
Phrasing Techniques for Multi-Stroke Selection Gestures
 

Ken Hinckley1, Francois Guimbretiere2, Maneesh Agrawala1, Georg Apitz2, Nicholas Chen2 
1Microsoft Research, One Microsoft Way, Redmond, WA 98052 

2University of Maryland, A.V. Williams Building, College Park, MD 20742 
kenh@microsoft.com, francois@cs.umd.edu, maneesh@cs.berkeley.edu, geapi@cs.umd.edu, nchen@cs.umd.edu 

 
 

ABSTRACT 
Pen gesture interfaces have difficulty supporting arbitrary 
multiple-stroke selections because lifting the pen introduces 
ambiguity as to whether the next stroke should add to the existing 
selection, or begin a new one. We explore and evaluate techniques 
that use a non-preferred-hand button or touchpad to phrase 
together one or more independent pen strokes into a unitary multi-
stroke gesture. We then illustrate how such phrasing techniques 
can support multiple-stroke selection gestures with tapping, 
crossing, lassoing, disjoint selection, circles of exclusion, 
selection decorations, and implicit grouping operations. These 
capabilities extend the expressiveness of pen gesture interfaces 
and suggest new directions for multiple-stroke pen input 
techniques. 
 
CR Categories: H.5.2 [Information Interfaces and Presentation]: 
Input 
 
Keywords: phrasing, tablets, gestures, pen input, multiple strokes 

1 INTRODUCTION 
A number of pen gesture interfaces reported in the literature have 
sought to phrase together multiple subtasks within a single pen 
stroke [2,5,6,8,9,11,22]. For example, a single pen gesture can 
integrate the verb, direct object, and indirect object for a Move 
command by lassoing the objects to move, extending the pen 
stroke outside of the lasso, and then lifting the pen to indicate 
where to move the selected objects [11]. This unistroke strategy is 
extremely tempting for designers of pen-operated devices. Pen 
contact with the screen phrases multiple subtasks together into a 
single cognitive chunk [5], and also may help avoid the 
introduction of persistent modes. The unistroke strategy also 
amortizes any overhead cost required to initiate a gesture across 
multiple subtasks. 

However, recent results suggest a muliple-stroke strategy can 
offer advantages. Zhao & Balakrishnan [26] have shown that 
“simple marking menus” that use multiple straight pen strokes to 
navigate through a hierarchical marking menu are fast and result 
in lower error rates than traditional compound marking menus 
[13] that require a single stroke (with pauses or inflection points 
delimiting the hierarchy). Guimbretiere and Apitz [2] propose 
crossing-based widgets in CrossY. The user can draw a single 
stroke that crosses multiple widgets, but Guimbretiere and Apitz 
also report that “novice users will perform one command at a 
time,” so CrossY permits the user to draw multiple strokes that 
individually cross each widget in a dialog box. If CrossY required 
everything to be done in a single continuous stroke, then a mistake 
late in the process would force the user to start over. The user 
exits a CrossY dialog box by crossing the border, which serves as 
a cue to the system that the multiple-stroke input is complete.  

Thus, while it is sometimes desirable (particularly for experts) 

to provide the option to articulate complex gestures in a single 
stroke, pen interfaces should not necessarily require users to do 
so. In our Move example, if the selection is complex, or if the 
target for the Move operation is on another page, a unistroke 
syntax may be cumbersome or infeasible. Furthermore, it is 
difficult to support a mix of selection techniques including 
tapping, crossing, and lassoing disjoint sets of objects within a 
unistroke syntax. Another problem with a strictly unistroke 
strategy is that users sometimes want to pull the pen away, for 
example while forming a complex selection, so that they can view 
the screen to verify progress without their hand occluding it. 

 

 

 
Fig. 1. Multiple-stroke alignment. Top: The user crosses the 
bottom of each word, then a third stroke with a pigtail activates a 
marking menu, which contains the Align command. The numbers 

indicate the starting position of each subsequent stroke.  
Bottom: Vertical crossing strokes allow the user to employ the 

same command gesture to perform a different type of alignment. 

We advocate multiple-stroke selection gestures and demonstrate 
how some operations that are difficult to express with traditional 
graphical interfaces, such as alignment of specific edges of 
multiple objects (Fig. 1), become quite natural to articulate with 
pen gestures. However, previous gestural interfaces have had 
difficulty supporting arbitrary multiple-stroke selections because 
lifting the pen introduces ambiguity as to whether the next stroke 
should add to the existing selection, or begin a new one. For 
example, Kurtenbach & Buxton’s GEdit prototype [11] supports 
circles of exclusion by allowing the user to draw a lasso-within-a-
lasso, but does not allow the user to add to the selection nor issue 
a single command that acts on two or more disjoint lassos. GEdit 
also cannot support crossing as a selection gesture because a 
straight-line stroke always triggers a marking menu command. 
Tivoli [20] supports bump and bite gestures that add or remove 
objects from a lasso selection, but these gestures “must begin and 
end on the loop” [20], which makes them difficult to draw and 
precludes disjoint selection regions. Thus, Tivoli and GEdit can 
only support multiple-stroke selection gestures in special cases 
where a pen stroke starts on or within a prior lasso selection. 

We first explore techniques that use a nonpreferred-hand button 
or touchpad to phrase together one or more independent pen 
strokes into a unitary multi-stroke gesture. Our experimental 
results suggest that users prefer a button and that a design that 

  



requires muscle tension from the nonpreferred hand for the full 
course of a phrase results in a very low error rate (2.5%). We then 
illustrate how this design can support multiple-stroke selection 
gestures with tapping, crossing, lassoing, disjoint selection, and 
circles of exclusion. We also propose novel selection techniques 
including selection decorations and implicit groups. Together, 
these contributions extend the expressiveness of pen gesture 
interfaces and may suggest new directions for multiple-stroke pen 
interaction techniques. 

2 RELATED WORK 
Buxton [5] discusses phrasing as a way to organize subtasks into 
cognitive subroutines. He suggests that phrasing accelerates the 
proceduralization of knowledge into routine skills. Buxton raises 
the example of a pull-down menu, which uses tension on the 
mouse button to “glue together” the subtasks of invoking the 
menu, navigating to an item, and validating the command 
selection. This perspective motivated Sellen et al. [25] to conduct 
a study which shows that switching modes by pressing and 
holding a footpedal reduces mode errors in a text editor. 

Li et al. [15] demonstrate that a nonpreferred-hand button offers 
a quick and effective mechanism for mode switching between 
plain ink strokes and unistroke gestures. Scriboli [9] uses such a 
button primarily to support a unistroke syntax that delimits the 
command from the selection by utilizing a self-crossing pigtail 
within the stroke. In this paper, we adopt the pigtail, but seek to 
use it as a way to transition to command selection in multiple-
stroke phrases rather than as a delimiter within unistroke gestures. 
Other techniques, such as the selection handle proposed by 
Kurtenbach [11], could play a similar role but we chose not to use 
them because handles on multiple selection strokes become 
confusing and clutter the display. Scriboli [9] and PapierCraft [16] 
suggest that users might hold the gesture mode across multiple 
strokes, but neither evaluates this approach.  

Some pen systems rely on recognition-based approaches to 
avoid explicit ink/gesture switching [14,23]. Even if we assume 
recognition is always correct, which of course it is not, a 
fundamental problem with automatic approaches is that the 
system cannot classify a set of strokes as a gesture or as ink until 
after the user has finished drawing the entire command phrase. 
This makes it difficult to provide incremental feedback or to 
prompt the user with available commands before the user commits 
to an operation. Our study establishes that a simple button can be 
used for robust articulation of multi-stroke phrases that may be 
difficult to support with purely recognition-based approaches. 

3 PHRASING TECHNIQUES 
A phrasing technique is the interaction technique used by a system 
to define the boundaries of a single command phrase in terms of 
elemental input actions. For example, if a system supports disjoint 
selections, then how does the user indicate that an individual 
selection region should be added to a selection, or start a new 
selection? A phrasing technique must consider both the timing of 
the input (when can the user start or end the phrase?) and the 
nature of the input (what does the user do to start, maintain, or end 
a phrase?). The design also must consider that the user might 
change his mind or make a mistake at any point in the process, so 
the technique must be flexible and allow the user to abandon an 
incomplete phrase. 

Previous work [5,25] suggests that the degree of tension 
required of the user may be an important aspect of phrasing. 
Buxton [5] argues that “we can use tension and closure to develop 
a phrase structure [that] reinforces the chunking that we are trying 
to establish,” but we are not aware of any study that has 
investigated the effectiveness of phrasing techniques for multiple-

stroke pen gestures. We use the term phrase tension to mean the 
use of physical tension to ‘chunk’ actions, and we adopt this as a 
guiding principle to devise several possible phrasing techniques 
that combine a nonpreferred hand button with a pen held in the 
preferred hand, as follows:  

Full-tension: The user must maintain muscular tension 
throughout the phrase. The user presses and holds the 
nonpreferred hand button at the beginning of the phrase, and must 
continue holding it until the end of the last pen stroke (Fig. 2). 
That is, the user must lift the button to end the command phrase. 

Half-tension: The user presses and holds the mode switch 
button while perfoming one or more strokes to indicate the 
selection, and must continue to do so until a pigtail terminates the 
selection, and activates a marking menu. The user applies 
muscular tension at the start of a phrase, and maintains it through 
the climax of a phrase, but can relax after that (Fig. 3). This is the 
technique proposed by Scriboli: “the user can combine various 
scopes into a single phrase that is terminated by a special operator 
(the pigtail)” [9]. One virtue of the half-tension technique is that it 
allows the user to issue several commands in a row while 
continuing to hold the button, since a pigtail (rather than a button-
up event) separates commands from one another. However, our 
experiment does not investigate this task scenario. 

Low-tension: Muscular tension of the nonpreferred hand 
introduces a new phrase, and the phrase is maintined by holding 
the pen in proximity of the screen. That is, the user clicks (presses 
and releases) the nonpreferred-hand button to start the phrase, 
keeps the pen on or near the screen to maintain the phrase, and 
finally pulls the pen away to end the phrase. We found that it was 
necessary to ignore brief unintentional gaps where the pen goes 
out-of-range before returning to proximity; we used a 600ms 
time-out to bridge these gaps (Fig. 4). We explored this technique 
for two reasons: (1) it was unclear if users were willing to hold 
down the button for extended periods; (2) if proximity of the pen 
could be used to phrase strokes together, this would permit an 
initial click of either a graphical button or the pen barrel button as 
alternatives to a nonpreferred-hand button (which may not always 
be available).  For our experiment, however, to make a rigorous 
comparison between techniques, we evaluated a nonpreferred 
hand mechanism for all three phrasing techniques. 

Button vs. Touchpad: Our phrasing techniques can be 
implemented with a physical button, or with a touch-sensitive 
surface such as a touchpad. A touch-sensitive surface may offer 
advantages since it could easily provide a large area or long 
touch-sensitive strip for mode switching, thus reducing the need 
for a small button at a specific location. It also may require less 
strain than holding down a button, and potentially could support 
secondary tasks such as bimanual scrolling [7].  

Holding a pen’s barrel button might offer another way to phrase 
strokes together, but previous work has demonstrated that a 
nonpreferred-hand button outperforms a barrel button [15]. Also, 
current tablets cannot sense a press or release of the barrel button 
while the pen is out-of-range, making the technique impractical. 

extra strokes 
allowed 

drag

DiC1S1

selection cmd

D11

1

2

0

pe
n

bu
tto

n

inking

S2 S3

cross menu boundary

Release button 
to end trial

extra strokes 
allowed 

drag

DiC1S1

selection cmd

D11

1

2

0

pe
n

bu
tto

n

inkinginking

S2 S3

cross menu boundary

Release button 
to end trial

 
Fig. 2. Full-tension technique timing diagram. The user draws 

three ink circles, then three selections (S1, S2, S3). The user issues 
a Move command (C1) and drags (D1) the selected objects to a 
desired location. The user may lift the pen while dragging (Di). 

Lifting the button ends the phrase. 



lift pen to end trial 

drag

C1S1

selection cmd

D11

1

2

0

pe
n

bu
tto

n
inking

S2 S3

cross menu boundary

Release button 
any time after 
pigtail

lift pen to end trial 

drag

C1S1

selection cmd

D11

1

2

0

pe
n

bu
tto

n
inkinginking

S2 S3

cross menu boundary

Release button 
any time after 
pigtail

 
Fig. 3. Half-tension technique timing diagram. 

 

Phrase ends once
pen stays out-of-
range for 600ms

drag

C1S1

selection cmd

D11

1

2

0

pe
n

bu
tto

n

inking

S2 S3

0 Brief gaps with pen out-
of-range are permitted

Phrase ends once
pen stays out-of-
range for 600ms

drag

C1S1

selection cmd

D11

1

2

0

pe
n

bu
tto

n

inking

S2 S3

0 Brief gaps with pen out-
of-range are permitted

 
Fig. 4. Low-tension technique timing diagram. 

4 EXPERIMENTAL TASK 
We conducted an experiment to assess the speed and error rates of 
the full-tension, half-tension, and low-tension phrasing techniques 
as realized using both a nonpreferred-hand button and a 
nonpreffered-hand touchpad as the mode switch control (Fig. 5).  

 

 
Fig. 5. Set-up. Left: touchpad. Right: Ctrl key device. 

We decided to investigate the effectiveness of the above 
phrasing techniques for a Move command similar to that discussed 
in the introduction. To assess the phrasing techniques, however, 
our experimental task employs a Move command with multiple 
direct objects (i.e. multiple disjoint selections). Thus, our task had 
users switch to gesture mode and form a disjoint selection. Users 
then chose the verb (the Move command) from a 4-way marking 
menu activated by making a pigtail (a cursive e) gesture [9]. 
Finally, users dragged the pen to indicate the location to Move the 
objects to (i.e. the indirect object), and lifted the pen. Since the 
nonpreferred-hand device serves as a mode switch between inking 
and gesturing, our experimental task requires users to enter a mix 
of ink strokes and gesture strokes. The inking subtask consists of 
circling objects, rather than free-form writing, to reduce 
variablity. This task is suitable for experimental study while also 
being representative of a realistic task.  

The task presented two sets numbers arranged in a 3x3 grid, 
with one set on each side of the screen (Fig. 6). To start, three 
numbers in the left set were highlighted in blue. The user circled 
the blue numbers in ink mode; each number turned dark red when 
it was successfully circled. Three different numbers in the grid 
then turned orange, and the user switched to gesture mode and 
selected these numbers using three separate lasso selections with 
auto-completion [18]. 

The user’s task was to drag these selected numbers to the 
corresponding empty positions in the right grid (Fig. 6) using the 

Move command. The trials alternated between selecting and 
dragging the items from left-to-right, and then right-to-left.  

The user issued a Move command by drawing a pigtail and 
heading south in the marking menu (Fig. 2). The user dragged the 
numbers to their final position by extending the marking menu 
stroke beyond the outer boundary of the menu [8,9,22] and lifting 
the pen, which ended the trial for the half-tension and low-tension 
techniques. In the full-tension condition, lifting the button ended 
the trial, so it was possible for users to lift the pen while dragging; 
however users rarely employed this capability since the task did 
not require multiple dragging strokes. This is a property of the 
full-tension technique that should be further explored in future 
experiments. 

 

 
Fig. 6. Task screen: The user has just circled (1,5,7) with ink 
(left grid). The user then switches to gesture mode, selects the 

numbers highlighted in orange (2,6,8), and uses the Move 
command to drag them to the empty slots (at right). 

For each trial, the starting 3x3 grid alternated between the left 
and right sides of the screen. The experiment provided auditory 
cues [19] when the user initiated gesture mode or selected the 
Move command. Any errors committed by the user produced an 
error sound. Moving the wrong numbers, moving the numbers to 
the wrong position, or drawing ink during the selection phase 
(indicating failure to switch to gesture mode) were all recorded as 
errors. Selecting the wrong command from the pigtail-activated 
marking menu also was counted as an error, but users never 
actually committed this error during any experimental trial. 

Exiting gesture mode at the wrong time also was counted as an 
error. For the low-tension condition, this error occurred if the pen 
moved out-of-range for longer than 600ms before the Move 
command was issued. For the half-tension condition, this error 
occurred if the user released the button prior to drawing the pigtail 
to issue the command. For the full-tension condition, releasing the 
button too early sometimes could not be distinguished from a 
move-wrong-position error. Because it was sometimes difficult to 
determine the type of error, and because a single mistake often led 
to a cascade of multiple errors within a trial, we treated errors as a 
pass/fail outcome per trial, rather than summing the total number 
of errors. 

4.1 Mode Switching Devices 
For our nonpreferred-hand mode switching button we used the 
Ctrl key on a keyboard placed next to the Tablet, because our 
Tablet PC lacked a suitable bezel button. For the touchpad, we 
used the contact area sensed by a Synaptics touchpad to estimate 
the pressure exerted on the pad. Our system enters gesture mode 
when the contact area exceeds a threshold. At the start of the 
experiment, we ran a brief calibration sequence to set the 
threshold for each user to provide a good compromise between 
requiring heavy pressure, versus accidental activation on light 
touches. 

4.2 Participants and Apparatus 
We recruited 12 undergraduate and graduate university students as 
participants in the experiment. Of the 12 participants, 11 were 



right-handed and 7 were male. Each participant received $20 for 
their participation in the experiment. None of the participants had 
previously used a Tablet PC.  

Each participant used a Toshiba Protégé Tablet PC (1.5 GHz, 
512 MB) at 1024x768 (307mm diagonal) a desk in slate mode. 
The tablet had an external keyboard and a Synaptics touchpad to 
serve as the mode switching devices (Fig. 5). 

4.3 Experiment Design 
We used a 3x2 within-subjects design, so each user saw all 
conditions. Independent variables were Phrasing Technique (low-
tension, half-tension, full-tension) and Device (touchpad, button). 
Dependent variables were time to complete the entire gesture 
phrase, and error rate. Order of presentation of the phrasing 
techniques was fully counterbalanced. For each of the 6 possible 
orders, one participant used the Button (Ctrl key) first and another 
used the Touchpad first. The 12 participants each performed: 

3 Phrasing Techniques (Low, Half, Full) x 
2 Devices (Button, Touchpad) x 
40 practice trials + 30 timed trials 
= 420 trials per subject (180 timed trials) 
= 5,040 total trials (2880 practice, 2160 timed) 

5 RESULTS 
We discarded the first two experimental trials to avoid any start-
up effects, and used trials 3-30 for analysis. All outliers more than 
3 standard deviations from the mean were removed (a total of 
1.63% of all trials).  

A 3 x 2 within-subject ANOVA on error rate for the factors of 
Phrasing Technique and Device (Fig. 7) revealed a significant 
main effect of Phrasing Technique (F2,22,=4.914, p<0.05), but no 
significant main effect of Device, and no significant interactions. 
Bonferroni-corrected post-hoc comparisons revealed that the full-
tension technique had a significantly lower error rate (2.5%, 
p=.013) than the low-tension technique (5.2%). Half-tension had a 
4.3% error rate. The most common errors were drawing while in 
the select phase, which means that users forgot to invoke the 
gesture mode and tried to select without it. Moving the selection 
to the wrong position or moving the wrong selection were other 
common source of mistakes. None of these errors were 
significantly more common in any condition. 

  

0.00

2.00

4.00

6.00

8.00

10.00

click half full

tou

low-tension half-tension full-tension

button
touchpad

Error Rates
 

0.00

2.00

4.00

6.00

8.00

10.00

click half full

tou

low-tension half-tension full-tension

button
touchpad

Error Rates
 

0.00

2.00

4.00

6.00

8.00

10.00

click half full

tou

low-tension half-tension full-tension

button
touchpad
button
touchpad

Error Rates

 
Fig. 7. Error rate for each Phrasing Technique. 

A 3 x 2 within-subject ANOVA showed no significant effect on 
completion time for either Device or Phrasing Technique. 
Participants averaged approximately 5 seconds per trial for all 
techniques and devices (Fig. 8). However, we did not expect to 
observe large time differences because the multi-step task takes 
several seconds to complete, whereas initiating or terminating a 
gesture mode requires only a few tenths of a second [15]. In future 
work, a more complicated experimental design might be able to 
tease apart mode switching times from other user actions (e.g. 
[10]), but our focus in this study was to determine which 
techniques allowed users to effectively articulate multiple-stroke 
phrases. Thus, for our present experiment, error rate appears to be 

the more telling performance metric; this has also been the case in 
previous work on mode controls, e.g. [25].  

The Device x Phrasing Technique interaction was not 
significant for completion time, but we did observe a significant 
Order x Phrasing Technique interaction (F4,63=5.542, p<0.001). 
Inspection of the means revealed this is probably a floor effect: 
the low-tension and half-tension techniques tended to benefit 
more than the full-tension condition from exposure to previous 
conditions (Fig. 9). Thus, our experiment may slightly 
overestimate the average time for full-tension. 

 

0

1

2

3

4

5

6

7

click  half  full

tou

low-tension half-tension full-tension

button
touchpad

Completion Times

0

1

2

3

4

5

6

7

click  half  full

tou

low-tension half-tension full-tension

button
touchpad

Completion Times

 
Fig. 8. Completion time for each device and technique. 

As shown Fig. 9, while both the low-tension and half-tension 
conditions exhibit a normal learning pattern, the full-tension 
condition exhibits a flat learning curve. This suggests the 
possibility of asymmetrical skill transfer and more precisely that 
our experimental setting over-estimates the total completion time 
for the full-tension condition. For error rate, Order X Phrasing 
Technique was not significant (F4,63=.72, p=0.58). 

 

0

2

4

6

8

1 2 3

Th
ou

sa
nd

s

blockorder

se
co

nd
s

low-tension
half-tension
full-tension

Phrasing Technique X Order interaction

0

2

4

6

8

1 2 3

Th
ou

sa
nd

s

blockorder

se
co

nd
s

low-tension
half-tension
full-tension

low-tension
half-tension
full-tension

Phrasing Technique X Order interaction

 
Fig. 9. Performance times for each Phrasing Technique plotted 

by order (block) of trying each technique. 

5.1 Qualitative Results and Full-Tension Iteration 
Only 1 of the 12 participants preferred the Touchpad over the 
Button. The lack of tactile feedback resulted in comments that 
“the [Ctrl] key feels more reliable.” Several users reported that 
even though they only had to maintain light contact with the 
touchpad, it felt more secure to maintain solid pressure on it 
during the entire phrase. 

When asked to rank all three phrasing techniques, users split 
between the low-tension and full-tension techniques (6 users 
preferred each). When asked to compare only the full-tension and 
half-tension settings, 8 users preferred full-tension, 2 preferred 
half-tension, and 2 claimed no preference. With low-tension, 
many users felt confined by having to keep the pen in range, and 
sometimes felt uncertain of the mode. Furthermore, canceling an 



operation after a mistake incurred a 600ms delay (for the pen-
proximity timeout to expire and exit gesture mode). 

For the half-tension technique, we instructed participants to 
remove their finger as soon as they felt it was convenient to do so, 
yet 6/12 participants tended to keep the button pressed until the 
end of the phrase, thus revealing a strong tendency to hold tension 
for an entire chunk [5]. 

The full-tension technique was very reliable: users exhibited no 
errors at all in 14 of the 24 sessions. But many users disliked the 
requirement to coordinate both hands at the end of the task. Based 
on this feedback, we altered our implementation to be forgiving 
with respect to whether the pen lifts first or the button lifts first at 
the end of the phrase. The dotted rising and falling edges for the 
button (Fig. 10) show how our design iteration relaxes the relative 
timing of the button press/release events with respect to the 
corresponding pen-up/pen-down events. In informal testing, this 
appears to foster the same usage model without requiring hand 
synchronization at the end of a phrase.  

dragging

S1

cmd

S2

selection

1

1

2

0

pe
n

bu
tto

n

DiC1 D1

cross menu boundary

dragging

S1

cmd

S2

selection

1

1

2

0

pe
n

bu
tto

n

DiC1 D1

cross menu boundary

 
Fig. 10. Final full-tension technique. The dotted rising and falling 

edges for the button show how relative ordering of pen/button 
events is flexible in our revised implementation. 

6 MULTIPLE-STROKE SELECTION TECHNIQUES 
Our study shows that the full-tension technique in particular is a 
practical and robust way to articulate multiple-stroke gestures. To 
illustrate the expressive power of multiple-stroke gestures, this 
section demonstrates how pen gesture commands can benefit from 
selections specified using multiple strokes.  

We implemented a prototype sketching application that 
supports selection of objects by lassoing, tapping on an object, 
crossing (drawing a straight line that crosses at least one edge of 
an object), or drawing a carat that points to the object (Fig. 11). 
We implemented several commands, including Align, Rotate, and 
Flip, to illustrate how the spatial properties indicated by these 
selection operators can be leveraged and composed to create 
powerful, general-purpose commands. 

 

 
Fig. 11. Selection gestures. (a) lasso (b) crossing (c) tapping (d) 

carat. Crossing edges: (e) top (f) horizontal center (g) bottom (h) left 
(i) vertical center (j) right. 

As seen in Fig. 12 our prototype implements complex selection 
features of previous work, namely circles of exclusion [11] and 
bump and bite gestures [20]. Unlike previous approaches [11,20] 
the additional strokes are not constrained to start and end within 
the initial lasso or on the initial lasso stroke, which makes them 
easier for the user to draw casually. This also makes the 

techniques easy to implement: any partial or complete lasso 
toggles the selection bit of the objects it contains; we then add the 
selected objects to the selection list, and remove any deselected 
objects. Thus the same code can implement both circles of 
exclusion and bump/bite. 

 

                  
Fig. 12. Left: Circle of exclusion; the user lassos hello+bye then 

recircles bye to exclude it from the selection. Right: Adding to 
selection with a bump and removing with a bite. 

6.1 Selection Decoration 
A selection decoration is a gesture that selects an object and 
indicates a spatial property of the object. Drawing a decoration 
gesture on or near an object selects some spatial property of the 
object. As a convenience, if the object is not already selected, it is 
selected as well. However, a decoration never excludes an object 
from a selection: adding a decoration to an already selected object 
does not toggle its selection bit, it just decorates it. This allows 
multiple decorations to be composed on objects in a selection. 

Our prototype currently supports three types of selection 
decoration: 

Crossing. Highlights the closest principle edge of an object 
with a dotted line, as seen in Fig. 11 e-j. 

Carat. Used to specify an optional center of rotation, at the 
inflection point of the carat, for the Rotate command (Fig. 14). 
Note that we also could have used the tap selection gesture in this 
way, but since users seem to expect tap to select (or deselect), and 
nothing else, overloading a tap to also indicate a center of rotation 
seemed problematic. 

Lasso. Instead of using lassos just for circles of exclusion, we 
have experimented with an implementation that automatically 
creates a group object, known as an implicit group, when the user 
lassos multiple objects. This implicit group can then be acted 
upon by subsequent gestures, but is automatically ungrouped 
when the phrase ends. Implicit groups are one of the most 
powerful features in our prototype; we will discuss some uses for 
implicit groups shortly. Using lassos to form implicit groups is 
currently an option in our system; we do not support implicit 
groups and circles of exclusion (Fig. 12, left) at the same time. 
However, this is a limitation of our implementation, rather than a 
fundamental conflict in functionality. When the implicit groups 
option is enabled, currently users can only exclude objects from a 
selection by tapping on them (which toggles their selection bit). 

Decorations add feedback to an object beyond the normal 
selection feedback. For example, the crossing selection decoration 
adds a dotted line that identifies the snap edge that is nearest to 
the crossing stroke (Fig. 11e-j). The carat shows a blue box at the 
selected point (Fig. 14c). Decorations do not necessarily have to 
be attached to a specific object. For example, the user can place 
the carat over white space. 

6.2 Example: Multiple Edge Alignment 
The user can use the crossing selection operator (Fig. 11e-j) to 
indicate edges of objects for alignment (Fig. 1). The final edge 
crossed is used as the reference edge (the edge that is aligned to). 
If the user misses the intended edge, he can cross the object again 
to override the previous stroke. This approach offers a nice 



economy of design, since the system includes just a single 
general-purpose Align command, rather than multiple versions 
(Align Left, Align Center, Align Middle, etc.) as seen in Microsoft 
PowerPoint, for example. Even with all these commands, some 
operations are still difficult to express with traditional approaches 
(such as aligning the left edge of one object to the right edge of 
another, Fig. 13). During informal tests, users commented that 
using our crossing selection operators with a single general 
purpose Align command was natural and seemed obvious.  

      
Fig. 13. Aligning opposite edges. Left: The user crosses the left 

edge of one photo, then indicates the right edge of another photo to 
align to. Right: Result after the alignment. 

6.3 Example: Rotation Using the Carat 
The carat selection operator selects a point on an object or on 
empty whitespace (Fig. 11d, Fig. 14a-e). The Rotate command 
uses the inflection point of the carat as a center of rotation. The 
user first draws the carat, then draws a pigtail to activate a 
marking menu, and then chooses the Rotate command. Dragging 
past the outer boundary of the menu then rotates the object around 
the center of rotation via direct manipulation. We actually 
implemented two different versions of our prototype sketching 
application to more quickly explore various design options; only 
one version (with a different menu visualization) currently 
supports the Rotate command, and that version is shown in Fig. 
14a-e. 

 
Fig. 14. Rotation using the carat. (a) before, (b) draw carat (c) 

feedback for selection decoration (d) choose rotate command (e) 
dragging with the carat as center-of-rotation. 

6.4 Example: The Flip Command 
The Flip command in our prototype is an example of a general 
purpose command that can span the full range from simple to 
sophisticated operations. The most elementary way to use Flip is 
to cross a single object, and then pigtail to choose Flip from the 
marking menu; in fact this can be done as a unistroke gesture if 
desired (Fig. 15). The Flip command uses the crossing axis, here 
the horizontal center of the handwritten word “ink,” as the axis of 

rotation; the user can draw a vertical cross to instead flip about a 
vertical axis. 

 

 
Fig. 15. Simple Flip command on a single object. 

The user can also flip several objects in one operation by 
individually crossing each object along the desired axis of rotation 
(Fig. 16). Here, the user crosses the horizontal center of each 
object, and then chooses Flip to rotate each object about its own 
local axis of rotation. 

 
Fig. 16. Flipping objects about their local horizontal center. 

But what if the user instead wanted to preserve the relative 
spatial relationship between the objects (a, b, c, d) and instead flip 
the entire group around one of the objects? Our implicit grouping 
feature can be used to specify these types of operations. 

6.5 Complex Operations via Implicit Grouping 
In pen interfaces, drawing a lasso often allows commands to act 
on objects as a unit [6,11,20]. We take this concept to its logical 
conclusion by using the lasso as a way to specify an implicit 
group. With implicit groups, when the user draws a lasso, this acts 
exactly as if the user had selected the objects and applied the 
Group command. However, our prototype flags implicit groups 
internally, so that when they become deselected, the Ungroup 
command is automatically applied. Thus the “group” only exists 
during the articulation of the command, and the user does not 
have to explicitly invoke the Group and Ungroup commands. We 
provide feedback of the implicit group by drawing a dotted orange 
rectangle around the lassoed objects (Fig. 17). 

 

 
Fig. 17. Flip a, b, c, and d around bottom of d. First the user 

crosses the bottom of the “d.” Then user lassos a, b, c, and d. The 
user then applies the Flip command. 



For most commands, such as lassoing objects and moving them 
as tested in our experiment, the creation of the implicit group is 
not important and need not concern the user. However, 
knowledgeable users can specify more sophisticated operations by 
using selection decorations and implicit groups together. 

Fig. 17 shows the Flip command with an implicit group. Here, 
we return to the example raised above, where a user wants to Flip 
the objects (a,b,c,d) around the d. To do this, the user just crosses 
the d, then lassos all four objects, and then pigtails to choose Flip. 
This causes the Flip command to rotate the implicit group about 
the bottom of d. Once the command is finished, the selection is 
automatically cleared, which results in our software ungrouping 
the implicit group. 

 

 
Fig. 18. Alignment to center of implicit group. (a) Lasso items to 

form implicit group. (b) Cross center of implicit group. (c) The center 
of the implicit group is aligned with the bottom of the triangle. (d) 

Final result at completion of command; the implicit group is 
automatically unpacked. 

The user can apply selection decorations to an implicit group, 
allowing composition of functionality. For example, the user can 
use this capability to align the center of a group of objects to 
another object without any explicit use of the “Group” command 
(Fig. 18). As another example, to instead flip (a,b,c,d) around 
their collective right edge, the user would first lasso the objects 
(thus creating the implict group), then cross the right edge of the 
implicit group, and then choose Flip. This pivots the objects about 
the rightmost edge. Implicit groups can also be nested by drawing 
a lasso that encompasses one or more previous lassos. Both of 
these interactions are illustrated in the accompanying video. 
Nested implicit groups obviously are a feature for expert users. 
Nonetheless, it seems compelling that a basic lasso selection 
operation in a pen interface, which test users immediately 
understood, can be used in more sophisticated ways by 
experienced users. 

In practice, we would not expect a novice user to immediately 
grasp the full complexity that can be expressed with our selection 
operators. Yet these examples show how composing multiple 
selection operators allows experienced users to specify complex 
operations without having to repeatedly Group, act on, and then 
Ungroup the objects. Because the commands in our prototype 
have such general functionality, the command set as experienced 
by the user can remain simple (Flip, Align, etc.). The spatial 
properties needed to give specific meaning to a command come 
from the multiple strokes that together specify the selection. 

6.6 Selection Recall 
During early testing, users would become frustrated if they 

drew one or more selection strokes, activated a command, but 
then made a mistake or wanted to re-use the selection for another 
command. It was frustrating for users to have to redraw the same 
selection again. To our knowledge, existing graphical interfaces 
do not include mechanisms to undo or redo selections, but it 
appears that one consequence of making selections more 
expressive in our system is that it may become necessary to 
include a feature to “recall” a prior selection. 

A naive full-tension design precludes the repeated invocation of 
different commands that act upon on the same selection. To 
address this problem, we allow the user to tap twice on the mode 
switch button to recall the prior selection. The user then holds 
down the button, and can modify the prior selection (if desired) 
before proceeding with a new command as usual. This works, but 
users have to be told to tap the gesture key twice to invoke this 
feature. Users suggested a “recall selection” icon or a double tap 
of the pen as alternatives, but we have not yet tried these.  

7 CONCLUSIONS AND FUTURE WORK 
We have conducted the first experimental study of interaction 
techniques for phrasing of multiple-stroke gestures. We have 
demonstrated how our prototype uses multiple-stroke phrasing 
techniques to elegantly support selection techniques explored by 
previous systems, including disjoint selection regions, circles of 
exclusion, and bump/bite gestures. But our approach also enables 
new techniques, such as selection decorations and implicit groups, 
which allow for sophisticated functionality from a few general-
purpose commands. However, while we have conducted some 
informal user tests, these advanced features have not yet been 
subjected to careful experimental studies.  

Our experimental results are consistent with the conclusion that 
the full-tension phrasing technique provides the strongest 
reinforcement of the chunking of multiple-stroke selection, 
command, and parameter phrases that our designs are trying to 
establish. However, the low- and half-tension techniques worked 
well enough that they could be considered as alternative multiple-
stroke phrasing techniques. For example, our full-tension 
technique might not be practical for an electronic whiteboard that 
lacks any button for the nonpreferred hand, or in some cases the 
specific details of an application’s interaction techniques might be 
incompatible with the full-tension technique. 

We have described several benefits and extensions to existing 
techniques that follow from supporting a multiple-stroke syntax 
for pen gesture interactions: 
• The ability to select objects using multiple strokes allows 

additional functionality, including more precise control over 
multiple object selections, easier editing of selections, and 
nesting of multiple operations within a selection. The 
resulting polymorphic commands also offer a nice economy 
of design, because the system can offer a single gesture 
command that acts on a wide variety of selections (e.g. Align 
to right, Align to bottom, Align to horizontal center, etc). 



• The use of nonpreferred-hand physical tension as a phrasing 
technique for multiple-stroke interactive dialogs offers a 
concrete realization of ideas in the literature [5,10,12,15,24] 
that can be applied to realize new gesture-based interaction 
techniques such as selection decorations.  

• Our implicit group selection mechanism can streamline some 
operations by removing the necessity to explicitly group and 
ungroup objects, potentially improving the cognitive and 
physical workflow of such operations. This would be an 
interesting issue to explore further in future studies. 

• Our multiple-stroke approach to selection extends or 
subsumes a number of individual techniques (bump, bite, 
crossing, lasso selection, tapping) that have appeared in long 
history of gesture-driven systems [1,2,4,6,9,11,18,21], but 
now can be offered in a single integrated technique that 
offers these as variants. 

• Our experimental validation confirms that multiple-stroke 
phrases can be supported without introducing any ambiguity 
of which strokes “belong” to a command. In particular, the 
2.5% error rate exhibited by the full-tension phrasing 
technique suggests that it can offer particularly robust 
performance. However, a more sophisticated experimental 
design would be required to determine if there are any subtle 
differences between the techniques in terms of mode 
switching times [10,15]. Future studies of phrasing 
techniques should also investigate alternative sequences of 
commands [3,10,17]. For example, if the user must issue 
three successive commands, does the need to “remember” to 
release the button between commands pose any problem for 
the full-tension technique? 

Many of these capabilities would be difficult or impossible to 
support within a unistroke command syntax. Thus, holding down 
a button to explicitly signal a mode transition between inking and 
gesture input not only offers a fast and reliable means to switch 
modes [15], it also offers an effective way to phrase together 
multiple-stroke pen gesture commands. We hope that our 
discussion of the multi-stroke design strategy will help pen 
gesture interaction designers to think about and explore new ideas 
in the design space of multi-stroke gestural techniques, without 
the limitations and ambiguity that multi-stroke gestures have 
raised in previous systems. 

ACKNOWLEDGEMENTS 
This work has been supported in part by the Microsoft Center for 
Interaction Design and Visualization at the University of 
Maryland and NSF under grant IIS-0414699. We also would like 
to thank Corinna Löckenhoff for assistance with the data analysis. 

REFERERNCES 

[1] Accot, J., Zhai, S. More than dotting the i's-- Foundations for 
crossing-based interfaces. ACM CHI 2002, 73-80. 

[2] Apitz, G., Guimbretiere, F. CrossY: A crossing based drawing 
application. UIST 2004, 3-12. 

[3] Appert, C., Beaudouin-Lafon, M., Mackay, W. Context matters: 
Evaluating interaction techniques with the CIS model. Proc. HCI 
2004, Springer Verlag, 279-295. 

[4] Buxton, W. An Informal Study of Selection-Positioning Tasks. 
Proceedings of Graphics Interface '82: 8th Conference of the 
Canadian Man-Computer Communications Society, 323-328. 

[5] Buxton, W. Chunking and Phrasing and the Design of Human-
Computer Dialogues. Information Processing `86, Proc. IFIP 10th 
World Computer Congress, Amsterdam: North Holland, 475-480. 

[6] Buxton, W., Fiume, E., Hill, R., Lee, A., Woo, C. Continuous hand-
gesture driven input. Proceedings of Graphics Interface '83, 191-195. 

[7] Buxton, W., Myers, B. A Study in Two-Handed Input. Proceedings 
of ACM CHI'86:, 321-326. 

[8] Guimbretiere, F., Winograd, T. FlowMenu: Combining Command, 
Text, and Data Entry. ACM UIST 2000, 213-216. 

[9] Hinckley, K., Baudisch, P., Ramos, G., Guimbretiere, F. Design and 
Analysis of Delimiters for Selection-Action Pen Gesture Phrases in 
Scriboli. CHI 2005, 451-460. 

[10] Hinckley, K., Guimbretiere, F., Baudisch, P., Sarin, R., Agrawala, 
M., Cutrell, E. The Springboard: Multiple Modes in One Spring-
Loaded Control. CHI 2006, to appear. 

[11] Kurtenbach, G., Buxton, W. Issues in Combining Marking and 
Direct Manipulation Techniques. UIST'91, 137-144. 

[12] Kurtenbach, G., Fitzmaurice, G., Owen, R., Baudel, T. The Hotbox: 
Efficient Access to a Large Number of Menu-items. CHI'99, 231-237. 

[13] Kurtenbach, G., Sellen, A., Buxton, W., An emprical evaluation of 
some articulatory and cognitive aspects of 'marking menus'. J. 
Human Computer Interaction, 1993. 8(1). 

[14] LaViola, J. a. Z., R., MathPad2: A System for the Creation and 
Exploration of Mathematical Sketches. ACM Transactions on 
Graphics, 2004. 23(3): p. 432-440. 

[15] Li, Y., Hinckley, K., Guan, Z., Landay, J. A. Experimental Analysis 
of Mode Switching Techniques in Pen-based User Interfaces. CHI 
2005, 461-470. 

[16] Liao, C., Guimbretiere, F., Hinckley, K. PapierCraft: A Command 
System for Interactive Paper. UIST 2005, 241-244. 

[17] Mackay, W. E. Which Interaction Technique Works When? Floating 
Palettes, Marking Menus and Toolglasses Support Different Task 
Strategies. Proc. AVI 2002 International Conference on Advanced 
Visual Interfaces, ACM, 203-208. 

[18] Mizobuchi, S., Yasumura, M. Tapping vs. Circling Selections on 
Pen-based Devices: Evidence for Different Performance-Shaping 
Factors. CHI 2004, 607-614. 

[19] Monk, A., Mode Errors: A User-centered Analysis and some 
Preventative Measures Using Keying-contingent Sound. 
International J. Man-Machine Studies, 1986. 24: p. 313-327. 

[20] Moran, T., Chiu, P., van Melle, W. Pen-Based Interaction 
Techniques for Organizing Material on an Electronic Whiteboard. 
UIST'97, 45-54. 

[21] Pier, K., Landay, J. A., Issues for Location-Independent Interfaces. 
1992: Technical Report ISTL92-4, Xerox Palo Alto Research Center. 

[22] Pook, S., Lecolinet, E., Vaysseix, G., Barillot, E. Control Menus: 
Execution and Control in a Single Interactor. CHI 2000 Extended 
Abstracts, 263-264. 

[23] Saund, E., Lank, E. Stylus Input and Editing Without Prior Selection 
of Mode. UIST'03, 213-216. 

[24] Sellen, A., Kurtenbach, G., Buxton, W. The Role of Visual and 
Kinesthetic Feedback in the Prevention of Mode Errors. Proc. IFIP 
INTERACT'90: Human-Computer Interaction, 667-673. 

[25] Sellen, A., Kurtenbach, G., Buxton, W., The Prevention of Mode 
Errors through Sensory Feedback. J. Human Computer Interaction, 
1992. 7(2): p. 141-164. 

[26] Zhao, S., Balakrishnan, R. Simple vs. Compound Mark Hierarchical 
Marking Menus. UIST 2004, 33-42. 


