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Overview

Markov random field (MRF) models are 
broadly useful for low level vision
– Framework for expressing tradeoff between 

spatial coherence and fidelity to data

Substantial recent advances in algorithms 
for MRF models on grid graph
– Two main approaches: graph cuts [BVZ01], 

loopy belief propagation (LBP) [WF01]

Present three speedup techniques for LBP
– Resulting methods hundreds of times faster 

than conventional techniques
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Low Level Vision Problems

Estimate label at each pixel
– Stereo: disparity
– Restoration: intensity
– Segmentation: layers, regions
– Optical flow: motion vector
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Pixel Labeling Problem

Find good assignment of labels to sites
– Set L of k labels
– Set S of n sites
– Neighborhood system N⊆S×S between sites

• Consider case of (four connected) grid graph

Undirected graphical model
– Graph G=(S,N)
– Discrete random variable xi over L at each site i

– First order models
• Maximal cliques in G of size 2
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Form of Posterior

Observations o

Posterior distribution of labelings given 
observations

Pr(x|o) ∝ Pr(o|x)Pr(x)

For first order model, prior factors as

Pr(x) ∝ ∏(i,j)∈NV(xi,xj)

Further assume likelihood factors

Pr(x|o) ∝ ∏i∈SDi(xi) ∏(i,j)∈NV(xi,xj)
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Estimation Problems

Marginal probability at each node  

Pr(xi|o)

Maximize posterior (MAP)

argmaxx ∏i∈SDi(xi) ∏(i,j)∈NV(xi,xj)

Neither problem computationally tractable
– NP hard for grid graph with 3 or more labels

Various methods for approximate solution
– Annealing, variational techniques, graph cuts 

using α-expansion, loopy belief propagation, …
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Belief Propagation

Iterative local update technique
– Message passing, “nosy neighbor”

Two forms
– Sum product for estimating marginals
– Max product for MAP estimation

Exact solution when no loops in graph
Update messages until “convergence” then 
compute distribution at each node
– Sum product for marginals
– Max product then max at each node for MAP
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Sum Product

At each step node j sends each 
neighbor a message, in parallel
– Node j’s view of i’s labels

mj→i(xi) = ∑xj
(Dj(xj) V(xj,xi)
∏k∈N(j)\imk→j(xj))

After T iterations compute 
belief at each node
– Using messages from neighbors 

and local data

bj(xj) = Dj(xj) ∏i∈N(j)mi→j(xj)
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Max Product

Min sum form with cost functions D’,V’
proportional to negative log potentials
Message updates
m’j→i(xi) = minxj

(D’j(xj) + V’(xj,xi)
+ ∑k∈N(j)\im’k→j(xj))

After T iterations compute label 
minimizing value at each node

argminxj
(D’j(xj) + ∑i∈N(j)m’i→j(xj))

– Simple approach of separately minimizing at 
each node can be problematic
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Three Techniques

Memory requirements of BP large
– Using bipartite form of graph can halve usage

For vision problems V(xi,xj) generally 
function of difference between labels
– Enables computation of (discrete) messages in 

linear rather than quadratic time

Number of iterations generally 
proportional to diameter of graph
– Propagate information across grid
– Using multi-grid methods can reduce to small 

constant number
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Bipartite Graph (“Red-Black”)

Checkerboard pattern on grid defines a 
bipartite graph, V=A∪B
Alternating message updates of sets A,B 
yields messages m nearly same as m
– Update messages from A on odd iterations and 

from B on even iterations 
– Then can show by induction when t odd (even)

mt
i→j =  mt

i→j if i in A (i in B)
mt-1 otherwise

– Converges to same fixed point with half as 
many updates and half as much memory

i→j
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Fast Message Updates

Pairwise term V measuring label difference

Sum product
– Express as a convolution

– O(klogk) algorithm using the FFT

– Linear-time approximation algorithms for 
Gaussian models

Min sum (max product)
– Express as a min convolution

– Linear time algorithms for common models 
using distance transforms and lower envelopes
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Sum Product Message Passing

When V(xi,xj)=ρ(xi-xj) can write message 
update as convolution

mj→i(xi) = ∑xj
(ρ(xj-xi) h(xj))

= ρ h
– Where h(xj)= Dj(xj) ∏k∈N(j)\imk→j(xj))

Thus FFT can be used to compute in 
O(klogk) time for k values
– Still somewhat large constants

For ρ a (mixture of) Gaussian(s) do faster 
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Fast Gaussian Convolution

A box filter has value 1 in some range
bw(x) =  1 if 0≤x≤w

0 otherwise
A Gaussian can be approximated by 
repeated convolutions with a box filter
– Application of central limit theorem, 

convolving pdf’s tends to Gaussian
– In practice, 4 convolutions [Wells, PAMI 86]

bw1
(x) bw2

(x) bw3
(x) bw4

(x) ≈ Gσ(x)
– Choose widths wi such that ∑i(wi

2-1)/12 ≈ σ2
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Convolution Using Box Sum

Thus can approximate Gσ(x) h(x) by 
cascade of box filters

bw1
(x) (bw2

(x) (bw3
(x) (bw4

(x) h(x))))

Compute each bw(x) f(x) in time 
independent of box width w – sliding sum

– Each successive shift of bw(x) w.r.t. f(x) 
requires just one addition and one subtraction

Overall computation just a few operations 
per label, O(k) with very low constant
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Max Product Message Passing

Can write message update as

m’j→i(xi) = minxj
(ρ’(xj-xi) + h’(xj))            

– Where h’(xj) = D’j(xj) ∑k∈N(j)\im’k→j(xj))

– Formulation using minimization of costs, 
proportional to negative log probabilities

Convolution-like operation over min,+ 
rather than ∑,× [FH00,FHK03]
– No general fast algorithm like FFT

– Certain important special cases in linear time
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Commonly Used Pairwise Costs

Potts model ρ’(x) =  0 if x=0
d otherwise

Linear model ρ’(x) = c|x|

Quadratic model ρ’(x) = cx2

Truncated models 
– Truncated linear ρ’(x)=min(d,c|x|)

– Truncated quadratic ρ’(x)=min(d,cx2)

Min convolution can be computed in linear 
time for any of these cost functions 
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Potts Pairwise Model

Substituting in to min convolution
m’j→i(xi) = minxj

(ρ’(xj-xi) + h’(xj))
can be written as

m’j→i(xi) = min(h’(xi), minxj
h’(xj)+d)

No need to compare pairs xi, xj

– Compute min over xj once, then compare 
result with each xi

O(k) time for k labels
– No special algorithm, just rewrite expression 

to obtain alternative (fast) computation



19

Linear Pairwise Model

Substituting in to min convolution yields
m’j→i(xi) = minxj

(c|xj-xi| + h’(xj))
Similar form to the L1 distance transform

minxj
(|xj-xi| + 1(xj))

– Where 1(x) =  0 when x∈P
∞ otherwise

is an indicator function for membership in P

Distance transform measures L1 distance 
to nearest point of P
– Can think of computation as lower envelope 

of cones, one for each element of P
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Using the L1 Distance Transform

Linear time algorithm
– Traditionally used for indicator functions, but 

applies to any sampled function

Forward pass
– For xj from 1 to k-1

m(xj) ← min(m(xj),m(xj-1)+c)

Backward pass
– For xj from k-2 to 0

m(xj) ← min(m(xj),m(xj+1)+c)

Example, c=1
– (3,1,4,2) becomes (3,1,2,2) then (2,1,2,2)
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Quadratic Pairwise Model

Substituting in to min convolution yields
m’j→i(xi) = minxj

(c(xj-xi)2 + h’(xj))
Again similar form to distance transform
Compute lower envelope of parabolas
– Each value of xj defines 

a quadratic constraint, 
parabola rooted at (xj,h(xj))

– In general can be done in
O(klogk) [DG95]

– Here parabolas are same
shape and ordered, so O(k)
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Lower Envelope of Parabolas

Quadratics ordered x1<x2< … <xn

At step j consider adding j-th one to LE 

– Maintain two ordered lists

• Quadratics currently visible on LE

• Intersections currently visible on LE

– Compute intersection of j-th quadratic
with rightmost visible on LE

• If right of rightmost intersection 
add quadratic and intersection 

• If not, this quadratic hides at least 
rightmost quadratic, remove and 
try again

NewRightmost

New Rightmost
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Running Time of Lower Envelope

Consider adding each quadratic just once
– Intersection and comparison constant time
– Adding to lists constant time
– Removing from lists constant time

• But then need to try again

Simple amortized analysis
– Total number of removals O(k)

• Each quadratic, once removed, never considered 
for removal again

Thus overall running time O(k)
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Code for Quadratic Pairwise Model
static float *dt(float *f, int n) {
float *d = new float[n], *z = new float[n];
int *v = new int[n], k = 0;
v[0] = 0; 
z[0] = -INF; z[1] = +INF;
for (int q = 1; q <= n-1; q++) {

float s = ((f[q]+c*square(q)) (f[v[k]]+c*square(v[k])))
/(2*c*q-2*c*v[k]);

while (s <= z[k]) {
k--;
s  = ((f[q]+c*square(q))-(f[v[k]]+c*square(v[k])))

/(2*c*q-2*c*v[k]);    }
k++;
v[k] = q;
z[k] = s;
z[k+1] = +INF; }
k = 0;

for (int q = 0; q <= n-1; q++) {
while (z[k+1] < q)

k++;
d[q] = c*square(q-v[k]) + f[v[k]];  }

return d;}
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Combined Pairwise Models

Truncated models
– Compute un-truncated message m’
– Truncate using Potts-like computation on m’ 

and original function h’
min(m’(xi), minxj

h’(xj)+d)

More general combinations
– Min of any constant number of linear and 

quadratic functions, with or without truncation
• E.g., multiple “segments”
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Fast Message Update Methods

Efficient computation without assuming 
form of (discrete) distributions
– Requires prior to be based on differences 

between labels rather than their identities

Sum product 
– O(klogk) message updates for arbitrary 

discrete distributions over k labels using FFT
– O(k) when pairwise clique potential a mixture 

of Gaussians using box sums

Max product
– O(k) for commonly used clique potentials



27

A Multi Grid Technique

Number of message passing iterations T 
generally proportional to diameter of grid
– Propagate information across the grid

Use hierarchical approach to make 
independent of graph diameter
– Previous work does this by changing the 

graph, building quad-tree with no loops [W02]

Our approach is to define a hierarchy of 
problems with original graph structure
– Initialize messages based on coarser levels
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Hierarchy of Grids

Consider min sum case, rewrite 
minimization in terms of grid Γ
E(x) = ∑(i,j)∈ΓDij(xi,j) + ∑(i,j)∈Γ\CV(xi,j-xi+1,j) 

+ ∑(i,j)∈Γ\RV(xi,j-xi,j+1)

– Where C,R last row and column of grid

Can define family of grids Γ0, Γ1, …
– An element of Γl corresponds to ε×ε block of 

pixels, where ε=2l

– Labeling xl of Γl assigns the pixels in each 
block a single label (from same set L)
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Problem Hierarchy

Minimization problem
at each level of the
hierarchy

El(xl) = ∑(i,j)∈ΓlDl
ij(xl

i,j) 
+ ∑(i,j)∈Γl\ClVl(xl

i,j-xl
i+1,j) 

+ ∑(i,j)∈Γl\RlVl(xl
i,j-xl

i,j+1)
Multi grid: final messages at one level as 
initial condition for next level, and so on
– Small number of iterations if initial conditions 

close to final value
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Hierarchical Data Term

Finite element approach
Assigning label α to block (i,j) at level l
equivalent to assigning α to each pixel in 
block

Dl
ij(α) = ∑0≤u<ε∑0≤v<ε Dεi+u,εj+v(α)

– Sum costs for all pixels in block

Corresponds to product of probabilities, 
likelihood of observing pixels given label α
Captures preference for multiple labels
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Hierarchical Discontinuity Term

Boundary between blocks length ε
– Sum along boundary 

Separation between blocks ε
– Finite difference, divide by separation

Vl(α-β) = εV( )
Produces different form depending on V
– Linear, Vl(x)=c|x| 

– Quadratic, Vl(x)=cx2/ε

α-β
ε
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Multi Grid Method

Number of levels in hierarchy proportional 
to log image diameter
– So propagation time small constant at top

Same label set at each level
– In contrast to pyramid methods

In practice converges 
after a few iterations
– Note each iteration 

just 1/3 more work 
than standard single
level



33

Illustrative Results for Restoration

Image restoration using MRF with 
truncated quadratic discontinuity cost 
– Not practical with conventional techniques, 

message updates 2562

Quadratic data term with no penalty for 
masked pixels
Powerful formulation
now practical
– Largely abandoned

except for small
label sets Gaussian noise and mask
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Illustrative Results for Stereo

Truncated linear cost functions
Di(xi) = min(db,|L(pi1,pi2)-R(pi1-xi,pi2)|)

V(xi,xj) = min(ds,|xi-xj|)

– Runs in under a second for 30 disparity levels

Same accuracy as slower methods
– 12th in Middlebury benchmark (graph cuts 15th)
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Extensions

Fast message updates for max product in 
other cases
– Discontinuity cost any convex function

• Or truncated

– Label set a multi-dimensional grid
• E.g., flow vectors

– Label sets not a regular grid
– Possibly other “structured” label sets

Additional labels such as occluded state for 
stereo can also be handled
– Including penalty for length of occluded runs
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Summary

Fast methods for loopy belief propagation
– Hundreds of times faster than previous methods  
– For discrete label space with potential functions 

based on differences between pairs of labels
– Does not require parametric form of distributions

Exact methods, not heuristic pruning or 
variational techniques
– Except linear time Gaussian convolution which 

has (arbitrarily) small fixed approximation error

Fast in practice, simple to implement
– Code at http://people.cs.uchicago.edu/~pff/bp/


