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Structured Models

* Problems where output variables are
mutually dependent or constrained

— E.g., spatial or temporal relations

* Such dependencies often as important as
Input-output relations

= Historically studied in generative setting
— HMM and MRF models

— Often driven by specific problems
e E.g., speech and low-level vision

— Recently more general framework and
discriminative methods




Structured Models In Vision

= Long history with MRF’s dating to 1980’s
— Stereo, segmentation, sensor fusion
— Output variables pixel labels, e.g., disparities
— Fixed spatial dependency structure

— Primarily prediction/inference and not learning
e Hand-tuned energy functions for given problem
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Structured Models In Low-Level Vision

* Hand-tuned models a limitation?
— Few parameters, hard to get ground truth

* Yet structured learning does seem to help
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— Ground truth, max-likelihood CRF [SPO7], max-
margin [LHOS8]
— Latter results compare favorably to best hand-
tuned methods

— Generalize well across datasets!
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Structured Model for Stereo [LHO8a]

= Data term: sampling-insensitive
dissimilarity [BT98]

= Spatial term: linear function of disparity of
neighboring pixels and local image gradient

= Sparse long-range edges of length 3J, j<k
— Max cliques size 2

— Horizontal and vertical cligues

= Learn parameters using structured SVM
— BP for finding (approx) most violated constraint
— Loss function: number of bad unoccluded pixels




Learned Stereo Model Results

* Performs better than learned model [SPO7],
comparable to hand tuned [SS02][S+05]

* Generalizes reasonably well across datasets

Model \ Scene average | Teddy Cones
-Grd (K = 1), I,4 loss 14.71 11.34 4.68
- Grd, 00 15.56 10,92 4.27
- Long-range (K = 3), {444 13.64 8.80 3.94
- Long-range, [,.. 14.06 8.15 377
- [15] w/ 2 gradient bins 187 11.3 10.7
- [15] w/ 6 gradient bins 20 14.5 16.8
- [16] w/ GC (non-learning) — 16.5 7.70
- [18] (non-learning) - 6.47 4.79

Train on Middlebury-2006

- Long-range. [ ;4 15.73

- Long-range, [, 14.96
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Learning for Optical Flow [LHO8Db]

= Continuous state MRF
— Minimize training loss using SPSA (simultaneous
perturbation stochastic approximation)
e Measure loss using average endpoint error

e Gradient-free method similar to finite difference
(FDSA) but perturbing all model parameters

— Achieves state of art performance with good
generalization across images

e Again compared to hand-tuned methods

Method' Sequence |Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy|Average

Our model 6.84 847 12.5 840 388 6.32 256 7.29 | 7.03 | AAE
.18 057 0.84 0.52 L12 1.75 013 1.32 | 0.804 AEPE
Bruhn et al. [9] 10,1 9.584 16.9 14.1 393 677 1.76 6.29 8.71

0.28  0.69 1.12 LO7 124 156 010 1.38 | 0.930
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Optical Flow Examples




Object Category Recognition

* Three widely studied tasks
— Image classification
e Presence of absence of object category in image
— Object category detection

e Ildentifying instances and their locations

e Possibly subparts including articulated parts such
as human body pose

— Object category segmentation

e Ildentifying boundaries of instances — “mask”

= Structured models primarily in detection
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Structured Models In Recognition

= Combination of local part appearance with
spatial dependencies

* Energy minimization formulation of
prediction problem — what parts where

= Long history

— Dating at least to Fischler’s
Pictorial Structures in 1970’s

— Revisited in machine learning
context In late 1990’s by Fergus,
Perona & Zisserman, Felzenszwalb &
Huttenlocher, Forsyth & Ramanan
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Success with Structured Models

* Human body pose estimation particularly
well suited to structured formulation

— Body part appearances and kinematic
dependencies among parts

— Tree-structured constraints lead to natural
dynamic programming formulation

— Generalized distance transforms provide
Important additional efficiency [FHOO, FHO5]

— Substantial improvements in learning of parts
and spatial dependencies in past decade
[RSBO2], [RO6], [FMZ08]

e Some due to special case task assumptions
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Human Body Pose Models
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; = Star vs. tree model uncertainty
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Human Body Detection and
Pose Estimation

= Generic pictorial structures yielding state-
of-art performance [ARSO09]

— Shape context part descriptors
e Discriminatively trained AdaBoost classifiers

— Normalized margin interpreted as likelihood In
generative model

— Part posteriors estimated using BP (exact)
* Detection and pose estimation




[ARSO9] Results (vs [RO6])
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Limitations of Kinematic Trees

= Only represent relationships between
connected parts (note still good proposals)

= Coordination between limbs not encoded
— Critical for balance and many activities
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Non-Tree Models

= Larger cliques to capture more dependency
— Can quickly become computationally intractable

— Exponential in largest clique size, parameter
space for each node large

— Alternative of introducing latent variables




A Latent Gait Variable for Humans

= Additional variable corresponding to
common factor of limb coordination [LHO5]

— Consistency between limb positions, not
captured by kinematic (skeletal) model

e Rather than directly connecting limbs which
creates large clique




Example Using Brown MOCAP Data

= MAP estimate of best pose, single frame
— Loopy models, but with small cligues

f

Ground Truth Latent Tree Model Larger Clique
Variable Using | BP
Model (Pairwise)
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Latent Gait Variable Helps

= Comparison using ground truth (MOCAP)

— Latent gait variable model, tree structured
model, model with large clique (loopy graph)

— Better even than model with “more constraint”

—— bk, TG0
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Object Category Recognition

* Most approaches to classification have not
used structured models

— Bag models, features or words (VQ features)
— Scene-level descriptors such as gist

= More recently, use of weak structure In
spatial pyramid matching [LSPO6]

— Considerable success over bag models for
classification

— Fixed structural model, prediction but not
structure learning (analogous to MRF stereo)




Structured Models for Category
Recognition
= K-fan, set of k reference nodes [CFHO5]

— Triangulated (decomposable)

— Maximal clique for each non-reference node of
size k+1

— Complete graph, n-1 fan

» Weak spatial structure of 1-fan, star model,
seems to be sweet spot (today)
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Structured Models for Recognition

= Improvements in structured learning and
prediction driving state-of-art performance

— Felzenszwalb et al, Pascal VOC 07-09

* HoG part models
— Dense appearance

= Star-graph spatial model
— Provides reference frame

= Discriminatively trained models
— Latent SVM, weak labeling for training

= Mixture model for each category




Form of Model [FMRO8][FGMRO09]

= Two component bicycle model with 6 parts

Coarse Root Fine Parts Spatial Constraint
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Score of Hypothesis

Score of F at position p is

F-¢@p, H)

= Root w/n parts

score(po, - . .

:pn) —
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“data term”
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filters deformation parameters

“spatial prior”

di ’ (d:rf, dy?,?)

=1 T displacements

score(z)

/

concatenation filters and
deformation parameters
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V(H,2)
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concatenation of HOG
features and part
displacement features



Processing of Part Response

Kt o N

Input image

# ANAXKN
head filter
Response of filter in I-th pyramid level

Ri(x.y)=F - o(H (x.y,1))

cross-correlation

Transformed response

Di(ary) = s (Rila + i,y + dy) = d - (d®, dy?)

max-convolution, computed in linear time
(spreading, local max, etc)

"2
faf =) o c
i\=e))s Cornell University

EFp K2




feature map feature map at twice the resolution

model

=

Y
?

response of part filters

response of root filter

transformed responses

color enccw:ling of filter
response values

_ combined score of
root locations
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Example Results [FGMRO0O9]

= After non-maximum suppression
» Fast: approx 1 sec to search all scales




PASCAL VOC 2007 Person Detection

= Pictorial structure model
— 45% precision at 20% recall
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PASCAL VVOC 2008 Person Detection

= Disjunction of two pictorial structures
— 80% precision at 20% recall
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PASCAL VVOC 2009 Person Detection

= Disjunction of three pictorial structures
— 85% precision at 20% recall
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Example Car Detections [FGI\/IRO9]
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Segmentation by Detection

* Felzenszwalb et al also applied their
detection method to segmentation

* Binary mask associated to each part of
each class model to generate
segmentation

— Masks trained on segmentations

* Yields 3" or 4t ranked segmentation
results out of 21 entries in 2009 Pascal
challenge (“comp5”)




What’s Working for Recognition

= Algorithmic techniques

— Energy minimization/optimization framework
offers plenty of opportunity for efficient
algorithms

e Often dynamic programming which computes
exact same answer only faster

e Sometimes approximations, but often well
studied elsewhere and thus well understood

* Weak labeling of parts

— Latent svm and other methods for learning
structural constraints without explicit training
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What’s Working (2)

= Power of star-graph models
— Highly efficient and quite simple to implement

— Provides “reference frame” for parts, but would
seem to be fairly weak constraint

* Use and development of large margin
discriminative learning technigues

— Often coupled with probabilistic interpretation
IN generative inference for prediction

* Dense part descriptors such as HoG or
finely sampled shape contexts




What’s Not (Yet?) Working

Contextual information in recognition

— Current models not helping much compared to
baseline performance without context

ODbject categories with less regular spatial
structure

— E.g., cat, dog, bird
Rare and partial instances
— Explicit occlusion modeling?

Large numbers of categories




Directions and Opportunities

= Continued improvement of optimization
methods and learning techniques

— Performance not yet asymptoting, e.g., 25%
reduction in error

— Speeds continuing to improve substantially

* Grammars (probabilistic) and more
general representational schemes

= Combining scene-level and object-level
modeling to benefit of both




Summary

= Structured model learning and inference
widely useful — high “vision specific” content

= Learning (not only prediction) in low-level
problems on pixel grid
— Stereo, flow, denoising, segmentation

= Object category detection and segmentation

— Natural means of combining appearance and
spatial information

— Rapid progress on algorithms, learning

— Still lots to do, e.g., combining object and
scene levels




