

Learning and Recognizing Visual Object Categories Without First Detecting Features

Daniel Huttenlocher 2007

Joint work with D. Crandall and P. Felzenszwalb

Object Category Recognition

- Generic classes rather than specific objects
 - Visual e.g., bike

distinguished parts

- Functional - e.g., chair

Abstract – e.g., vehicle

Recognition Tasks

- Classification and localization
 - Classification: presence or absence of an object
 - Image retrieval applications
 - Localization: where objects, and potentially subparts, are in an image
 - Applications that involve interacting with world
- Appearance and geometry
 - Appearance: local patterns of intensity or color
 - Geometry: global spatial configuration, e.g., arrangement of parts

Using Appearance and Geometry

- Most methods rely on feature detection
 - Find sparse affine-invariant feature or interest points such as corners
 - Have spatial model of how feature locations vary within category

[FPZ03]

Problems With Feature Detection

- Local decisions about presence or absence of features are difficult and error prone
 - E.g., often hard to determine whether a corner is present without more context

Spatial Models Without Feature Detection

- Pictorial structures [FE73]
 - Parts arranged in deformable configuration
 - Match cost function for each part at each location
 - Deformation cost function for each connected pair of parts

HAIR

- Intuitively natural notion of parts connected by springs
 - "Wiggle until fits", no individual feature detection
 - Abandoned due to computational difficulty

Formal Definition of Model

- Undirected graphical model MRF
 - Graph M = (V, E)
 - Parts $V = (v_1, ..., v_n)$
 - Spatial relations E={e_{ij}}
 - Gaussian on relative locations for pair of parts i,j
- Spatial prior $P_M(L)$
 - L= $(\ell_1, ..., \ell_n)$ and each ℓ_i discrete configuration space
 - E.g., translation, rotation, scale

7 nodes 9 edges (out of 21)

Object Detection

- Given image I and model M
 - Prior P_M(L) distribution of spatial configurations
 - Likelihood P_M(I|L) of image given configuration
- Evidence over all configurations L

$$\sum_{L} P_{M}(I|L)P_{M}(L) \propto \sum_{L} P_{M}(L|I)$$

- Or quality of best configuration (MAP est.) $\max_{L} P_{M}(I|L)P_{M}(L) \propto \max_{L} P_{M}(L|I)$
 - Also localizes parts, maximizer L*
 - Energy minimization, negative log

Pictorial Structures Version 2

- Efficient algorithms for certain types of pictorial structure models
 - Tree- or fan-like underlying graph structures and likelihood that factors [FH00,FH05,CFH05]
 - Dynamic programming techniques
- Issue of learning models [CH06]
 - Using weak supervision, where training data specifies presence of object but not location
- Better performance than approaches that rely on detected features [CFH05,FPZ05]

Single Overall Estimation Problem

- Likelihood of image given each part at each location
 - E.g., edge probability templates, translation

- How well fits spatial model
 - No error-prone feature detection
 - Tractability depends on graph

$$\max_{\ell 1} P_{M}(I | \ell_{2}) P_{M}(\ell_{1}, \ell_{2})$$

Fast Methods

 Spatial term based on relative location of pairs, allows convolution-like operations

$$P_{M}(\ell_{i},\ell_{j}) \propto \rho(\ell_{i}-\ell_{j})$$

- Acyclic spatial models with n parts, m locs
 - Best match (MAP estimate) [FH00, FH05]
 - Linear time methods for min convolution yield O(mn) time, generalized distance transforms
 - All configurations (marginals) [FH05]
 - Using FFT O(mnlogmn) time
 - For Gaussian, binomial filters O(mn) time
 - Fast sampling of good candidate matches

Tree Structured Models

- Kinematic structure of animate objects
 - Skeleton forms tree
 - Parts as nodes, joints as edges
- 2D image of joint
 - Spatial configuration for pair of parts
 - Relative orientation,
 position and scale
 (foreshortening) 4D

Sampling

- Compute (factored) posterior distribution
 - Sampling for diversity not approximation
- Efficiently generate sample configurations
 - Sample recursively from a "root part"
- Approximation to POP distribution [AT07]
 - Likelihood that does not over count evidence for overlapping parts

Sampling For Human Body Pose

- Compute (factored) posterior distribution
- Efficiently generate sample configurations
 - Sample recursively from a "root part"

Used by 2D human pose detection techniques, e.g. [RFZ05]

Spatial Structure in Model

- Going beyond trees while preserving computational tractability
- Adding latent variable(s) to models [LH05]
 - Correspond to overall model parameters rather than parts
 - Need to ensure no large cliques in resulting graph as computation increases exponentially
- K-fans [CFH05]
 - Generalization of star graph to root set of size k rather than single root node
 - Depth one and low tree width

A Latent Gait Variable for Humans

- Introduce additional variable corresponding to common factor [LH05]
 - Capture consistency between limb positions, not captured by kinematic (skeletal) model
 - Rather than directly connecting limbs which creates large clique

Latent Gait Variable Helps

- Comparison using ground truth (MOCAP)
 - Latent gait variable model, tree structured model, model with large clique (loopy graph)
 - Better even than model with "more constraint"

K-fan Models

 Prior factors according to graph of spatial constraints between parts

$$P_{M}(L) = \prod_{C} \Psi_{C}(L_{C})$$

- Product over maximal cliques of triangulated graph, L_C locations of corresponding parts
- K-fan generalizes star graph structure
 - Cliques of size k+1 for k central nodes
 - Exact discrete inference in O(nm^k) time for n parts and m locations per part, using fast convolution methods

Spatial Prior for k-Fan

Let R⊆V be set of reference parts, "center"

$$P_{M}(L) = P_{M}(L_{R}) \prod_{v_{i} \in R'} P_{M}(\ell_{i}|L_{R})$$

- Where L_R vector of locations for R $L_R = (\ell_1, ..., \ell_k)$ for $R = (v_1, ..., v_k)$

- Makes explicit that part locations are independent conditioned on reference set
 - Product over non-reference parts, R'
- Geometric interpretation in terms of parts defining "reference frame"

Edge-Based Part Models

- Assume likelihood factors
 - Foreground product over parts
 - Background product over pixels

$$P_{M}(I|L) = \prod_{i} g_{i}(I,I_{i}) \prod_{p} b_{p}(I)$$

- Foreground model simple edge template
 - Probability of an edge at each pixel

- Use vector of probabilities for four possible orientations
- Slight dilation to account for discretization

Single Estimation Approach

- Single estimation more accurate (and faster) than sparse feature detection
 - Optimization for star or 2-fan [CFH05,FPZ05]
 vs. feature detection for joint Gaussian [FPZ03]
 - 6 parts under translation, Caltech-4 dataset
 - Single class, equal ROC error

	Airplane	Motorbike	Faces	Cars
Feat. Det. [FPZ03]	90.2%	92.5%	96.4%	90.3%
EstStar [FPZ05]	93.6%	97.3%	90.3%	87.7%
EstFan [CFH05]	93.3%	97.0%	98.2%	92.2%

Learning Models

- [FPZ05] uses feature detection to learn models under weakly supervised regime
 - Know only which training images contain instances of the class, no location information
- [CFH05] does not use feature detection but requires extensive supervision
 - Know locations of all the parts in all the positive training images
- [CH06] weak supervision without relying on feature detection

Weakly Supervised Learning

- Consider large number of initial patch models to generate possible parts
 - Ranked by likelihood of data given part
- Generate all pairwise models formed by two initial patches
- Consider all sets of reference parts for fixed k
- Greedily add parts based on pairwise models to produce initial models
 - One per reference set

Learning Spatial Model

- Estimate pairwise spatial models for all pairs of patches – maximum likelihood
- Consider all k-tuples as root sets
- Use pairwise models to approximate true spatial model
 - Exact for 2-cliques (1-fan, star graph)
- Use EM to update model
 - Iteratively improve both appearance and spatial models

A More Accurate Form of Model

- Independent part appearance can over count evidence when parts overlap
 - Address by changing form of image likelihood
- POP patchwork of parts [AT07]
 - More accurate model that accounts for overlapping parts
 - Average probabilities of patches that overlap
 - Distribution does not factor, can't compute efficiently
 - Can sample efficiently from factored distribution and then maximize POP criterion

Example Learned Models

- Star graph (one fan)
 - 24x24 patches
 - Reference part in bold box
 - Blue ellipse 2σ level set of Gaussian

Side View of Bicycle

Adding Local Context to Models

- Spatial relations not only among parts of object but also object and background
 - E.g., vehicles on roads, often in front of buildings
 - Less predictable relative locations than object parts within a category
- Use coarser appearance models
 - Less predictable appearance of "scene parts"
- Augment spatial model using two-level hierarchy

Composite Model

- Learn 1-fan (star graph) object model as before
- Learn 1-fan context model with bounding box as root and parts external to object
 - Lower resolution image
 - Various patch sizes
 - Edge, color and surface orientation descriptions
- Gaussian relating high resolution model root part to low resolution bounding box

Example Learned Models

Side View of Bicycle

Recognition Results

- Four categories from PASCAL 06 VOC
 - Manmade objects: bicycle, bus, car, motorbike
 - Localization (detection) task
 - Search over translation and scale
 - Standard success measure used in VOC, overlap of detected object with ground truth > 50%
 - Report mean average precision
- Training with weak supervision
 - Use object bounding box
 - For scene model
 - To separate multiple instances in images

Comparison of Results

- Composite model with scene information substantially increases accuracy
- Better in terms of mean average precision than entries in VOC challenge
 - One method rather than several different methods

	Obj. model	Scene +	Best VOC
Object class	only	obj. model	result
Bicycle	0.421	0.498	0.440
Bus	0.172	0.185	0.169
Car	0.429	0.458	0.444
Motorbike	0.342	0.388	0.390

Example Results

Summary

- Detection and localization without doing feature detection
 - For common object class datasets, faster and more accurate than spatial models using feature detection
- Role of spatial structure
 - Latent structural variable such as human "gait" can substantially improve localization
- Role of local context
 - Including scene parts in model can substantially improve localization

More Details

- P. Felzenszwalb and D. Huttenlocher, "Pictorial Structures for Object Recognition", Intl. J. of Computer Vision, v. 61, pp. 55-79, 2005.
- D. Crandall and D. Huttenlocher, "Composite models of objects and scenes for category recognition", Proceedings of CVPR, 2007.