

Speeding Up Belief Propagation for Early Vision

Daniel Huttenlocher
MSRI Low Level Vision Workshop
February, 2005

Joint work with Pedro Felzenszwalb

Overview

- Markov random field (MRF) models are broadly useful for low level vision
 - Framework for expressing tradeoff between spatial coherence and fidelity to data
- Substantial recent advances in algorithms for MRF models on grid graph
 - Two main approaches: graph cuts [BVZ01], loopy belief propagation (LBP) [WF01]
- Present three speedup techniques for LBP
 - Resulting methods hundreds of times faster than conventional techniques

Low Level Vision Problems

- Estimate label at each pixel
 - Stereo: disparity
 - Restoration: intensity
 - Segmentation: layers, regions
 - Optical flow: motion vector

Pixel Labeling Problem

- Find good assignment of labels to sites
 - Set £ of k labels
 - Set S of n sites
 - Neighborhood system $\mathcal{N}\subseteq S\times S$ between sites
 - Consider case of (four connected) grid graph
- Undirected graphical model
 - Graph $\mathcal{G}=(S,\mathcal{N})$
 - Discrete random variable x_i over \mathcal{L} at each site i
 - First order models
 - Maximal cliques in *G* of size 2

Form of Posterior

- Observations o
- Posterior distribution of labelings given observations

$$Pr(x|o) \propto Pr(o|x)Pr(x)$$

For first order model, prior factors as

$$Pr(x) \propto \prod_{(i,j) \in \mathcal{N}} V(x_i, x_j)$$

Further assume likelihood factors

$$Pr(x|o) \propto \prod_{i \in S} D_i(x_i) \prod_{(i,j) \in \mathcal{N}} V(x_i, x_j)$$

Estimation Problems

 Marginal probability at each node Pr(x_i|o)

Maximize posterior (MAP)

$$argmax_x \prod_{i \in S} D_i(x_i) \prod_{(i,j) \in \mathcal{N}} V(x_i, x_j)$$

- Neither problem computationally tractable
 - NP hard for grid graph with 3 or more labels
- Various methods for approximate solution
 - Annealing, variational techniques, graph cuts using α -expansion, loopy belief propagation, ...

Belief Propagation

- Iterative local update technique
 - Message passing, "nosy neighbor"
- Two forms
 - Sum product for estimating marginals
 - Max product for MAP estimation
- Exact solution when no loops in graph
- Update messages until "convergence" then compute distribution at each node
 - Sum product for marginals
 - Max product then max at each node for MAP

Sum Product

- At each step node j sends each neighbor a message, in parallel
 - Node j's view of i's labels

$$m_{j\to i}(x_i) = \sum_{x_j} (D_j(x_j) V(x_j, x_i)$$
$$\prod_{k \in \mathcal{N}(j) \setminus i} m_{k \to j}(x_j))$$

$$b_j(x_j) = D_j(x_j) \prod_{i \in \mathcal{N}(j)} m_{i \to j}(x_j)$$

Max Product

- Min sum form with cost functions D',V' proportional to negative log potentials
- Message updates

$$m'_{j\to i}(x_i) = \min_{x_j} (D'_j(x_j) + V'(x_j, x_i) + \sum_{k \in \mathcal{N}(j) \setminus i} m'_{k\to j}(x_j))$$

 After T iterations compute label minimizing value at each node

$$\operatorname{argmin}_{x_j}(\mathsf{D}'_j(x_j) + \sum_{i \in \mathcal{N}(j)} \mathsf{m}'_{i \to j}(x_j))$$

 Simple approach of separately minimizing at each node can be problematic

Three Techniques

- Memory requirements of BP large
 - Using bipartite form of graph can halve usage
- For vision problems V(x_i,x_j) generally function of <u>difference</u> between labels
 - Enables computation of (discrete) messages in linear rather than quadratic time
- Number of iterations generally proportional to diameter of graph
 - Propagate information across grid
 - Using multi-grid methods can reduce to small constant number

Bipartite Graph ("Red-Black")

- Checkerboard pattern on grid defines a bipartite graph, V=A∪B
- Alternating message updates of sets A,B yields messages m nearly same as m
 - Update messages from A on odd iterations and from B on even iterations
 - Then can show by induction when t odd (even)

$$\overline{m}^{t}_{i \to j} = \begin{cases} m^{t}_{i \to j} \text{ if i in A (i in B)} \\ m^{t-1}_{i \to j} \text{ otherwise} \end{cases}$$

 Converges to same fixed point with half as many updates and half as much memory

Fast Message Updates

- Pairwise term V measuring label <u>difference</u>
- Sum product
 - Express as a convolution
 - O(klogk) algorithm using the FFT
 - Linear-time approximation algorithms for Gaussian models
- Min sum (max product)
 - Express as a min convolution
 - Linear time algorithms for common models using distance transforms and lower envelopes

Sum Product Message Passing

• When $V(x_i,x_j)=\rho(x_i-x_j)$ can write message update as convolution

$$m_{j\to i}(x_i) = \sum_{x_j} (\rho(x_j - x_i) h(x_j))$$
$$= \rho \star h$$

- Where $h(x_j) = D_j(x_j) \prod_{k \in \mathcal{N}(j) \setminus i} m_{k \to j}(x_j)$
- Thus FFT can be used to compute in O(klogk) time for k values
 - Still somewhat large constants
- For ρ a (mixture of) Gaussian(s) do faster

Fast Gaussian Convolution

A box filter has value 1 in some range

$$b_w(x) = \begin{cases} 1 & \text{if } 0 \le x \le w \\ 0 & \text{otherwise} \end{cases}$$

- A Gaussian can be approximated by repeated convolutions with a box filter
 - Application of central limit theorem, convolving pdf's tends to Gaussian
 - In practice, 4 convolutions [Wells, PAMI 86] $b_{w_1}(x) * b_{w_2}(x) * b_{w_3}(x) * b_{w_4}(x) \approx G_{\sigma}(x)$
 - Choose widths w_i such that $\sum_i (w_i^2 1)/12 \approx \sigma^2$

Convolution Using Box Sum

• Thus can approximate $G_{\sigma}(x) *h(x)$ by cascade of box filters

$$b_{w_1}(x)*(b_{w_2}(x)*(b_{w_3}(x)*(b_{w_4}(x)*h(x))))$$

- Compute each b_w(x)★f(x) in time independent of box width w – sliding sum
 - Each successive shift of $b_w(x)$ w.r.t. f(x) requires just one addition and one subtraction
- Overall computation just a few operations per label, O(k) with very low constant

Max Product Message Passing

Can write message update as

$$m'_{j\to i}(x_i) = \min_{x_j} (\rho'(x_j-x_i) + h'(x_j))$$

- Where $h'(x_j) = D'_j(x_j) \sum_{k \in \mathcal{N}(j) \setminus i} m'_{k \to j}(x_j)$
- Formulation using minimization of costs,
 proportional to negative log probabilities
- Convolution-like operation over min,+ rather than $\Sigma_{,\times}$ [FH00,FHK03]
 - No general fast algorithm like FFT
 - Certain important special cases in linear time

Commonly Used Pairwise Costs

- Potts model $\rho'(x) = \begin{cases} 0 \text{ if } x=0 \\ d \text{ otherwise} \end{cases}$
- Linear model $\rho'(x) = c|x|$
- Quadratic model $\rho'(x) = cx^2$
- Truncated models
 - Truncated linear $\rho'(x) = \min(d,c|x|)$
 - Truncated quadratic $\rho'(x) = \min(d, cx^2)$
- Min convolution can be computed in linear time for any of these cost functions

Potts Pairwise Model

Substituting in to min convolution

$$m'_{j\rightarrow i}(x_i) = \min_{x_j}(\rho'(x_j-x_i) + h'(x_j))$$

can be written as

$$m'_{j\rightarrow i}(x_i) = \min(h'(x_i), \min_{x_j}h'(x_j)+d)$$

- No need to compare pairs x_i, x_j
 - Compute min over x_j once, then compare result with each x_i
- O(k) time for k labels
 - No special algorithm, just rewrite expression to obtain alternative (fast) computation

Linear Pairwise Model

- Substituting in to min convolution yields $m'_{j\rightarrow i}(x_i) = \min_{x_i}(c|x_j-x_i| + h'(x_j))$
- Similar form to the L_1 distance transform $\min_{x_i}(|x_j-x_i|+1(x_j))$
 - Where $1(x) = \begin{cases} 0 \text{ when } x \in P \\ \infty \text{ otherwise} \end{cases}$ is an indicator function for membership in P
- Distance transform measures L₁ distance to nearest point of P
 - Can think of computation as lower envelope of cones, one for each element of P

Using the L₁ Distance Transform

- Linear time algorithm
 - Traditionally used for indicator functions, but applies to any sampled function
- Forward pass
 - For x_j from 1 to k-1 $m(x_j) \leftarrow min(m(x_j), m(x_j-1)+c)$
- Backward pass
 - For x_j from k-2 to 0 $m(x_j) \leftarrow min(m(x_j), m(x_j+1)+c)$
- Example, c=1
 - -(3,1,4,2) becomes (3,1,2,2) then (2,1,2,2)

Quadratic Pairwise Model

- Substituting in to min convolution yields
 m'_{j→i}(x_i) = min_{x_i}(c(x_j-x_i)² + h'(x_j))
- Again similar form to distance transform
- Compute lower envelope of parabolas
 - Each value of x_j defines
 a quadratic constraint,
 parabola rooted at (x_j,h(x_j))
 - In general can be done in O(klogk) [DG95]
 - Here parabolas are same shape and ordered, so O(k)

Lower Envelope of Parabolas

- Quadratics ordered x₁<x₂< ... <x_n
- At step j consider adding j-th one to LE
 - Maintain two ordered lists
 - Quadratics currently visible on LE
 - Intersections currently visible on LE
 - Compute intersection of j-th quadratic with rightmost visible on LE
 - If right of rightmost intersection add quadratic and intersection
 - If not, this quadratic hides at least rightmost quadratic, remove and try again

Running Time of Lower Envelope

- Consider adding each quadratic just once
 - Intersection and comparison constant time
 - Adding to lists constant time
 - Removing from lists constant time
 - But then need to try again
- Simple <u>amortized analysis</u>
 - Total number of removals O(k)
 - Each quadratic, once removed, never considered for removal again
- Thus overall running time O(k)

Code for Quadratic Pairwise Model

```
static float *dt(float *f, int n) {
 float *d = new float[n], *z = new float[n];
 int *v = new int[n], k = 0;
 v[0] = 0;
 z[0] = -INF; z[1] = +INF;
 for (int q = 1; q \le n-1; q++) {
    float s = ((f[q]+c*square(q)) (f[v[k]]+c*square(v[k])))
                 /(2*c*q-2*c*v[k]);
   while (s \le z[k]) {
     k--;
      s = ((f[q]+c*square(q))-(f[v[k]]+c*square(v[k])))
             /(2*c*q-2*c*v[k]);
   k++;
   v[k] = q;
   z[k] = s;
    z[k+1] = +INF; 
     k = 0;
 for (int q = 0; q \le n-1; q++) {
   while (z[k+1] < q)
     k++;
   d[q] = c*square(q-v[k]) + f[v[k]];
 return d;}
```


Combined Pairwise Models

- Truncated models
 - Compute un-truncated message m'
 - Truncate using Potts-like computation on m' and original function h' min(m'(x_i), min_{xi}h'(x_j)+d)
- More general combinations
 - Min of any constant number of linear and quadratic functions, with or without truncation
 - E.g., multiple "segments"

Fast Message Update Methods

- Efficient computation without assuming form of (discrete) distributions
 - Requires prior to be based on differences between labels rather than their identities
- Sum product
 - O(klogk) message updates for arbitrary discrete distributions over k labels using FFT
 - O(k) when pairwise clique potential a mixture of Gaussians using box sums
- Max product
 - O(k) for commonly used clique potentials

A Multi Grid Technique

- Number of message passing iterations T generally proportional to diameter of grid
 - Propagate information across the grid
- Use hierarchical approach to make independent of graph diameter
 - Previous work does this by changing the graph, building quad-tree with no loops [W02]
- Our approach is to define a hierarchy of problems with original graph structure
 - Initialize messages based on coarser levels

Hierarchy of Grids

• Consider min sum case, rewrite minimization in terms of grid Γ

$$E(x) = \sum_{(i,j)\in\Gamma} D_{ij}(x_{i,j}) + \sum_{(i,j)\in\Gamma\setminus\mathcal{C}} V(x_{i,j}-x_{i+1,j}) + \sum_{(i,j)\in\Gamma\setminus\mathcal{R}} V(x_{i,j}-x_{i,j+1})$$

- Where \mathcal{C}_{r} last row and column of grid
- Can define family of grids Γ^0 , Γ^1 , ...
 - An element of Γ^{ℓ} corresponds to $\epsilon \times \epsilon$ block of pixels, where $\epsilon = 2^{\ell}$
 - Labeling x^{ℓ} of Γ^{ℓ} assigns the pixels in each block a single label (from same set \mathcal{L})

Problem Hierarchy

 Minimization problem at each level of the hierarchy

$$\begin{split} \mathsf{E}^{\ell}(\mathsf{x}^{\ell}) &= \sum_{(\mathsf{i},\mathsf{j}) \in \Gamma^{\ell}} \mathsf{D}^{\ell}_{\mathsf{i}\mathsf{j}}(\mathsf{x}^{\ell}_{\mathsf{i},\mathsf{j}}) \\ &+ \sum_{(\mathsf{i},\mathsf{j}) \in \Gamma^{\ell} \setminus \mathcal{C}^{\ell}} \mathsf{V}^{\ell}(\mathsf{x}^{\ell}_{\mathsf{i},\mathsf{j}} - \mathsf{x}^{\ell}_{\mathsf{i}+1,\mathsf{j}}) \\ &+ \sum_{(\mathsf{i},\mathsf{j}) \in \Gamma^{\ell} \setminus \mathcal{R}^{\ell}} \mathsf{V}^{\ell}(\mathsf{x}^{\ell}_{\mathsf{i},\mathsf{j}} - \mathsf{x}^{\ell}_{\mathsf{i},\mathsf{j}+1}) \end{split}$$

- Multi grid: final messages at one level as initial condition for next level, and so on
 - Small number of iterations if initial conditions close to final value

level 1

Hierarchical Data Term

- Finite element approach
- Assigning label α to block (i,j) at level ℓ
 equivalent to assigning α to each pixel in
 block

$$D^{\ell}_{ij}(\alpha) = \sum_{0 \le u < \varepsilon} \sum_{0 \le v < \varepsilon} D_{\varepsilon i + u, \varepsilon j + v}(\alpha)$$

- Sum costs for all pixels in block
- Corresponds to product of probabilities, likelihood of observing pixels given label α
- Captures preference for multiple labels

Hierarchical Discontinuity Term

- Boundary between blocks length ε
 - Sum along boundary
- Separation between blocks ε
 - Finite difference, divide by separation

$$V^{\ell}(\alpha-\beta) = \varepsilon V \left(\frac{\alpha-\beta}{\varepsilon}\right)$$

- Produces different form depending on V
 - Linear, $V^{\ell}(x) = c|x|$
 - Quadratic, $V^{\ell}(x) = cx^2/\epsilon$

Multi Grid Method

- Number of levels in hierarchy proportional to log image diameter
 - So propagation time small constant at top
- Same label set at each level
 - In contrast to pyramid methods
- In practice converges after a few iterations
 - Note each iteration just 1/3 more work than standard single level

Illustrative Results for Restoration

- Image restoration using MRF with truncated quadratic discontinuity cost
 - Not practical with conventional techniques, message updates 256²

Quadratic data term with no penalty for

masked pixels

- Powerful formulation now practical
 - Largely abandoned except for small label sets

Gaussian noise and mask

Illustrative Results for Stereo

Truncated linear cost functions

$$D_{i}(x_{i}) = \min(d_{b}, |L(p_{i1}, p_{i2}) - R(p_{i1} - x_{i}, p_{i2})|)$$

$$V(x_{i}, x_{j}) = \min(d_{s}, |x_{i} - x_{j}|)$$

- Runs in under a second for 30 disparity levels
- Same accuracy as slower methods
 - 12th in Middlebury benchmark (graph cuts 15th)

Extensions

- Fast message updates for max product in other cases
 - Discontinuity cost any convex function
 - Or truncated
 - Label set a multi-dimensional grid
 - E.g., flow vectors
 - Label sets not a regular grid
 - Possibly other "structured" label sets
- Additional labels such as occluded state for stereo can also be handled
 - Including penalty for length of occluded runs

Summary

- Fast methods for loopy belief propagation
 - Hundreds of times faster than previous methods
 - For discrete label space with potential functions based on differences between pairs of labels
 - Does not require parametric form of distributions
- Exact methods, not heuristic pruning or variational techniques
 - Except linear time Gaussian convolution which has (arbitrarily) small fixed approximation error
- Fast in practice, simple to implement
 - Code at http://people.cs.uchicago.edu/~pff/bp/

