Speeding Up Belief Propagation for Early Vision

Daniel Huttenlocher
MSRI Low Level Vision Workshop
February, 2005

Joint work with Pedro Felzenszwalb
Cornell University
Faculty of Computing and Information Science

Overview

- Markov random field (MRF) models are broadly useful for low level vision
- Framework for expressing tradeoff between spatial coherence and fidelity to data
- Substantial recent advances in algorithms for MRF models on grid graph
- Two main approaches: graph cuts [BVZ01], loopy belief propagation (LBP) [WF01]
- Present three speedup techniques for LBP
- Resulting methods hundreds of times faster than conventional techniques

Low Level Vision Problems

- Estimate label at each pixel
- Stereo: disparity
- Restoration: intensity
- Segmentation: layers, regions
- Optical flow: motion vector

Pixel Labeling Problem

- Find good assignment of labels to sites
- Set \mathcal{L} of k labels
- Set S of n sites
- Neighborhood system $\mathcal{N} \subseteq \mathcal{S} \times S$ between sites
- Consider case of (four connected) grid graph
- Undirected graphical model
- Graph $\mathcal{G}=(S, \mathcal{N})$
- Discrete random variable x_{i} over \mathcal{L} at each site i
- First order models
- Maximal cliques in \mathcal{G} of size 2

Form of Posterior

- Observations o
- Posterior distribution of labelings given observations

$$
\operatorname{Pr}(x \mid 0) \propto \operatorname{Pr}(0 \mid x) \operatorname{Pr}(x)
$$

- For first order model, prior factors as

$$
\operatorname{Pr}(\mathrm{x}) \propto \prod_{(\mathrm{i}, \mathrm{j}) \in \mathcal{N}} \mathrm{V}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)
$$

- Further assume likelihood factors

$$
\operatorname{Pr}(\mathrm{x} \mid \mathrm{O}) \propto \prod_{\mathrm{i} \in S} \mathrm{D}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right) \prod_{(\mathrm{i}, \mathrm{j}) \in \mathcal{N}} \mathrm{V}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)
$$

Estimation Problems

- Marginal probability at each node

$$
\operatorname{Pr}\left(x_{i} \mid 0\right)
$$

- Maximize posterior (MAP)
$\operatorname{argmax}_{\mathrm{x}} \Pi_{\mathrm{i} \in \mathcal{S}} \mathrm{D}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right) \prod_{(\mathrm{i}, \mathrm{j}) \in \mathcal{N}} \mathrm{V}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$
- Neither problem computationally tractable
- NP hard for grid graph with 3 or more labels
- Various methods for approximate solution
- Annealing, variational techniques, graph cuts using α-expansion, loopy belief propagation, ...

Belief Propagation

- Iterative local update technique
- Message passing, "nosy neighbor"
- Two forms
- Sum product for estimating marginals
- Max product for MAP estimation
- Exact solution when no loops in graph
- Update messages until "convergence" then compute distribution at each node
- Sum product for marginals
- Max product then max at each node for MAP

Sum Product

- At each step node j sends each neighbor a message, in parallel
- Node j's view of i's labels

$$
\begin{aligned}
& m_{j \rightarrow i}\left(x_{i}\right)=\sum_{x_{j}}\left(D_{j}\left(x_{j}\right) V\left(x_{j}, x_{i}\right)\right. \\
&\left.\prod_{k \in \mathcal{N}(j) \backslash i} m_{k \rightarrow j}\left(x_{j}\right)\right)
\end{aligned}
$$

- After T iterations compute belief at each node
- Using messages from neighbors and local data

$$
b_{j}\left(x_{j}\right)=D_{j}\left(x_{j}\right) \prod_{i \in \mathcal{N}(\mathrm{j})} m_{i \rightarrow j}\left(x_{j}\right)
$$

Max Product

- Min sum form with cost functions $\mathrm{D}^{\prime}, \mathrm{V}^{\prime}$ proportional to negative log potentials
- Message updates

$$
\begin{aligned}
\mathrm{m}_{\mathrm{j} \rightarrow \mathrm{i}}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)=\min _{\mathrm{x}_{\mathrm{j}}} & \left(\mathrm{D}_{\mathrm{j}}^{\prime}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{V}^{\prime}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{i}}\right)\right. \\
& \left.+\sum_{\mathrm{k} \in \mathcal{N (j)} \backslash \backslash \mathrm{i}} \mathrm{~m}_{\mathrm{k} \rightarrow \mathrm{j}}^{\prime}\left(\mathrm{x}_{\mathrm{j}}\right)\right)
\end{aligned}
$$

- After T iterations compute label minimizing value at each node $\operatorname{argmin}_{\mathrm{x}_{\mathrm{j}}}\left(\mathrm{D}_{\mathrm{j}}^{\prime}\left(\mathrm{x}_{\mathrm{j}}\right)+\sum_{\mathrm{i} \in \mathcal{N}(\mathrm{j})} \mathrm{m}_{\mathrm{i} \rightarrow \mathrm{j}}^{\prime}\left(\mathrm{x}_{\mathrm{j}}\right)\right)$
- Simple approach of separately minimizing at each node can be problematic

Three Techniques

- Memory requirements of BP large
- Using bipartite form of graph can halve usage
- For vision problems $\mathrm{V}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ generally function of difference between labels
- Enables computation of (discrete) messages in linear rather than quadratic time
- Number of iterations generally proportional to diameter of graph
- Propagate information across grid
- Using multi-grid methods can reduce to small constant number

Bipartite Graph ("Red-Black")

- Checkerboard pattern on grid defines a bipartite graph, $V=A \cup B$
- Alternating message updates of sets A, B yields messages \bar{m} nearly same as m
- Update messages from A on odd iterations and from B on even iterations
- Then can show by induction when t odd (even)

$$
\bar{m}_{i \rightarrow j}^{t}=\left\{\begin{array}{l}
m_{i \rightarrow j}^{t} \text { if } i \text { in } A(i \text { in } B) \\
m_{i \rightarrow j}^{t-1} \text { otherwise }
\end{array}\right.
$$

- Converges to same fixed point with half as many updates and half as much memory

Fast Message Updates

- Pairwise term V measuring label difference
- Sum product
- Express as a convolution
- O(klogk) algorithm using the FFT
- Linear-time approximation algorithms for Gaussian models
- Min sum (max product)
- Express as a min convolution
- Linear time algorithms for common models using distance transforms and lower envelopes

Sum Product Message Passing

- When $\mathrm{V}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\rho\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right)$ can write message update as convolution

$$
\begin{aligned}
m_{j \rightarrow i}\left(x_{i}\right) & =\sum_{x_{j}}\left(\rho\left(x_{j}-x_{i}\right) h\left(x_{j}\right)\right) \\
& =\rho \star h
\end{aligned}
$$

- Where $\left.h\left(x_{j}\right)=D_{j}\left(x_{j}\right) \Pi_{k \in N(j) \backslash i} m_{k \rightarrow j}\left(x_{j}\right)\right)$
- Thus FFT can be used to compute in O(klogk) time for k values
- Still somewhat large constants
- For ρ a (mixture of) Gaussian(s) do faster

Fast Gaussian Convolution

- A box filter has value 1 in some range

$$
\mathrm{b}_{\mathrm{w}}(\mathrm{x})=\left\{\begin{array}{l}
1 \text { if } 0 \leq x \leq w \\
0 \text { otherwise }
\end{array}\right.
$$

- A Gaussian can be approximated by repeated convolutions with a box filter
- Application of central limit theorem, convolving pdf's tends to Gaussian
- In practice, 4 convolutions [Wells, PAMI 86]

$$
b_{w_{1}}(x) * b_{w_{2}}(x) * b_{w_{3}}(x) * b_{w_{4}}(x) \approx G_{\sigma}(x)
$$

- Choose widths w_{i} such that $\sum_{i}\left(w_{i}{ }^{2}-1\right) / 12 \approx \sigma^{2}$

Convolution Using Box Sum

- Thus can approximate $G_{\sigma}(x) \star h(x)$ by cascade of box filters

$$
b_{w_{1}}(x) \star\left(b_{w_{2}}(x) \star\left(b_{w_{3}}(x) \star\left(b_{w_{4}}(x) \star h(x)\right)\right)\right)
$$

- Compute each $b_{w}(x) * f(x)$ in time independent of box width w - sliding sum
- Each successive shift of $b_{w}(x)$ w.r.t. $f(x)$ requires just one addition and one subtraction
- Overall computation just a few operations per label, O(k) with very low constant

Max Product Message Passing

- Can write message update as

$$
\mathrm{m}_{j \rightarrow i}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)=\min _{x_{\mathrm{j}}}\left(\rho^{\prime}\left(\mathrm{x}_{\mathrm{j}}-\mathrm{x}_{\mathrm{i}}\right)+\mathrm{h}^{\prime}\left(\mathrm{x}_{\mathrm{j}}\right)\right)
$$

- Where $\left.h^{\prime}\left(x_{j}\right)=D_{j}^{\prime}\left(x_{j}\right) \sum_{k \in \mathcal{N}(\mathrm{j}) \backslash i} m^{\prime}{ }_{\mathrm{k} \rightarrow \mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right)\right)$
- Formulation using minimization of costs, proportional to negative log probabilities
- Convolution-like operation over min,+ rather than $\sum_{, \times} \times$[FHOO,FHKO3]
- No general fast algorithm like FFT
- Certain important special cases in linear time

Commonly Used Pairwise Costs

- Potts model $\rho^{\prime}(x)=\left\{\begin{array}{l}0 \text { if } x=0 \\ d \text { otherwise }\end{array}\right.$
- Linear model $\rho^{\prime}(x)=c|x|$
- Quadratic model $\rho^{\prime}(x)=c x^{2}$
- Truncated models
- Truncated linear $\rho^{\prime}(x)=\min (d, c|x|)$
- Truncated quadratic $\rho^{\prime}(x)=\min \left(d, c x^{2}\right)$
- Min convolution can be computed in linear time for any of these cost functions

Potts Pairwise Model

- Substituting in to min convolution

$$
m_{j \rightarrow i}^{\prime}\left(x_{i}\right)=\min _{x_{\mathrm{j}}}\left(\rho^{\prime}\left(x_{j}-x_{i}\right)+h^{\prime}\left(x_{j}\right)\right)
$$

can be written as

$$
\mathrm{m}_{\mathrm{j} \rightarrow \mathrm{i}}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)=\min \left(\mathrm{h}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right), \min _{\mathrm{x}_{\mathrm{j}}} \mathrm{~h}^{\prime}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{d}\right)
$$

- No need to compare pairs x_{i}, x_{j}
- Compute min over x_{j} once, then compare result with each x_{i}
- $O(k)$ time for k labels
- No special algorithm, just rewrite expression to obtain alternative (fast) computation

Linear Pairwise Model

- Substituting in to min convolution yields

$$
m_{j \rightarrow i}^{\prime}\left(x_{i}\right)=\min _{x_{\mathrm{j}}}\left(\mathrm{c}\left|\mathrm{x}_{\mathrm{j}}-\mathrm{x}_{\mathrm{i}}\right|+\mathrm{h}^{\prime}\left(\mathrm{x}_{\mathrm{j}}\right)\right)
$$

- Similar form to the L_{1} distance transform $\min _{x_{j}}\left(\left|x_{j}-x_{i}\right|+1\left(x_{j}\right)\right)$
- Where $1(x)= \begin{cases}0 & \text { when } x \in P \\ \infty & \text { otherwise }\end{cases}$
is an indicator function for membership in P
- Distance transform measures L_{1} distance to nearest point of P
- Can think of computation as lower envelope of cones, one for each element of P

Using the $\mathbf{L}_{\mathbf{1}}$ Distance Transform

- Linear time algorithm
- Traditionally used for indicator functions, but applies to any sampled function
- Forward pass
- For x_{j} from 1 to $\mathrm{k}-1$ $\mathrm{m}\left(\mathrm{x}_{\mathrm{j}}\right) \leftarrow \min \left(\mathrm{m}\left(\mathrm{x}_{\mathrm{j}}\right), \mathrm{m}\left(\mathrm{x}_{\mathrm{j}}-1\right)+\mathrm{c}\right)$
- Backward pass

- For x_{j} from $\mathrm{k}-2$ to 0 $\mathrm{m}\left(\mathrm{x}_{\mathrm{j}}\right) \leftarrow \min \left(\mathrm{m}\left(\mathrm{x}_{\mathrm{j}}\right), \mathrm{m}\left(\mathrm{x}_{\mathrm{j}}+1\right)+\mathrm{c}\right)$
- Example, $\mathrm{c}=1$
- $(3,1,4,2)$ becomes $(3,1,2,2)$ then $(2,1,2,2)$

Quadratic Pairwise Model

- Substituting in to min convolution yields

$$
\mathrm{m}_{\mathrm{j} \rightarrow \mathrm{i}}^{\prime}\left(\mathrm{x}_{\mathrm{i}}\right)=\min _{\mathrm{x}_{\mathrm{j}}}\left(\mathrm{c}\left(\mathrm{x}_{\mathrm{j}}-\mathrm{x}_{\mathrm{i}}\right)^{2}+\mathrm{h}^{\prime}\left(\mathrm{x}_{\mathrm{j}}\right)\right)
$$

- Again similar form to distance transform
- Compute lower envelope of parabolas
- Each value of x_{j} defines a quadratic constraint, parabola rooted at $\left(\mathrm{X}_{\mathrm{j}}, \mathrm{h}\left(\mathrm{x}_{\mathrm{j}}\right)\right.$)
- In general can be done in O(klogk) [DG95]
- Here parabolas are same
 shape and ordered, so $O(k)$

Lower Envelope of Parabolas

- Quadratics ordered $x_{1}<x_{2}<\ldots<x_{n}$
- At step j consider adding j-th one to LE
- Maintain two ordered lists
- Quadratics currently visible on LE
- Intersections currently visible on LE

- Compute intersection of j-th quadratic with rightmost visible on LE
- If right of rightmost intersection add quadratic and intersection
- If not, this quadratic hides at least rightmost quadratic, remove and try again

Running Time of Lower Envelope

- Consider adding each quadratic just once
- Intersection and comparison constant time
- Adding to lists constant time
- Removing from lists constant time
- But then need to try again
- Simple amortized analysis
- Total number of removals $O(k)$
- Each quadratic, once removed, never considered for removal again
- Thus overall running time $\mathrm{O}(\mathrm{k})$

Code for Quadratic Pairwise Model

```
static float *dt(float *f, int n) {
    float *d = new float[n], *z = new float[n];
    int *v = new int[n], k = 0;
    v[0] = 0;
    z[0] = -INF; z[1] = +INF;
    for (int q = 1; q <= n-1; q++) {
    float s = ((f[q]+c*square(q)) (f[v[k]]+c*square(v[k])))
                                    /(2*c*q-2*c*v[k]);
    while (s <= z[k]) {
        k--;
        s = ((f[q]+c*square(q))-(f[v[k]]+c*square(v[k])))
                /(2*c*q-2*c*v[k]); }
    k++;
    v[k] = q;
    z[k] = s;
    z[k+1] = +INF; }
        k = 0;
    for (int q = 0; q <= n-1; q++) {
    while (z[k+1] < q)
        k++;
    d[q] = c*square(q-v[k]) + f[v[k]]; }
    return d;}
```


Combined Pairwise Models

- Truncated models
- Compute un-truncated message m'
- Truncate using Potts-like computation on m^{\prime} and original function h^{\prime}
$\min \left(m^{\prime}\left(x_{i}\right), \min _{x_{j}} \mathrm{~h}^{\prime}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{d}\right)$
- More general combinations
- Min of any constant number of linear and quadratic functions, with or without truncation
- E.g., multiple "segments"

Fast Message Update Methods

- Efficient computation without assuming form of (discrete) distributions
- Requires prior to be based on differences between labels rather than their identities
- Sum product
- O(klogk) message updates for arbitrary discrete distributions over k labels using FFT
- $O(k)$ when pairwise clique potential a mixture of Gaussians using box sums
- Max product
- $\mathrm{O}(\mathrm{k})$ for commonly used clique potentials

A Multi Grid Technique

- Number of message passing iterations T generally proportional to diameter of grid
- Propagate information across the grid
- Use hierarchical approach to make independent of graph diameter
- Previous work does this by changing the graph, building quad-tree with no loops [W02]
- Our approach is to define a hierarchy of problems with original graph structure
- Initialize messages based on coarser levels

Hierarchy of Grids

- Consider min sum case, rewrite minimization in terms of grid Γ

$$
\begin{aligned}
\mathrm{E}(\mathrm{x})= & \sum_{(\mathrm{i}, \mathrm{j}) \in \Gamma} \mathrm{D}_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{i}, \mathrm{j}}\right)+\sum_{(\mathrm{i}, \mathrm{j}) \in\lceil\backslash e} V\left(\mathrm{x}_{\mathrm{i}, \mathrm{j}}-\mathrm{x}_{\mathrm{i}+1, \mathrm{j}}\right) \\
& +\sum_{(\mathrm{i}, \mathrm{j}) \in \Gamma \backslash \mathcal{R}} V\left(\mathrm{x}_{\mathrm{i}, \mathrm{j}}-\mathrm{x}_{\mathrm{i}, \mathrm{j}+1}\right)
\end{aligned}
$$

- Where $\boldsymbol{e}, \mathcal{R}$ last row and column of grid
- Can define family of grids $\Gamma^{0}, \Gamma^{1}, \ldots$
- An element of Γ^{ℓ} corresponds to $\varepsilon \times \varepsilon$ block of pixels, where $\varepsilon=2^{\varepsilon}$
- Labeling x^{ℓ} of Γ^{ℓ} assigns the pixels in each block a single label (from same set \mathfrak{L})

Problem Hierarchy

- Minimization problem at each level of the hierarchy

$$
\begin{aligned}
& \mathrm{E}^{\ell}\left(\mathrm{x}^{\ell}\right)=\sum_{(\mathrm{i}, \mathrm{j}) \in \Gamma} \mathrm{C}_{\mathrm{e}}^{\ell}\left(\mathrm{x}_{\mathrm{i}, \mathrm{j}}^{\ell}\right) \\
& +\sum_{(i, j) \in \Gamma l e e^{l}} V^{\ell}\left(x_{i, j}^{\ell}-x_{i+1, j}^{\ell}\right) \\
& +\sum_{(i, j) \in \Gamma \ell \mathscr{R}^{\ell}}{ }^{\ell}\left(X_{i, j}^{\ell}-x_{i, j+1}^{\ell}\right)
\end{aligned}
$$

- Multi grid: final messages at one level as initial condition for next level, and so on
- Small number of iterations if initial conditions close to final value

Hierarchical Data Term

- Finite element approach
- Assigning label α to block (i, j) at level $\boldsymbol{\ell}$ equivalent to assigning α to each pixel in block

$$
D^{\prime}{ }_{i j}(\alpha)=\sum_{0 \leq u<\varepsilon} \sum_{0 \leq v<\varepsilon} D_{\varepsilon i+u, \varepsilon j+v}(\alpha)
$$

- Sum costs for all pixels in block
- Corresponds to product of probabilities, likelihood of observing pixels given label α
- Captures preference for multiple labels

Hierarchical Discontinuity Term

- Boundary between blocks length ε
- Sum along boundary
- Separation between blocks ε
- Finite difference, divide by separation

$$
\mathrm{V}^{\ell}(\alpha-\beta)=\varepsilon \mathrm{V}\left(\frac{\alpha-\beta}{\varepsilon}\right)
$$

- Produces different form depending on V
- Linear, $V^{\ell}(x)=c|x|$
- Quadratic, $\mathrm{V}^{\ell}(\mathrm{x})=\mathrm{cx}^{2} / \varepsilon$

Multi Grid Method

- Number of levels in hierarchy proportional to log image diameter
- So propagation time small constant at top
- Same label set at each level
- In contrast to pyramid methods
- In practice converges after a few iterations
- Note each iteration just $1 / 3$ more work than standard single level

Illustrative Results for Restoration

- Image restoration using MRF with truncated quadratic discontinuity cost
- Not practical with conventional techniques, message updates 256^{2}
- Quadratic data term with no penalty for masked pixels
- Powerful formulation now practical
- Largely abandoned except for small label sets

Gaussian noise and mask

Illustrative Results for Stereo

- Truncated linear cost functions

$$
\begin{aligned}
D_{i}\left(x_{i}\right) & =\min \left(d_{b},\left|L\left(p_{i 1}, p_{i 2}\right)-R\left(p_{i 1}-x_{i}, p_{i 2}\right)\right|\right) \\
V\left(x_{i}, x_{j}\right) & =\min \left(d_{s,}\left|x_{i}-x_{j}\right|\right)
\end{aligned}
$$

- Runs in under a second for 30 disparity levels
- Same accuracy as slower methods
- $12^{\text {th }}$ in Middlebury benchmark (graph cuts $15^{\text {th }}$)

Extensions

- Fast message updates for max product in other cases
- Discontinuity cost any convex function
- Or truncated
- Label set a multi-dimensional grid
- E.g., flow vectors
- Label sets not a regular grid
- Possibly other "structured" label sets
- Additional labels such as occluded state for stereo can also be handled
- Including penalty for length of occluded runs

Summary

- Fast methods for loopy belief propagation
- Hundreds of times faster than previous methods
- For discrete label space with potential functions based on differences between pairs of labels
- Does not require parametric form of distributions
- Exact methods, not heuristic pruning or variational techniques
- Except linear time Gaussian convolution which has (arbitrarily) small fixed approximation error
- Fast in practice, simple to implement
- Code at http://people.cs.uchicago.edu/~pff/bp/

