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Object Category Recognition

Generic classes rather than specific objects
– Visual – e.g., bike

– Functional – e.g., chair

– Abstract – e.g., vehicle

distinguished 
parts
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Recognition Tasks 

Classification and localization
– Classification: presence or absence of an object

• Image retrieval applications

– Localization: where objects, and potentially 
subparts, are in an image
• Applications that involve interacting with world

Appearance and geometry
– Appearance: local patterns of intensity or color 

– Geometry: global spatial configuration, e.g., 
arrangement of parts
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Using Appearance and Geometry

Most methods rely on feature detection
– Find sparse affine-invariant feature or interest 

points such as corners

– Have spatial model of how feature locations vary 
within category

[FPZ03]
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Problems With Feature Detection

Local decisions about presence or absence 
of features are difficult and error prone
– E.g., often hard to determine whether a corner 

is present without more context
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Spatial Models Without Feature Detection

Pictorial structures [FE73]
– Parts arranged in deformable 

configuration
• Match cost function for 

each part at each location

• Deformation cost function 
for each connected pair of parts

Intuitively natural notion of parts connected 
by springs
– “Wiggle until fits”, no individual feature detection

– Abandoned due to computational difficulty
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Formal Definition of Model

Undirected graphical model – MRF 
– Graph M=(V,E)

– Parts V=(v1, …, vn) 

– Spatial relations E={eij}
• Gaussian on relative locations 

for pair of parts i,j

Spatial prior PM(L) 
– L=(l1, …, ln) and each li

discrete configuration space
• E.g., translation, rotation, scale

7 nodes
9 edges

(out of 21)
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Object Detection

Given image I and model M
– Prior PM(L) distribution of spatial configurations

– Likelihood PM(I|L) of image given configuration 

Evidence over all configurations L

∑L PM(I|L)PM(L) ∝ ∑L PM(L|I) 

Or quality of best configuration (MAP est.)

maxL PM(I|L)PM(L) ∝ maxL PM(L|I) 
– Also localizes parts, maximizer L*

– Energy minimization, negative log
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Pictorial Structures Version 2

Efficient algorithms for certain types of 
pictorial structure models
– Tree- or fan-like underlying graph structures  

and likelihood that factors [FH00,FH05,CFH05]
• Dynamic programming techniques

Issue of learning models [CH06]
– Using weak supervision, where training data 

specifies presence of object but not location

Better performance than approaches that 
rely on detected features [CFH05,FPZ05]
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Likelihood of image given each part at 
each location
– E.g., edge probability templates, translation

How well fits spatial model
– No error-prone feature detection
– Tractability depends on graph

Single Overall Estimation Problem

PM(I|l1) PM(I|l2)I

maxl1PM(I|l2)PM(l1,l2)

v1 v2
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Fast Methods

Spatial term based on relative location of 
pairs, allows convolution-like operations

PM(li,lj) α ρ(li-lj)

Acyclic spatial models with n parts, m locs
– Best match (MAP estimate) [FH00, FH05]

• Linear time methods for min convolution yield 
O(mn) time, generalized distance transforms

– All configurations (marginals) [FH05]
• Using FFT O(mnlogmn) time

− For Gaussian, binomial filters O(mn) time

• Fast sampling of good candidate matches
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Tree Structured Models

Kinematic structure of 
animate objects
– Skeleton forms tree
– Parts as nodes, joints as edges

2D image of joint
– Spatial configuration for 

pair of parts
– Relative orientation, 

position and scale 
(foreshortening) – 4D
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Sampling

Compute (factored) posterior distribution
– Sampling for diversity not approximation

Efficiently generate 
sample configurations
– Sample recursively from 

a “root part”

Approximation to POP 
distribution [AT07]
– Likelihood that does not

over count evidence for
overlapping parts
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Sampling For Human Body Pose

Compute (factored) posterior distribution
Efficiently generate sample configurations
– Sample recursively from a “root part”

Used by 2D human pose detection 
techniques, e.g. [RFZ05]
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Spatial Structure in Model

Going beyond trees while preserving 
computational tractability
Adding latent variable(s) to models [LH05]
– Correspond to overall model parameters rather 

than parts
– Need to ensure no large cliques in resulting 

graph as computation increases exponentially

K-fans [CFH05]
– Generalization of star graph to root set of size 

k rather than single root node
– Depth one and low tree width
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A Latent Gait Variable for Humans

Introduce additional variable corresponding 
to common factor [LH05]
– Capture consistency between limb positions, not 

captured by kinematic (skeletal) model
• Rather than directly connecting limbs which 

creates large clique
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Latent Gait Variable Helps 

Comparison using ground truth (MOCAP)
– Latent gait variable model, tree structured 

model, model with large clique (loopy graph)
– Better even than model with “more constraint”

Ground 
Truth

Latent 
Var.

Tree Large
Clique
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K-fan Models

Prior factors according to graph of spatial 
constraints between parts

PM(L) = ∏C ΨC(LC)
– Product over maximal cliques of triangulated 

graph, LC locations of corresponding parts 

K-fan generalizes star graph structure
– Cliques of size k+1 for k central nodes

– Exact discrete inference in
O(nmk) time for n parts and 
m locations per part, using
fast convolution methods
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Spatial Prior for k-Fan

Let R⊆V be set of reference parts, “center”
PM(L) = PM(LR)  ∏vi∈R’ PM(li|LR)

– Where LR vector of locations for R
LR=(l1, …, lk) for R=(v1, …, vk)

Makes explicit that part locations are 
independent conditioned on reference set
– Product over non-reference parts, R’

Geometric interpretation in terms of parts 
defining “reference frame”
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Edge-Based Part Models

Assume likelihood factors
– Foreground product over parts

– Background product over pixels

PM(I|L) = ∏i gi(I,li) ∏p bp(I)

Foreground model simple edge template
– Probability of an edge at 

each pixel

– Use vector of probabilities 
for four possible orientations

– Slight dilation to account for discretization
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Single Estimation Approach

Single estimation more accurate (and 
faster) than sparse feature detection
– Optimization for star or 2-fan [CFH05,FPZ05] 

vs. feature detection for joint Gaussian [FPZ03]

– 6 parts under translation, Caltech-4 dataset

– Single class, equal ROC error

92.2%98.2%97.0%93.3%Est.-Fan [CFH05]

87.7%90.3%97.3%93.6%Est.-Star [FPZ05]

90.3%96.4%92.5%90.2%Feat. Det. [FPZ03]

CarsFacesMotorbikeAirplane
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Learning Models

[FPZ05] uses feature detection to learn 
models under weakly supervised regime
– Know only which training images contain 

instances of the class, no location information

[CFH05] does not use feature detection 
but requires extensive supervision
– Know locations of all the parts in all the 

positive training images

[CH06] weak supervision without relying 
on feature detection
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Weakly Supervised Learning

Consider large number of initial patch 
models to generate possible parts
– Ranked by likelihood of data given part

Generate all pairwise models formed by 
two initial patches

Consider all sets of reference parts for 
fixed k

Greedily add parts based on pairwise
models to produce initial models
– One per reference set
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Learning Spatial Model

Estimate pairwise spatial models for all 
pairs of patches – maximum likelihood

Consider all k-tuples as root sets

Use pairwise models to approximate true 
spatial model
– Exact for 2-cliques (1-fan, star graph)

Use EM to update model
– Iteratively improve both appearance and 

spatial models
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A More Accurate Form of Model

Independent part appearance can over 
count evidence when parts overlap
– Address by changing form of image likelihood

POP – patchwork of parts [AT07]
– More accurate model that accounts for 

overlapping parts

– Average probabilities of patches that overlap
• Distribution does not factor, can’t compute 

efficiently

• Can sample efficiently from factored distribution 
and then maximize POP criterion
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Example Learned Models

Star graph (one fan)
– 24x24 patches
– Reference part in bold box
– Blue ellipse 2σ level set of Gaussian

Side View of Car Side View of Bicycle
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Adding Local Context to Models

Spatial relations not only among parts of 
object but also object and background
– E.g., vehicles on roads, often in front of 

buildings
– Less predictable relative locations than object 

parts within a category

Use coarser appearance models 
– Less predictable appearance of “scene parts”

Augment spatial model using two-level 
hierarchy
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Composite Model

Learn 1-fan (star graph) object model as 
before
Learn 1-fan context model with bounding 
box as root and parts external to object
– Lower resolution image
– Various patch sizes
– Edge, color and surface orientation 

descriptions

Gaussian relating high resolution model 
root part to low resolution bounding box
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Example Learned Models

Side View of Car Side View of Bicycle
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Recognition Results

Four categories from PASCAL 06 VOC
– Manmade objects: bicycle, bus, car, motorbike
– Localization (detection) task

• Search over translation and scale
• Standard success measure used in VOC, overlap 

of detected object with ground truth > 50%
• Report mean average precision

Training with weak supervision
– Use object bounding box

• For scene model 
• To separate multiple instances in images
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Comparison of Results

Composite model with scene information 
substantially increases accuracy
Better in terms of mean average precision 
than entries in VOC challenge
– One method rather than several different 

methods
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Example Results
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Summary

Detection and localization without doing 
feature detection
– For common object class datasets, faster and 

more accurate than spatial models using 
feature detection 

Role of spatial structure
– Latent structural variable such as human “gait”

can substantially improve localization

Role of local context
– Including scene parts in model can 

substantially improve localization
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