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Overview

= Markov random field (MRF) models are
broadly useful for low level vision

— Framework for expressing tradeoff between
spatial coherence and fidelity to data

= Substantial recent advances in algorithms

for MRF models on grid graph

— Two main approaches: graph cuts [BVZ01],
loopy belief propagation (LBP) [WF01]

* Present three speedup techniques for LBP

— Resulting methods hundreds of times faster
than conventional techniques
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Low Level Vision Problems

= Estimate label at each pixel
— Stereo: disparity
— Restoration: intensity
— Segmentation: layers, regions
— Optical flow: motion vector




Pixel Labeling Problem

= Find good assignment of labels to sites
- Set £ of k labels
- Set § of n sites

— Neighborhood system NSS§xS between sites
e (Consider case of (four connected) grid graph

= Undirected graphical model
- Graph ¢g=(§,¥)
— Discrete random variable x; over £ at each site i

- First order models
e Maximal cliques in ¢ of size 2
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Form of Posterior

Observations o

Posterior distribution of labelings given
observations

Pr(x]|o) o« Pr(o|x)Pr(x)
For first order model, prior factors as
Pr(x) o [ eV (Xi,X;)
Further assume likelihood factors
Pr(x|o) o [TjcsDi(x;) T 5yeaV(Xir%;)




Estimation Problems

= Marginal probability at each node
Pr(x;|o)
= Maximize posterior (MAP)
argmax, [1;csDi(xi) T 5yexV(XirX;)
= Neither problem computationally tractable
— NP hard for grid graph with 3 or more labels

= Various methods for approximate solution

- Annealing, variational techniques, graph cuts
using a-expansion, loopy belief propagation, ...
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Belief Propagation

= Jterative local update technique
— Message passing, "nosy neighbor”

= Two forms
— Sum product for estimating marginals
- Max product for MAP estimation

= Exact solution when no loops in graph

= Update messages until “convergence” then
compute distribution at each node

— Sum product for marginals
- Max product then max at each node for MAP
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Sum Product

= At each step node j sends each
neighbor a message, in parallel

— Node j’s view of i's labels
m;_,i(X;) = ij(Dj(Xj) V(X;,X;)
ke winiMisi(X5))
= After T iterations compute

belief at each node

— Using messages from neighbors
and local data

b;(X;) = D;(%;) Tlicvymi;(X5)




Max Product

= Min sum form with cost functions D’,V’
proportional to negative log potentials

= Message updates
mM’i(%;) = min, (D'j(x;) + V(X))
+ 2w iniM koilX5))
= After T iterations compute label
minimizing value at each node

argminxj (D(X%5) + ZicamMisg(X5))
— Simple approach of separately minimizing at
each node can be problematic
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Three Techniques

= Memory requirements of BP large
— Using bipartite form of graph can halve usage

= For vision problems V(x;,x;) generally
function of difference between labels
— Enables computation of (discrete) messages in
linear rather than quadratic time
= Number of iterations generally
proportional to diameter of graph
- Propagate information across grid

— Using multi-grid methods can reduce to small
constant number
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Bipartite Graph ("Red-Black”)

= Checkerboard pattern on grid defines a
bipartite graph, V=AuUB

= Alternating message updates of sets A,B
yvields messages m nearly same as m

- Update messages from A on odd iterations and
from B on even iterations

— Then can show by induction when t odd (even)
mt_; =|mt,;ifiin A (iin B)
mt-1 otherwise

I—]

— Converges to same fixed point with half as
many updates and half as much memory
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Fast Message Updates

= Pairwise term V measuring label difference

= Sum product
— Express as a convolution
- O(klogk) algorithm using the FFT

— Linear-time approximation algorithms for
Gaussian models

= Min sum (max product)
— Express as a min convolution

— Linear time algorithms for common models
using distance transforms and lower envelopes
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Sum Product Message Passing

= When V(X;,X;)=p(X;-X;) can write message
update as convolution
MiLi(Xi) = 2y (p(X57X;) h(X;))
= p*h
- Where h(Xj)= Dj(Xj) er./\/(j)\imk—>j(xj))
= Thus FFT can be used to compute in
O(klogk) time for k values

- Still somewhat large constants
= For p a (mixture of) Gaussian(s) do faster




Fast Gaussian Convolution

= A box filter has value 1 in some range

b,(X) = |1 if O<x<w
0 otherwise

= A Gaussian can be approximated by
repeated convolutions with a box filter

Application of central limit theorem,
convolving pdf’s tends to Gaussian

In practice, 4 convolutions [Wells, PAMI 86]
b,,(X)*b,,(x)*b,,(X)*b,,(X) ~ G,(x)
Choose widths w, such that >.(w;?-1)/12 = 2




Convolution Using Box Sum

= Thus can approximate G_(x)*h(x) by
cascade of box filters

b, (x)*(b,,(x)*(b,,(x)*(b,,(x)%*h(x))))
= Compute each b, (x)*f(x) in time
independent of box width w - sliding sum

- Each successive shift of b, (x) w.r.t. f(x)
requires just one addition and one subtraction

= (QOverall computation just a few operations
per label, O(k) with very low constant




Max Product Message Passing

= (Can write message update as
m'(x;) = min, (p'(x-x) + h'(x;))
- Where h’(Xj) = D,j(Xj) Z|<eAf(j)\im’k—>j(xj))
— Formulation using minimization of costs,
proportional to negative log probabilities

= Convolution-like operation over min,+
rather than >,x [FHOO,FHKO3]

— No general fast algorithm like FFT
— Certain important special cases in linear time
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Commonly Used Pairwise Costs

= Potts model p’(x) = [0 if x=0
d otherwise

= Linear model p’(x) = c|X]
= Quadratic model p'(x) = cx?
= Truncated models
— Truncated linear p’(x)=min(d,c|x|)
- Truncated quadratic p’(x)=min(d,cx?)

= Min convolution can be computed in linear
time for any of these cost functions




Potts Pairwise Model

= Substituting in to min convolution
M’i(%) = min, (p"(X-x;) + h'(x;))
can be written as
m'i(x;) = min(h’(x,), min, h'(x;)+d)
= No need to compare pairs X;, X;

- Compute min over x; once, then compare
result with each x;

= O(k) time for k labels

— No special algorithm, just rewrite expression
to obtain alternative (fast) computation
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Linear Pairwise Model

=  Substituting in to min convolution yields
m'(x;) = min, (clx;-x| + h'(x;))
= Similar form to the L; distance transform
min, (1X;=%;| + 1(x;))
- Where 1(x) ={ 0 when xeP

o otherwise
is an indicator function for membership in P

= Distance transform measures L, distance
to nearest point of P

— Can think of computation as lower envelope
of cones, one for each element of P
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Using the L, Distance Transform

= Linear time algorithm

— Traditionally used for indicator functions, but
applies to any sampled function

= Forward pass
- For x; from 1 to k-1
m(X;) < min(m(x;),m(X;-1)+c)
» Backward pass R
- For x; from k-2 to O
m(X;) < min(m(x;),M(x;+1)+c)

= Example, c=1
- (3,1,4,2) becomes (3,1,2,2) then (2,1,2,2)




Quadratic Pairwise Model
= Substituting in to min convolution yields
= Again similar form to distance transform
= Compute lower envelope of parabolas
- Each value of x; defines
— In general can be done in /J// \/
O(klogk) [DG95]

a quadratic constraint,

parabola rooted at (x;,h(x;))
— Here parabolas are same e
shape and ordered, so O(k)
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Lower Envelope of Parabolas

= Quadratics ordered x;<X,< ... <X,
= At step j consider adding j-th one to LE
— Maintain two ordered lists

e Quadratics currently visible on LE At

e Intersections currently visible on LE Rightrmost New

— Compute intersection of j-th quadratic
with rightmost visible on LE

o If right of rightmost intersection
add quadratic and intersection

e If not, this quadratic hides at least
rightmost quadratic, remove and / \
try again New Rightmost
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Running Time of Lower Envelope

= Consider adding each quadratic just once
— Intersection and comparison constant time
— Adding to lists constant time
— Removing from lists constant time
e But then need to try again
= Simple amortized analysis

— Total number of removals O(k)

e Each quadratic, once removed, never considered
for removal again

= Thus overall running time O(k)
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Code for Quadratic Pairwise Model

static float *dt(float *f, int n) {

float *d = new float[n], *z = new float[n];
int *v = new int[n], = 0;
v[0] = O;
z[0] = -INF; z[1l] = +INF;
for (int =1; g <= n-1; g++) {
float = ((f[g]ltc*square(q)) (f[v[k]]+c*square(v[k])))

/ (2*c*g-2*c*v[k]) ;
while (s <= z[k]) {

k--;
s = ((f[g]+c*square(q))-(f[v[k]]+c*square(v[k])))
/ (2*c*q-2*c*v[k]); }
k++;
vik] = q;
z[k] = s;
z[k+1l] = +INF; }
k =0;
for (int = 0; g <= n-1; g++) {
while (z[k+1l] < q)
k++;

d[q] = c*square(g-v[k]) + f£[v[k]]; }
return d4d;}
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Combined Pairwise Models

» Truncated models
— Compute un-truncated message m’

— Truncate using Potts-like computation on m’
and original function h’
min(m’(x;), min, h’(x;)+d)

= More general combinations

— Min of any constant number of linear and
quadratic functions, with or without truncation

e E.g., multiple “segments”
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Fast Message Update Methods

=  Efficient computation without assuming
form of (discrete) distributions

- Requires prior to be based on differences
between labels rather than their identities

= Sum product

- O(klogk) message updates for arbitrary
discrete distributions over k labels using FFT

— O(k) when pairwise clique potential a mixture
of Gaussians using box sums

= Max product
- O(k) for commonly used clique potentials
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A Multi Grid Technique

= Number of message passing iterations T
generally proportional to diameter of grid

— Propagate information across the grid
= Use hierarchical approach to make
independent of graph diameter

— Previous work does this by changing the
graph, building quad-tree with no loops [W02]

= Our approach is to define a hierarchy of
problems with original graph structure

— Initialize messages based on coarser levels
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Hierarchy of Grids

= Consider min sum case, rewrite
minimization in terms of grid I

E(X) = 2 4)erDi(Xi5) + 2 jyereV (Xi i Xit1 1)
+ 260 pyenaV (Xi X j+1)
- Where ¢,2 last row and column of grid

= Can define family of grids 19, I'1, ...

— An element of I'¢ corresponds to exe block of
pixels, where g¢=2¢

— Labeling x¢ of T'¢ assigns the pixels in each
block a single label (from same set £)
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Problem Hierarchy

= Minimization problem il
at each level of the :|: :|_
hierarchy I T

EK(XZ) = Z(i,j)ereDeij(Xei,j) level O level 1

+ 20 pyereeVUX X551 5)

+ 2 j)erage VX 57X 41)
= Multi grid: final messages at one level as
initial condition for next level, and so on

— Small number of iterations if initial conditions
close to final value
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Hierarchical Data Term

= Finite element approach

= Assigning label a to block (i,j) at level ¢
equivalent to assigning o to each pixel in
block

Deij(a) = 20<u<e20<v<s D8i+u,sj+v(a)
— Sum costs for all pixels in block

= Corresponds to product of probabilities,
likelihood of observing pixels given label a

= Captures preference for multiple labels




Hierarchical Discontinuity Term

= Boundary between blocks length ¢
— Sum along boundary

= Separation between blocks ¢
— Finite difference, divide by separation

Vi(a-p) = ev(ED)

= Produces different form depending on V
— Linear, V¢(x)=c|x|
— Quadratic, V{(x)=cx?/¢




Multi Grid Method

= Number of levels in hierarchy proportional
to log image diameter

— So propagation time small constant at top

= Same label set at each level
— In contrast to pyramid methods

= In practice converges
after a few iterations

— Note each iteration

Energy

just 1/3 more work
than standard single

level
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Illustrative Results for Restoration

= Image restoration using MRF with
truncated quadratic discontinuity cost

— Not practical with conventional techniques,
message updates 2562

= Quadratic data term with no penalty for
masked pixels e

= Powerful formulation
now practical

- Largely abandoned
except for small
label sets
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Illustrative Results for Stereo

= Truncated linear cost functions

Di(X;) = min(dy, |L(P;1,Pi2)-R(Pi1=X;,Pi2) |)
V(X;,%;) = min(dg, [x;-x])

— Runs in under a second for 30 disparity levels

= Same accuracy as slower methods
— 12t in Middlebury benchmark (graph cuts 15th)




Extensions

= Fast message updates for max product in
other cases

— Discontinuity cost any convex function
e Or truncated

- Label set a multi-dimensional grid
e E.g., flow vectors

- Label sets not a regular grid

— Possibly other “structured” label sets
» Additional labels such as occluded state for
stereo can also be handled

— Including penalty for length of occluded runs
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Summary

= Fast methods for loopy belief propagation
— Hundreds of times faster than previous methods

— For discrete label space with potential functions
based on differences between pairs of labels

— Does not require parametric form of distributions
= Exact methods, not heuristic pruning or
variational techniques

— Except linear time Gaussian convolution which
has (arbitrarily) small fixed approximation error

= Fast in practice, simple to implement
— Code at http://people.cs.uchicago.edu/~pff/bp/
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