true diversity

5We observe similar results for 20NG but omitted it due to
space limitations

profile. As expected, the algorithm performs very well, as
seen in the case of the LIN-maximizing algorithm perform-
ing best for purely-relevance seeking users (and similarly
for the MAX-maximizing algorithm and diversity-seeking
users). However, an important result of the experiment is
that even when the amount of diversity the user requires
is unknown, the combination algorithm is able to learn the
amount of diversity the user wants. It performs nearly as
well as the case where the user’s diversity needs are known,
as can be seen in the last row of the table. This shows
that the combination algorithm is able to learn the trade-
off between relevance and diversity that the user is looking
for. This is very encouraging as it allows for the method to
be used in scenarios where there is no a priori information
about the desired amount of diversity. While related to re-
cent work on extrinsic diversity [13], our method is an online
learning technique and utilizes much weaker feedback than
methods in [13] do.

6.6 Exponentiated algorithm
Compared to the other two algorithms, the exponentiated

algorithm has a rate θ associated with it. This rate needs
to be set appropriately. In practice, we observed that the
performance of the exponentiated algorithm is sensitive to
the value of the rate. In particular, we multiplied the rate
θ by a numerical value and studied how the algorithm be-
haved. Note that this effectively changes the radius of the
data, but seemed to significantly affect the behavior of the
exponentiated algorithm. The results of this experiment is
shown in Figure 4. The performance of the algorithm first
improves and then deteriorates as the rate factor increases.

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f I
nt

en
ts

Co
ve

re
d

in
To

p
5

Number of Iterations

Rate 1
Rate 10
Rate 20
Rate 50

Rate 100
Rate 500

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f I
nt

en
ts

Co
ve

re
d

in
To

p
5

Number of Iterations

Rate 1
Rate 10
Rate 20
Rate 50

Rate 100
Rate 500

Figure 4: Exponentiated algorithm with different
rates; top: RCV-1, bottom: 20NG.

6.7 How do the three algorithms compare?
We proposed three algorithms to learn diversity from im-

plicit feedback. In this section, we study whether there is
a difference in performance of these three algorithms. The
clipped DP (Algorithm 3) was proposed mainly due to theo-

retical considerations. To compare the three algorithms, we
followed the same setup as in Section 6.2. For the exponenti-
ated algorithm, we considered the best rate parameter from
the previous experiment. The results for this experiment are
shown in Figure 5. It can be seen that there is not much
of a difference between the clipped and the non-clipped al-
gorithms in the case of RCV-1. In the case of 20NG, there
is hardly any difference between the three algorithms. Even
though restricting weights to positive values is required for
theoretical purposes, in practice it does not seem to make
much of a difference on these two datasets.

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f I
nt

en
ts

Co
ve

re
d

in
To

p
5

Number of Iterations

Diversifying Perceptron
Clipped Diversifying Perceptron

Exponentiated-Div-Perc
Random

 0

 1

 2

 3

 4

 5

 1 10 100

Nu
m

be
r o

f I
nt

en
ts

Co
ve

re
d

in
To

p
5

Number of Iterations

Diversifying Perceptron
Clipped Diversifying Perceptron

Exponentiated-Div-Perc
Random

Figure 5: Comparison of the three algorithms; top:
RCV-1, bottom: 20NG.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 50 60 70 80 90 100 110 120 130 140 150

Av
er

ag
e

Re
gr

et

Number of Iterations

Supervised (η=0)
Supervised (η=0.2)

Online (η=0)
Online (η=0.2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 25 30 35 40 45 50 55 60 65 70

Av
er

ag
e

Re
gr

et

Number of Iterations

Supervised (η=0)
Supervised (η=0.2)

Online (η=0)
Online (η=0.2)

Figure 6: Comparison with supervised learning.

6.8 Comparison to supervised learning
To the best of our knowledge, ours is the first online learn-

ing method that can provide a ranking, of required diver-

sity, from a different corpus (i.e. context) in every itera-
tion. Hence there is no suitable online learning baseline to
compare against. We thus compare our method against a
batch learning method. In particular, we compare against
the one-level version of the method proposed in [12], which
is a generalization of [18].

In this setup, for each maximum diversity-seeking user
we obtain the complete document-intent relevance labels for
the first 50 (20) iterations for RCV1 (20NG), which is then
used in training the SVM-struct based supervised learning
method of [12] to obtain the wt. We train models using the
labels from 40 (16) iterations, while utilizing the remaining
10 (4) to select the best value of the C parameter, which is
varied from 10−2 to 10. The best model is then used to make
predictions over the next 100 (50) iterations. We also run
the online algorithm over these 150 (70) iterations to com-
pare the two methods. Note that both the online method
and the supervised learning method use exactly the same
MAX model of user utility and exactly the same document
features.

Since the supervised method does not predict rankings for
the first 50 (20) iterations, to ensure a fair evaluation, we
report the average regret for the next 100 (50) iterations i.e.:

REGT :=
1

100

150∑
t=51

(U(xt,y
∗
t)− U(xt,yt)) . (17)

We also run both methods with noise introduced using
the technique mentioned in subsection 6.4.

As seen in Figure 6, the DP algorithm performs signifi-
cantly better than the supervised learning method, achiev-
ing nearly 25% lower regret when there is no noise for RCV1.
This is particularly encouraging given that the amount of
feedback the supervised algorithm receives is vastly supe-
rior in informativeness to that of the online learning method:
While the supervised algorithm receives the relevance labels
of each document for each of the user’s intent, the DP al-
gorithm only receives a single preference (which has atmost
5 documents) in each iteration. Even for the η = 0.2 case,
the DP algorithm is able to achieve lower regret eventually,
indicating that the trend holds even under noisy conditions.

Finally, note that the (per-iteration) training times of
the supervised batch method are vastly larger than those
of the DP algorithm (∼ 1000s vs. 0.1s). This is because
the supervised method solves a more complex optimization
problem (the structural SVM objective), while training the
Diversifying Perceptron involves just a single update step.
Consequently, this makes the DP algorithm especially use-
ful in problem settings where we would like to continu-
ously improve the learned model over time, something that
would be prohibitively expensive with the supervised learn-
ing method.

7. CONCLUSIONS
We proposed online-learning algorithms for learning diver-

sity in rankings. The proposed algorithms balance diversity
and relevance by modeling the utility of the ranking as a
submodular function. Using plausible user feedback in the
form of preferences between rankings, the algorithms are
able to learn rankings that optimize the user’s utility. In
addition to theoretically characterizing the performance of
the algorithms and their robustness to noise, we showed that
the algorithms perform well in empirical studies. Future re-
search directions are the deployment of the algorithm in a

real system and validation of the feedback model in user
studies.

This research was funded in part by NSF Award IIS-
0905467.

References
[1] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong.

Diversifying search results. In WSDM, 2009.

[2] J. Carbonell and J. Goldstein. The use of mmr,
diversity-based reranking for reordering documents and
producing summaries. In SIGIR, 1998.

[3] H. Chen and D. R. Karger. Less is more: probabilis-
tic models for retrieving fewer relevant documents. In
SIGIR, 2006.

[4] C. Clarke, M. Kolla, and O. Vechtomova. An effective-
ness measure for ambiguous and underspecified queries.
In Advances in Information Retrieval Theory, Lecture
Notes in Computer Science, 2009.

[5] C. L. Clarke, N. Craswell, and I. Soboroff. Overview of
the trec 2009 web track. Technical report, 2010.

[6] K. El-Arini and C. Guestrin. Beyond keyword search:
discovering relevant scientific literature. In KDD, 2011.

[7] T. Joachims, L. Granka, B. Pan, H. Hembrooke,
F. Radlinski, and G. Gay. Evaluating the accuracy of
implicit feedback from clicks and query reformulations
in web search. ACM Transactions on Information Sys-
tems (TOIS), 25(2), April 2007.

[8] A. Kulesza and B. Taskar. Learning determinantal
point processes. In UAI, pages 419–427, 2011.

[9] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1:
A new benchmark collection for text categorization re-
search. JMLR, 5:361–397, 2004.

[10] F. Radlinski, P. N. Bennett, B. Carterette, and
T. Joachims. Redundancy, diversity and interdepen-
dent document relevance. SIGIR Forum, 43(2):46–52,
2009.

[11] F. Radlinski, R. Kleinberg, and T. Joachims. Learning
diverse rankings with multi-armed bandits. In ICML,
2008.

[12] K. Raman, T. Joachims, and P. Shivaswamy. Struc-
tured learning of two-level dynamic rankings. In CIKM,
2011.

[13] R. L. Santos, C. Macdonald, and I. Ounis. Selectively
diversifying web search results. In CIKM, 2010.

[14] P. Shivaswamy and T. Joachims. Online structured pre-
diction via coactive learning. In ICML, 2012.

[15] A. Slivkins, F. Radlinski, and S. Gollapudi. Learning
optimally diverse rankings over large document collec-
tions. In ICML, pages 983–990, 2010.

[16] A. Swaminthan, C. Metthew, and D. Kirovski. Essen-
tial pages. In Technical Report, MSR-TR-2008-15, Mi-
crosoft Research, 2008.

[17] Y. Yue and C. Guestrin. Linear submodular ban-
dits and their application to diversified retrieval. In
Advances in Neural Information Processing Systems
(NIPS), 2012.

[18] Y. Yue and T. Joachims. Predicting diverse subsets
using structural svms. In ICML, 2008.

[19] C. X. Zhai, W. W. Cohen, and J. Lafferty. Beyond
independent relevance: methods and evaluation metrics
for subtopic retrieval. In SIGIR, 2003.

