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Abstract. Belief propagation (BP) has become widely used for low-level
vision problems and various inference techniques have been proposed for
loopy graphs. These methods typically rely on ad hoc spatial priors such
as the Potts model. In this paper we investigate the use of learned mod-
els of image structure, and demonstrate the improvements obtained over
previous ad hoc models for the image denoising problem. In particu-
lar, we show how both pairwise and higher-order Markov random fields
with learned clique potentials capture rich image structures that bet-
ter represent the properties of natural images. These models are learned
using the recently proposed Fields-of-Experts framework. For such mod-
els, however, traditional BP is computationally expensive. Consequently
we propose some approximation methods that make BP with learned
potentials practical. In the case of pairwise models we propose a novel
approximation of robust potentials using a finite family of quadratics. In
the case of higher order MRFs, with 2 × 2 cliques, we use an adaptive
state space to handle the increased complexity. Extensive experiments
demonstrate the power of learned models, the benefits of higher-order
MRFs and the practicality of BP for these problems with the use of
simple principled approximations.

1 Introduction

There are two current threads of research that are modernizing Markov random
fields (MRFs) for machine vision. The first involves new algorithms based on
belief propagation (BP) and graph cuts for performing approximate probabilis-
tic (e. g., maximum a posteriori) inference on MRFs [1–6]. These methods have
extended the usefulness of MRFs by making inference tractable, but have often
relied on ad hoc or hand-tuned models of spatial image structure with a limited
spatial neighborhood structure (e. g., pairwise models). Such approaches have
lacked the representational power needed to capture the rich statistics of natu-
ral scenes. The second line of research involves improving the expressive power
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of MRFs with higher-order models that are learned from data [7–9]. These ap-
proaches better capture the rich statistics of the natural world and provide a
principled way of learning the model. Our goal is to combine these two lines
of research to provide efficient algorithms for inference with rich, higher-order
MRFs.

To that end we develop a series of principled approximations to the learned
MRF models and to belief propagation. Throughout the paper we develop and
test our solutions in the context of image denoising to illustrate the power of
learned MRFs and the applicability of BP to these models. In particular, we
exploit the recently proposed Field-of-Experts (FoE) model for learning MRFs
from example data [9]. We start with the case of pairwise MRFs, where previous
work on efficient inference schemes has relied on ad hoc potentials such as the
Potts model [1] or the truncated quadratic [4]. While the FoE models exploit
robust potentials that better match the image statistics, these potentials do not
readily admit efficient inference. We develop an approximation method that, for
a pairwise MRF, represents such robust potentials as a finite family of quadrat-
ics. With such a representation, the distance transform method of [4] can be
employed for efficient inference. We apply the method to image denoising and
find that the resulting algorithm is several times faster than regular BP, achieves
a lower energy state, and is considerably more accurate than the ad hoc model
proposed in [4]. We also note that in loopy graphs such as this, convergence of BP
depends on the message passing scheme employed. We show that a randomized
scheme helps achieve a lower energy state than synchronous updates.

It is often observed that maximum a posteriori (MAP) estimates using MRF
models produce piecewise constant results. This is true in the case of pairwise
cliques where the potential function is robust (i. e., it downweights outliers). Such
results are due to the representational weakness of pairwise models, which are
too local to capture the richness of natural image statistics. To alleviate these
effects we use the FoE framework to learn higher-order models of images; in
particular we learn an MRF with 2×2 cliques. While such a model produces much
more natural results that are no longer piecewise constant, inference becomes
much harder. Applying standard BP to MRFs with 2×2 cliques requires O(N 4)
operations to compute each message, where N is the number of labels for each
pixel. In case of image denoising, N = 256 making traditional BP algorithms
impractical. Consequently we propose an approximate BP algorithm that uses
an adaptive state space to reduce the number of states for each pixel, as well as
a further state quantization that speeds up the message computations. Despite
this approximation, the learned higher-order model outperforms learned pairwise
MRF models, both visually and quantitatively.

In the following sections we introduce Markov random fields and loopy belief
propagation along with our proposed approximations. We will review the related
work in the context of our methods and their applicability. We present the results
of experiments on image denoising that compare different MRF models as well
as different BP methods.



2 Learning Markov Random Field Models of Images

In this paper we use two different types of Markov random fields to model the
prior probability of images: pairwise MRFs and higher-order MRFs with larger,
square-shaped cliques. The pairwise MRFs employed here are very similar to
models that have been popular for a long time [10]; the higher-order MRFs
follow the recently proposed Fields-of-Experts (FoE) approach [9]. Richer models
of natural images have also been proposed on the basis of MRFs with multiple
pairwise pixel interactions [11, 12]. We are not following this approach here, but
a comparison of the benefits of these approaches deserves further study.

We assume that pixels in an image are represented as nodes V in a graph
G = (V,E). In the pairwise case, the set of edges E connects all nodes that
are either horizontal or vertical neighbors. In the higher-order case, the set of
edges fully connects all nodes in all possible square m × m image regions. The
probability of an image x under such a Markov random field can be written as
a product over all the maximal cliques C:

p(x) =
1

Z

∏

C

Ψ(xC), (1)

where xC is the image region corresponding to clique C, Ψ is a positive potential
function, and Z is a normalization term.

In the pairwise case, the potentials are typically defined as a function of
the grayvalue difference of the two neighboring pixels. The grayvalue difference
can be interpreted as a local approximation of the horizontal or vertical image
gradient. The MRF model penalizes large gradients and so models the fact that
images are often locally smooth. In the natural image statistics literature it has
been observed that the marginal distribution of the image gradient is highly
kurtotic [13]; marginal gradient histograms show substantial probability mass
in the tails. This results from the fact that images occasionally show significant
jumps in intensity that for example arise from object boundaries. In order to
model this behavior, the pairwise MRF we use here relies on robust potentials
based on Student t-distributions, which resemble the marginal statistics of the
image gradient. If xC,1 and xC,2 are the two pixels for the pairwise clique xC ,
then we use the potential

Ψpw(xC) =

(

1 +
1

2

(

xC,1 − xC,2

σ

)2
)−α

. (2)

We will learn two separate parameter sets (σH, αH) and (σV, αV) for horizontal
and vertical edges respectively, yielding a pairwise image prior ppw(x).

The Fields-of-Experts framework [9] used in the higher-order MRF case mod-
els the clique potentials using a so-called Product of Experts (PoE) [14]. The idea
behind the PoE is to model complex distributions as the product of several sim-
pler expert distributions that each work on a low-dimensional subspace, in this
case a linear 1D subspace. In the context of images, these linear 1D subspaces
can be interpreted as linear filters Ji applied to the image patch xC .



It has been observed that, for a wide variety of linear filters, the statistics of
the filter responses are highly kurtotic[13]. Consequently, following [9] we take
the experts to be Student t-distributions. Assuming that we use K experts, we
can write the prior probability of an image under the FoE model as

pm×m(x) =
1

Z

∏

C

K
∏

i=1

φ(JT
i xC ;αi), (3)

where φ is an unnormalized t-distribution with parameter αi:

φ(JT
i xC ;αi) =

(

1 +
1

2
(JT

i xC)2
)−αi

. (4)

Following [9], we trained both types of MRF models using a database of
natural images [15]. In the case of the pairwise model we learn the parameters
αH, αV, σH, and σV, while in the FoE case we learn the filters Ji as well as
the expert parameters αi. To make belief propagation inference tractable as
detailed in Section 3, we restrict ourselves to 2 × 2 models and use 3 experts.
We randomly cropped 2000 patches of 9 × 9 pixels out of the training database
and found suitable parameters by (approximately) maximizing the likelihood of
the data. The learning algorithm is based on stochastic gradient ascent, and
uses the idea of contrastive divergence [16] to make it more efficient. Since the
proposed pairwise MRF can be treated as special case of the FoE model, they
can both be trained in essentially the same way. The learning procedure follows
the description in [9], to which we refer the reader for more details.

3 Efficient Belief Propagation

Many low-level vision problems can be posed as problems of Bayesian inference,
and can be described in the following common framework: Given some observed
image I, the goal is to estimate a hidden state x according to a posterior dis-
tribution p(x | I). The hidden state may, for example, correspond to a smoothed
image in the case of image denoising, or to a dense disparity map in the case of
stereo (where I in fact represents two images). Here a set of discrete labels is used
to represent the state of each hidden variable. The posterior distribution of the
hidden state x given the input image I is modeled as p(x | I) = 1/Z ·p(I |x)·p(x),
where p(I |x) is the likelihood of the observed image given a hidden labeling and
p(x) is the prior probability over labelings. Rather than relying on ad hoc spatial
priors, we use the learned priors introduced above, a pairwise prior ppw(x) and
a higher-order prior p2x2(x). Because the normalization term Z is unknown and
intractable to compute in general, we will sometimes refer to the energy E(x; I)
of a labeling x; that is, the unnormalized log-posterior. The energy is related
to the posterior distribution through p(x | I) = 1/Z · exp {−E(x; I)}. Note that
maximizing the posterior probability is equivalent to minimizing the energy.

There are two basic ways of estimating this labeling, one of which is to com-
pute the expectation of the posterior p(x | I) and the other is to compute the



maximum (i. e., the MAP estimate). We consider both of these problems here,
but use the former as a running example for discussing the proposed algorithms.
In general finding exact solutions to these estimation problems is hard for loopy
graphs, but approximation approaches based on graph cuts [1, 3, 17, 18] and loopy
belief propagation [6, 18, 19] have been found to often work well in practice. The
focus of this paper is the family of loopy belief propagation algorithms. In order
to apply them to Bayesian inference problems, the posterior must factor into
products over relatively small numbers of variables in order to be computation-
ally feasible. In particular it is customary to require that the prior factor into a
product of functions Ψh over small subsets of nodes Ch (cliques in the underlying
hidden layer) and the likelihood factors into a product of functions Ψo over small
subsets of nodes Co (often individual nodes, e. g., in image denoising),

p(x | I) =
1

Z

∏

Co

Ψo(xCo
; I)

∏

Ch

Ψh(xCh
), (5)

where xCo
corresponds to the cliques of the likelihood and xCh

corresponds to the
cliques of the spatial prior. In the description of the message passing algorithm
below, we will handle both types of cliques and potentials in a unified way, i. e.,
p(x | I) = 1/Z ·

∏

C ΨC(xC ; I).
Both pairwise and higher-order models can be considered in a common frame-

work using factor graphs [19]. A factor graph is a bipartite graph with edges
connecting two kinds of nodes, variable nodes and factor nodes. A variable node
corresponds to an individual random variable xi, while a factor node corresponds
to a subset (clique) of random variables xC , whose potential function ΨC(xC ; I)
is a specific term in the factorized form of the posterior distribution. Edges in
the factor graph connect each factor node to those variables that are involved
in its potential function. For models defined on the image grid, the xi and the
associated variable nodes can be seen as corresponding to image pixels, and the
xC and the associated factor nodes correspond to local neighborhoods (cliques)
in the image. See Figure 3 for examples of factor graph representations for a
pairwise MRF and a 2× 2 MRF on an image grid. These graphical illustrations
include nodes corresponding to the observed data at each pixel.

Belief propagation operates by passing messages between nodes until conver-
gence (which is generally not guaranteed but is usually observed in practice). All
message entries are usually initialized to the same value to represent an unin-
formative prior. We now turn to the message update rules for the sum-product
BP algorithm on a factor graph [6, 19], in which case each iteration contains two
types of message updates.

For the first type of message, a variable node i sends a message ni→C(xi) to
a neighboring factor node C. To do so it computes the product of the messages
received from its other neighboring factor nodes,

ni→C(xi) =
∏

C′∈N (i)\C

mC′→i(xi), (6)

where N (i) \ C denotes the neighboring factor nodes of i other than C.



(a) (b) (c)

Fig. 1. (a) Factor graph structure of an image prior with 2 × 2 cliques. Red circles
correspond to variable nodes (image pixels) and black squares correspond to factor
nodes (cliques representing local neighborhood). (b) Message passing from a variable
node to a factor node (cf. Eq. (6)). (c) Message passing from a factor node to a variable
node (cf. Eq. (7)).

For the second type of message, a factor node C sends a message mC→i to
a neighboring variable node i. To do so it assembles all the messages received
from its other neighboring variable nodes weighted with its associated potential
function ΨC(xC ; I),

mC→i(xi) =
∑

xC\xi

ΨC(xC ; I)
∏

i′∈N (C)\i

ni′→C(xi′), (7)

where xC \xi denotes the variables of xC other than xi. That is, xC is the cross
product space of a set of random variables and the summation is done over all
the variables of that cross product space except xi. Recall that ΨC(xC ; I) is the
clique potential for clique C in Eq. (5).

We should note that in the pairwise case this factor graph approach results in
the same calculations as the loopy belief propagation algorithms on a 4-connected
grid that have recently been used by a number of researchers in computer vision
(e.g., [4, 5, 20]).

These message updates are iterated until an equilibrium point is reached, at
which point the belief of each individual variable node can be computed as

bi(xi) =
∏

C∈N (i)

mC→i(xi). (8)

Taking the belief as an approximation of the marginal posterior probability, we
can then estimate a state for each variable node by taking its expected value.

The sum-product technique that we have presented here approximates the
marginal posterior probabilities of the variable nodes. In contrast, the max-
product technique is used to approximately compute the MAP estimate. The
main differences are the replacement of sums by maximizations in the mes-
sage update equations, and the replacement of expectation by maximization to



−200 −100 0 100 200
0

0.5

1

1.5

2

2.5

3

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 2. Approximation of the negative log of a Student-t distribution as the lower
envelope of 8 quadratics. (left) Full grayvalue range [−255, 255]. (right) Detail of the
same approximation over the range [−10, 10].

compute a final label for each variable node. The max-product formulation has
often been used for pixel labeling problems such as stereo and image denoising,
whereas the sum-product formulation may be more appropriate to interpolation
problems where non-integer solutions may be desired.

The running time for either the sum-product or max-product BP algorithm
on a factor graph is O(MNk), where M is the number of image pixels, N is
the number of possible labels for each pixel, and k is the maximum clique size.
For problems like image denoising with N = 256 labels corresponding to image
intensities, the computational cost is very large. In the next two subsections, we
introduce simple but effective techniques to speed up BP algorithms for learned
potentials of pairwise and 2 × 2 MRFs.

3.1 Pairwise MRFs

Standard belief propagation on a 4-connected grid for pairwise MRFs is in gen-
eral still a computationally demanding task, because it requires O(M ·N 2) steps.
It has recently been shown [4] that max-product belief propagation can be car-
ried out more efficiently for pairwise MRFs with certain kinds of potentials by
exploiting a distance transform technique. In these cases, the time complexity is
linear rather than quadratic in the number of labels, i. e., O(MN). In particular,
if the negative log of the pairwise potentials can be expressed as the lower enve-
lope of (possibly truncated) quadratic or absolute value functions of the pairwise
pixel difference then the distance transform technique can be applied.

We extend this work here by applying the distance transform technique to
MRFs where the potentials have been learned from data. To that end, we ex-
ploit the fact that a large set of robust error functions can be written as the
infimum over a family of quadratics as shown by Black and Rangarajan [21]. As
discussed earlier, we model the pairwise potentials using Student-t distributions
(see Eq. (2)). The t-distribution has the corresponding robust error function

ρ(y) = α log
(

1 + 1
2

(

y
σ

)2
)

, where y is the grayvalue difference between neigh-

boring pixels. A derivation similar to the one in [21] reveals that this robust



function can be written as ρ(y) = infz E(y, z) with

E(y, z) =
y2

2σ2
z + z − α + α log

α

z
, (9)

which is a quadratic function in y and where z is an “outlier process”. Instead
of writing the negative log of the potential as the infimum over all possible z
values in the range [0, α], we approximate it as the minimum (lower envelope)
over a fixed, discrete set of z values. Given a fixed number k of quadratics,
we find a good approximation by a simple local optimization of the Kullback-
Leibler divergence between the learned t-distribution and the probability density
corresponding to the lower envelope of the quadratics. We compute the KL
divergence using a discrete histogram with range [−255, 255] and 10 bins per
gray level. To improve numerical stability we modify the log of the z values and
upper bound the z values with a simple penalty function so that z ≤ α. Figure 2
shows how the negative log of a t-distribution is approximated with 8 quadratics.
In the experimental results section, we compare these approximations using 4
and 8 quadratics (using the efficient linear-time distance transform algorithm)
with the actual t-distribution (using the conventional quadratic-time algorithm).
For details of the distance transform method the reader is referred to [4].

3.2 Higher-order MRFs

Our experiments show that pairwise models as just described suffer from the
problem that the optimal solution is piecewise constant (see Figure 4). To over-
come this problem, we have to move to using higher-order MRF priors as intro-
duced in Section 2 and illustrated in Figure 1(a). Unfortunately, applying the
factor graph belief propagation algorithm directly is infeasible for such models.
For m×m maximal cliques the summation (or maximization in the max-product
case) in Eq. (7) is taken over Nm·m−1 terms, which is prohibitively expensive
even in the 2 × 2 case with N = 256 labels.

In order to alleviate this problem, we devised a simple, but effective adaptive
state space procedure. In many applications, we can fairly reliably estimate a
grayvalue range for each pixel that will contain the optimal solution as well as
most of the probability mass of the belief. To determine the working range for
denoising problems, we find the minimal and maximal grayvalue in a 3×3 search
window around each pixel. To avoid overestimating the range in the presence
of noise, we preprocess the image for the range determination step with a very
small amount of Gaussian smoothing (σ = 0.7); denoising is carried out on the
original image. When performing the sum-product or max-product operation
for a specific pixel i within a factor node C with size 2 × 2 (see Eq. (7)), we
discretize the label set for the other 3 member pixels into h bins over that range,
and only consider those h3 different combinations. Furthermore, we can reduce
the computation time for the message updates from Eq. (6) and Eq. (7) by
restricting them to the determined range. By using this adaptively quantized
state space, the time complexity of BP for a 2 × 2 MRF model decreases to
O(M · N · h3).



Fig. 3. Graphical model structure for image reconstruction. The round nodes represent
observed (blue) and hidden (light red) variables; the square nodes are the factor nodes
indicating the clique structure. (left) Pairwise Markov random field for image denoising.
(right) Field-of-Experts model for denoising with 2 × 2 cliques in the prior.

4 Belief Propagation and Image Denoising

To focus on the effects of the different models and our approximations we choose
an inference problem with a simple likelihood term: image denoising with known
additive noise. As it is common in the denoising literature (e. g., [22]) we assume
that images have been contaminated with artificial i. i. d. Gaussian noise, which
also facilitates quantitative evaluation. We furthermore assume that the standard
deviation σ is known; we use σ = 10 and σ = 20 here. We can thus write the
likelihood of noisy image I given the true image x as

p(I |x) ∝
M
∏

j=1

e−
(xj−Ij)2

2σ2 . (10)

When we combine the Gaussian likelihood with the pairwise prior ppw(x), the
posterior distribution has the form of a pairwise Markov random field, where each
observed pixel Ij is connected to a hidden, true pixel xj , and the hidden pixels
are all connected to their horizontal and vertical neighbors. When combined with
the 2×2 prior, 2×2 patches of hidden variables are connected with a single factor
node, while the observed pixels Ij are still connected to their hidden counterparts
xj . Figure 3 illustrates these two structures.

For quantitative evaluation we use a set of 10 images from the test set of
the Berkeley segmentation dataset [15]. The images are reduced to half their
original size for efficiency reasons, and only the luminance channel is used. The
denoising performance is measured using the peak signal-to-noise ratio (PSNR)
averaged over all 10 images (PSNR = 20 log10(255/σe), where σe is the standard
deviation of the reconstruction error), as well as a perceptually-based image
similarity metric SSIM [23].

Learned pairwise models. We first compared the learned pairwise MRF to the
hand-defined MRF model from [4], which uses truncated quadratic potentials.
In both cases, the denoised image is computed with max-product belief propa-
gation using 20 iterations (equivalently implemented as the min-sum algorithm).



pairwise MRF
Model from [4] t-dist. 8 quad. 2 × 2 MRF

max-pr. max-pr. max-pr. max-pr. sum-pr.

σ = 10 PSNR 21.98dB 30.73dB 29.56dB 30.89dB 30.42dB

SSIM [23] 0.772 0.876 0.844 0.881 0.876

σ = 20 PSNR 20.82dB 26.66dB 25.92dB 26.85dB 27.29dB

SSIM 0.630 0.754 0.711 0.755 0.772

Table 1. Average denoising performance of various inference techniques and models
on 10 test images.

On a 3GHz Xeon, one BP iteration on a 256×256 image takes about 30 seconds.
We find that the model proposed here substantially outperforms the model from
[4] using the suggested parameters, both visually and quantitatively. As detailed
in Table 1, the PSNR of the learned model is better by more than 5dB. Fig-
ure 4 shows one of the 10 test images, in which we can see that the denoising
results from the learned model show characteristic piecewise constant patches,
whereas the results from the hand-defined model are overly smooth in many
places. Even though the performance of the truncated quadratic model could
potentially be increased by hand-tuning its parameters, we refrained from doing
so to demonstrate how learned MRFs can lead to competitive denoising results
without requiring any manual parameter tuning. Nevertheless, we should note
that BP inference is several times slower in the learned MRF case.

Random message updates. Based on our observation that the beliefs would not
converge in case of the learned model and synchronous message updates (even
though the energy seemingly converged), we also applied asynchronous message
update schemes. A fixed, checkerboard-like update scheme led to some improve-
ment in the behavior, but we found that random message updates led to the
most reliable convergence behavior. At every iteration, each message is updated
with a fixed probability, otherwise the previous state is kept. Table 2 shows
that random updates led to a dramatic decrease in energy, but no considerable
change in PSNR. Moreover, faint checkerboard-like artifacts that were visible
before disappear after applying random updates. The update probability does
not seem to have any substantial effect on the results (as long as it is not 100%).

Approximate potentials. We then investigated how the approximations of the
learned potentials as a lower envelope of quadratics affect the denoising results
as well as the running time. We found that max-product BP with 8 quadratics
is about 6 times faster in practice than when the Student-t potentials are used.
The approximation with only 4 quadratics is even faster by a factor of 2. Ta-
ble 2 shows that the PSNR deteriorates by about 1dB when the approximate
potentials are used (both with and without random updates); nevertheless, this
still considerably outperforms the hand-designed model from [4]. We also report
the average energy Ē of the reconstructed images in all cases computed using



Fig. 4. Image denoising. Top row: (left) Original image. (middle) Noisy image (σ =
10). (right) Max-product BP with model from [4]. Middle row: (left) Max-product BP
with t-distribution potentials. (middle) Max-product BP with approximate potentials
(8 quadratics). (right) Max-product BP with learned 2×2 model. Bottom row: Detail
view. From left to right: Model from [4], BP with t-distribution potentials, BP with
approximate potentials (8 quadratics), BP with learned 2 × 2 model.



Student-t potentials 8 quadratics 4 quadratics

Update percentage 25% 50% 75% 100% 50% 100% 50% 100%

σ = 10 Ē 1.595 1.594 1.594 2.071 1.348 2.687 1.347 2.681
PSNR in dB 30.73 30.73 30.73 30.74 29.56 29.60 29.54 29.57

SSIM [23] 0.876 0.876 0.876 0.876 0.844 0.842 0.843 0.841

σ = 20 Ē 1.189 1.182 1.182 2.606 1.025 2.892 1.024 2.907
PSNR in dB 26.64 26.66 26.67 26.67 25.92 25.96 25.90 25.95

SSIM 0.753 0.754 0.755 0.750 0.711 0.705 0.710 0.704

Table 2. Average denoising performance on 10 images for pairwise BP algorithms
with and without the use of approximate models. The update percentage denotes the
probability of each message being updated during a particular iteration.

the original model and normalized by the number of pixels. Surprisingly, the re-
constructions using the approximate model have a lower energy than the results
from the original model. We have not identified any intuitive interpretation of
this fact, except that this evidences that BP may not be able to find the global
optimum due to the loopiness of the graph.

Higher-order models. Next, we applied the learned higher-order MRF model
with 2 × 2 cliques to the denoising problem. We used the adaptive state space
approach as described above, and quantized the maximization with 8 graylevels;
the potential functions are not approximated in this case. One iteration takes
around 16 minutes for the setup described above. Since this approximation is
possible for both max-product and sum-product BP, we report results for both
algorithms. Table 1 compares both algorithms to a selection of pairwise MRFs
(always with 50% update probability). We can see that the higher-order model
outperforms the pairwise priors by about 0.15 − 0.2dB (with Student-t poten-
tials), and that the sum-product algorithm seems to be more appropriate with
large amounts of noise. The perceptual similarity metric exhibits the same rela-
tive performance. Visually, the results no longer exhibit any piecewise constancy.
Edges are preserved using both types of models, but smoothly varying regions
are preserved better using the richer, higher-order prior.

We have also compared the presented results to an implementation of a sim-
ple gradient descent inference algorithm as suggested in [9]. This algorithm at-
tempts to locally maximize the posterior density. We found that gradient descent
achieves comparable results in terms of PSNR and SSIM, in some cases perform-
ing better than BP, in others worse. For both noise levels, the average energy of
the max-product BP solution is slightly higher than that of the gradient descent
algorithm (possibly due to the state space adaptation).

5 Conclusions and Future Work

In this paper we have combined efficient belief propagation inference algorithms
with learned MRFs in order to solve low level vision problems. In particular, we



demonstrated the use of learned pairwise MRF models and 2 × 2 MRF models
with robust potential functions that better capture the spatial properties of
natural images. In image denoising applications we found that BP based on
these learned models substantially outperforms BP based on previous ad hoc
MRFs, and that higher-order MRFs lead to both visually and quantitatively
superior results.

Naively applying standard BP inference algorithms on these learned MRF
models is difficult due to the non-convex functional form of the robust potential
function, as well as the exponential explosion of the number of computations for
the message updates in the case of 2 × 2 cliques. We introduced two effective
approximation techniques to address these difficulties. First, for the pairwise
case we used a finite family of quadratics to approximate the negative log of
the learned robust potential function. This permits the application of distance
transform techniques to speed up the running time from quadratic to linear in
the number of labels. This approximation technique is quite general and can
apply to graphical models in many contexts. Second, in the case of higher-order
models such as 2 × 2 MRFs, we avoid explicitly searching over the whole state
space by determining a plausible small set of configurations for a clique.

We observed that for the pairwise model a random message update scheme
can improve the convergence speed as well as result in a significantly lower
energy than a standard synchronous message update scheme. We also found
that approximating the robust pairwise potential function by a lower envelope of
quadratics results in a lower energy state than directly using the robust potential.
These results reinforce the need to develop a better understanding of BP in
computer vision research.

Comparing the BP results to a simple gradient descent inference technique,
we found that belief propagation yields competitive, but not superior results.
Our hypothesis is that this may be due to the likelihood being unimodal in the
denoising case for which simple inference techniques can perform well. Never-
theless, both the inference and learning techniques developed in this paper are
of general use beyond the application to image denoising. In the future, we plan
to apply these efficient belief propagation techniques to low-level vision applica-
tions with multi-modal likelihoods, such as stereo or optical flow, in which case
belief propagation may lead to superior results. Such problems often also have a
smaller labeling set, and may thus allow us to use models of even higher-order.
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