| DARPA Urban Challenge

Te‘rrreornell S

Dan Huttenlocher-
Joint work with Mark Campbell and the Cornell DUC Team

%@ﬁ Cornell University fes® Cornell University

P9 College of Engineering & Faculty of Computing and Information Science




Cornell Urban Challenge Team

= Small team — 13 students (8 core), 2 faculty
= Track A DARPA funding ($1M)

= One of six vehicles to finish competltlon

— But not one of top
3 prize winners

— 11 selected for
Nov final race

— 35 selected for
Oct semi-finals

— ~75 received
Jun/Jul site visits
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Distinguishing Characteristics

= Designed and developed both for DUC and
as subsequent research platform

— Tightly integrated perception and planning
= Attention to engineering elegance
— From clean appearance to “human like” driving

* In-house actuation and pose estimation

— Actuation performed better than repurposed
commercial human driver assistance

— Pose estimation comparable using Applanix
= Object tracking and ID assignment
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Vehicle Platform

 In-house automation
(based on NHTSA
specs):

—  Steering: 700 deg/sec @ 24 Nm,
135 Nm max

- Brake: 376 rpm @ 25 Nm, 50 Nm
max

—  Throttle by wire
- Human drivable

« 17 servers
— Intel dual-core mobile processors

« Power (4 hr backup)
—  24VDC 200-amp secondary

__ e alternator
o~ \_ | —  Redundant 120VAC inverters
Imleé_:t/‘[)att‘ ' —  Deep cycle battery backup

- i~
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Sensor Configuration

— SICK 1D LIDAR (60m)

— Ibeo 4x160 LIDAR (150m)

— Velodyne 64x360 LIDAR

— DELPHI mm-wave RADAR

— MobilEye SeeQ Vision

— Front and rear cameras

— Litton LN-200 IMU
RAD/SEEDERrage — Septentrio 3-antenna GPS

— Trimble/Omnistar GPS

— Stock CAN wheel encoders

—————— e e s
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LIDAR coverage
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Real Time Data Distribution

microcontroller rack |

= Grand challenge '0O5 lessons oy S EE——

— Complexity of nonstandard
device interfaces

— Data synchronization problems

= Devices all use same Ethernet-
ready microcontrollers

— Cameras, LIDAR, RADAR
— IMU, GPS, CAN, actuators

= UDP multicast all data

— Synchronized timestamps i |,
generated by micros S .
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Pose Estimation

* |Integrate information from multiple sources

— Septentrio GPS, Trimble GPS, IMU, wheels,
RNDF, visual detection of lanes and stop lines

— Reject big jumps
= Particle filter to estimate lane probabllltles

— 2000 partlcles @ 100Hz e T =
= Accurate In N
GPS blackout ., ~ i -
— E.g., m-level i i
during 8 min. s

outage e R
e .,
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Object Detection and Tracking

= Using LIDAR, RADAR (and vision)
— Vision had too many false positives/negatives

* Processing overview

Segment LIDAR data

Determine number
of objects

Update/initialize

Estimate tracked
object metadata

Maintain stable
track IDs
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Segmenting LIDAR Data

Ground hits Stable clusters Unstable clusters

= Cluster Ibeo data —
using Euclidean
distance

— Stable if same at
two thresholds, 0.5m
and 1m

= Measurements from
stable clusters

— Center of mass or fixed
point not reliable

— Use bearings of |
occluding contour(s) e T—

Ego-vehicle 3 Ibeos, 12 colored

and range to closest point laser beams
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Ground Estimation

= Long-range, high-res LIDAR such as lIbeo,
SICK generates many false alarms unless
good estimate of ground height

= Grid-based ground
model constructed
from dense LIDAR
~ Lower envelope of : unc(l}:sagﬁed

hits in nearby region
from all LIDARs

— Use to classify hits
as ground, low, high
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Object Tracking

Object state: object-centered coordinate
frame plus observed data points

— 2D rigid body transform (relative)
— Ground speed (absolute), heading (relative)

EKF predicts point locations forward
Update coordinate frame and velocity
Replace points with new observed data

Use particle filter to represent alternative
hypotheses about objects (data association)

— Small number of particles — 4 in DUC




Sensor Integration/Fusion

= LIDAR, RADAR (and vision) data combined
at object tracking level

— Data consistent with existing track or start new

= New tracks must meet certain requirements
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both occluding
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Track ID’s

= Maintain consistent identifiers for objects
across frames

likelihood matching = =%

to previous frame AR
— Stable measures f
used to match tracks 5, C:
and new objects == s ({ |
- Closest pOint and Ego vohidle Tracked obstacle

occlusion bearings

— DP over likelihood
table to solve for
correspondences
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Object Meta Data

= Attributes for higher-level planning
— Car-like or not, HMM on width
— Stopped or not, HMM on speed

— Occluded or not, T [ T T X P TR LTS
geometric reasoning

.......

= Ego-vehicle AN

¢
— Lane probabilities, \
Monte Carlo sampling  Visible, Visible,
- ] w T/stopped
of object locations movmg\‘
e From vehicle relative |~ ©
to map relative o
: : ()
- Less certain with X e

distance
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Tracking vs. Occupancy

= Object identity over time enables perceiving
behaviors of others

— Rather than just responding to something there
= Currently at level required for intersection

precedence and following but not more
complex behaviors

— Problems with long time periods and with
changes in shape of object wrt vehicle as move

= Opportunity/need for better perception of
behaviors

— E.g., fender bender with MIT In final race
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Decision Making and Execution

..
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Behavioral
Layer
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Communications / Planner Entry
.'---.-------.--F-

» Behavioral (macro planning)
— E.g., route (re)planning — like consumer nav tools

» Tactical (local planning)
— E.g., when to change lanes, pass

= Operational (plan execution)
— E.g., path generation, obstacle avoidance
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Operational: Path Planner

= Constrained nonlinear optimization

— Base path, lane boundary constraints, target
paths, starting/ending heading/position

= Label obstacles as being to left or right

= Complex but natural behavior by modifying
constraints

=  Off the shelf Base point, p,
nonlinear
solver — LOQO
= 10Hz rate Displaced Point,

Search unit vector, u,
Displacement magnitude.

Z; = P; +W1'u1'




Path Planning Constraints
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E Operational Map
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Tactical Planner

= Separate tactical components for road,
Intersection, zone, blockage

— Designed to recover from not properly achieving
desired state or starting in unknown state

= Road tactical

— Monitors for forward, rear, lateral regions
e E.g., closest vehicle in forward direction

— States such as StaylnLane, ChangelLanes
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The Final Event

* Three missions, total of approx 56 mi

= Cornell vehicle completed in 5hr 53min

— Half of time in third mission where throttle
problem often limited vehicle speed to 5mph

= Hundreds of interactions with other
vehicles, some interesting

— Traffic jam in first mission caused by UCF
vehicle stopped at intersection

— Stunt driver going wrong way on one way road
— Collision with MIT

@
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Traffic Jam... Planning Ahead
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Traffic Jam: Local vs. Global

= Vehicle stopped for excessive time, far
enough from intersection, visible gap

— Fine to pass given available information but
better sensing would have provided key data

= Value of perceiving behaviors over time

— Had previously seen car just in front of us stop
as It approached the line of stopped cars

= Reasoning using perception and map

— Last car turned out not to be the problem and
only gap just in front of it

— Cross traffic at intersection, bad to pass there

@
1@&=lL C 11 Universit
5%%?2" ornell University




Wrong Way Car

= One way dirt track heading downhill, with
small berms on both sides

= Wide enough to pass parked car but tight
for oncoming vehicle

= Traffic driver got lost and was going wrong
way up the hill

— While we were following another vehicle
downhill in the proper direction

= Traffic driver stopped as got close
— Saw as moving then as static and avoided
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Fender Bender with MIT

= QOur vehicle behaving erratically
— Stop-and-go at and after stop sign

— For observer to understand our behavior
required tracking our vehicle for minutes

= MIT vehicle tried to pass

— First In two-lane segment then after narrowed
to single lane at intersection

— For us, needed good rear sensing and tracking
= By time MIT alongside our vehicle

— No good estimate of their speed, obstacles on
both sides but clear in front
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Fender Bender

Cornell ViewMIT View
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Some Lessons Learned

Competition largely about software and system testing

Accurate timestamps critical for sensor integration
— Also allows data playback and re-processing

Multiple sensing modalities important for both vehicle
localization and object detection/tracking

— Good ground model important
— Challenge to get stable measures from LIDAR points

Constrained nonlinear optimization mature enough for
real-world path planning problems

Track metadata useful for high level reasoning
— Going beyond occupancy models towards behaviors

Deterministic high-level reasoning delicate for urban
driving




Platform for Further Research

= Autonomous vehicles that can get you
home more safely than you can yourself

— Much more cluttered environments than DUC

e Not only more cars but motorcycles, bikes,
pedestrians, animals
= Big gap In technology for perception to
enable planning ahead
— Percelving types of objects and their actions
over time, not what space is free or occupied

e High accuracy with respect to vehicle
e Also with respect to map — location dependent

é‘f@j@ Cornell University
s




Some Research Directions

= Road detection and modeling

— Difficult to reliably find road in urban setting
e Short sight lines, objects on road, intersections

— Rectifying conflicts with map

* |Integrating vision into object detection
and tracking

— Draw on and extend recent
recognition and learning work

= Better prediction of behavior
— Pedestrians etc. more challenging
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Other Faculty: Ephrahim Garcia, Bart Selman, Hod Lipson !pep’
Project Manager: Pete Moran S
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Vehicle Automation: Noah Zych P
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Vehicle Packaging: Noah Zych, Pete Moran
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Mechanical and Systems Support: Jason Wong
Pose: Isaac Miller, Brian Schimpf

Sensors and Data Network: Aaron Nathan, Sergei

Lupashin, Jason Catlin, Adam Shapiro, Max Reitmann
Localization: Isaac Miller Se ‘gg?tnglg}o
Scene Estimation: Isaac Miller SICK
Operational Planning: Brian Schimpf

Tactical and Strategic Planning: Frank-Robert Kline,

Sensor Intelligence.

fulﬁa Singapore Technologies

Hikaru Fujishima O L R
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Testing and RNDF support: Mike Kurdziel @T"mb'e_
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