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Abstract. Many recent techniques for low-level vision problems such as image
denoising are formulated in terms of Markov random field (MRF) or conditional
random field (CRF) models. Nonetheless, the role of the underlying graph struc-
ture is still not well understood. On the one hand there are pairwise structures
where each node is connected to its local neighbors. These models tend to allow
for fast algorithms but do not capture important higher-order statistics of natural
scenes. On the other hand there are more powerful models such as Field of Ex-
perts (FoE) that consider joint distributions over larger cliques in order to capture
image statistics but are computationally challenging. In this paper we consider
a graph structure with longer range connections that is designed to both cap-
ture important image statistics and be computationally efficient. This structure
incorporates long-range connections in a manner that limits the cliques to size
3, thereby capturing important second-order image statistics while still allowing
efficient optimization due to the small clique size. We evaluate our approach by
testing the models on widely used datasets. The results show that our method is
comparable to the current state-of-the-art in terms of PSNR, is better at preserv-
ing fine-scale detail and producing natural-looking output, and is more than an
order of magnitude faster.

1 Introduction

Random fields are among the most common models used in low-level vision problems
such as image restoration, segmentation, and stereo. The strength of these models lies
in their ability to represent both the interaction between neighboring pixels and the
relationship between the observed data values and estimated labels at each pixel. A
random field model defines a graph structure with potential functions over the labelings
of cliques in this graph. For low-level vision problems the graph generally has a node
corresponding to each pixel, edges connecting certain pairs of neighboring pixels, and
potentials that encourage neighboring pixels to have similar labels. Two key issues in
the application of random field models to a given problem are (i) defining appropriate
graph structures and (ii) finding suitable potential functions over the cliques of that
graph. Most research has focused on the latter problem, whereas here we focus on the
former.

In this paper we study sparse long-range random field (SLRF) models, that rep-
resent interactions between distant pixels using sparse edges so as to maintain a fixed
clique size. The size of the clique is chosen so as to be appropriate for a particular
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problem. In image denoising, second-order spatial terms are important for representing
intensity change. Thus we use a graph structure that has cliques of size three, as discrete
approximations to a second order function require three data values. In this framework
the potential functions are defined over fixed-size cliques that have different spatial ex-
tents, effectively encoding image structure of a fixed order (defined by the clique size)
at multiple scales of observation. This enables such models to produce smooth labelings
for highly noisy images but at the same time allows efficient solution.

In contrast, other recent work using higher-order models and longer-range connec-
tions, such as the Field of Experts (FoE) model [1], has large cliques and thus does
not support fast optimization. Our main interest is thus in investigating whether sim-
pler models with smaller cliques can produce results comparable to the state-of-the-art
achieved with more powerful models, such as FoE, while using much less time. The
experiments that we report here, performed on widely used datasets, indicate that this is
indeed the case. Not only do we achieve comparable peak signal-to-noise ratio (PSNR)
to large-clique methods, our method is also better at avoiding over-smoothing although
that is not captured by the PSNR measure. At the same time, our method is over 100
times faster than FoE and at least 10 times faster than other spatial-domain methods that
achieve state-of-the-art results.

1.1 Motivation and Related Work

Random field models in statistics have existed for decades [2] and also have a long
history in computer vision (e.g, [3, 4]). A Bayesian formulation of pixel labeling prob-
lems using a Markov random field (MRF) model decomposes the problem into a prior
that enforces spatial consistency of the labels, and a likelihood function that encourages
agreement between the labels and the observed data. We use the more general termi-
nology “spatial term”, rather than “prior”, and “data term”, rather than “likelihood”, as
this applies to both Bayesian and non-Bayesian models, as well as to models that do not
have a probabilistic interpretation.

In recent years, MRF models have been a popular choice for many low-level vi-
sion problems such as image restoration (e.g., [1, 5, 6]). The resurgence in the use of
MRF models is largely complemented by the development of efficient approximation
algorithms for inference on these models, including discrete methods such as loopy be-
lief propagation (LBP) [7], tree-reweighted message passing [8, 9] and graph cuts (GC)
[10], as well as gradient-based methods such as diffusion [1] and variational inference
[6]. Each of these methods has its own pros and cons, some of which have been in-
vestigated in [11]. The more recent conditional random field (CRF) [12] was originally
proposed as a tree-structured model to address the label bias of hidden Markov models
(HMM) in the context of natural language processing, and has since also been applied
to loopy graphs. As a discriminative model, CRF is more convenient in situations where
the generative process is unclear, the spatial term (i.e. the prior) depends on the obser-
vations, or the label of one site is related to observations at multiple sites (e.g., [13,
14]).

The most widely used graph structure for random field models in low-level vision
is a grid where each node is connected to its four immediate neighbors in the horizontal
and vertical direction. While this model is simple and convenient to set up and optimize,
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it suffers from a number of drawbacks. First, as noted above, it can only represent first-
order properties of the image, because it is based on pairwise relations between pixels.
Second, it can be sensitive to noise. Consider a connected region of n nodes in a 4-
connected grid graph. In this case there are only approximately O(

√
n) connections

between nodes in the region and those outside the region, because the boundary grows
approximately as the square root of the area. Thus the data term of the n nodes over the
region comes to dominate the connections outside the region, especially when robust
(i.e. discontinuity preserving) spatial terms are used. For example, in image denoising
this can be problematic for high noise levels because good estimates require substantial
sized regions. Another way to view this is in terms of the standard deviation of the
mean over the region. For concreteness, consider an image with additive Gaussian noise
of σ = 25, and a 5 × 5 region of the image. The standard deviation of the mean of
that region is σ/

√
5 · 5 = 5. At the same time, the perimeter-to-area ratio of such a

neighborhood is only 4 · 5/52 = 4/5, or 1/5 that of a single pixel. Hence the collective
labeling of the group is dominated by its data term, which is subject to a non-trivial
standard deviation of 5 in its mean.

The 4-connected grid graph is a special case of graphs that connect a node to all
nodes that lie within some distance d. In contrast to our approach, such graphs produce
quite dense edges even for moderate values of d. Early work on MRF models in vision,
such as [15], used these models but restrict their attention to pairwise clique potentials.
However, such pairwise models do not always capture the underlying distribution. For
image denoising, in particular, second-order statistics are important, implying a need
for cliques of size at least three.

Problems with earlier pairwise random field models have led to higher-order models
such the Field of Experts (FoE) [1], where overlapping blocks of pixels are used rather
than purely local connections. However, such models are computationally intensive due
to their relatively large complete subgraphs. In addition, the learnt priors are also unin-
tuitive, despite recent interpretations as derivative filters [6] and frequency filters [16].
This motivates our approach, which uses long-range connections to address the prob-
lem of noise but does so in the context of a simple graph structure with cliques of size
three, so as to efficiently encode both first- and second-order spatial properties.

The work bearing the most similarity to ours is that of [17], which uses long-range
edges in the problem of texture synthesis. Clique families are chosen using heuristic
search based on the strength of interaction, which is evaluated on the training data.
However, the model is restricted to pairwise clique potentials. Moreover each model is
trained to synthesize a particular type of texture, which usually consists of some char-
acteristic (and often repeating) patterns. Thus it is not well suited to modeling generic
structures, such as those of natural scenes.

2 Sparse Long-Range Random Field

We now introduce our model. A sparse long-range random field (SLRF) is constructed
so as to have a fixed clique size regardless of the spatial extent of the edges in the grid.
Consider a set of nodes V arranged on a grid, where there is a spatial distance defined
between each pair of nodes. By choosing edges that increase in length exponentially, we
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can construct a graph that has a fixed clique size even though there is no bound on the
maximum edge length. Consider the case of cliques of size 3, which as noted above (and
discussed in more detail below) are important for image restoration because they enable
the representation of second-order spatial statistics. A local 3-clique has edges of length
1 that connect each node to its immediate neighbors and edges of length 2 that connect
each node to those two-away. Adding edges of length 4 to each node would then create
additional 3-cliques composed of edges of length 2, 2 and 4, but does not increase the
maximum clique size. Similarly for edges of length 8 and so on, as illustrated for the
one-dimensional case in Figure 1.

... ...

Fig. 1. Horizontal 3-cliques of E2
4 with edge lengths {1, 2, 4, 8} .

More formally, each node is connected to other nodes at distance 2k away from it,
for integer values k such that 0 ≤ k < K. In other words the density of connections
decreases exponentially with distance. We let E2

K denote this set of edges; for instance,
E2
4 is the set of edges of length {1, 2, 4, 8}. More generally, one could consider graphs

where the edges are of length bk for some b > 2 which yields sparser graphs. However,
for b = 3 the resulting graphs already have maximum cliques of only size 2, which for
image denoising does not allow representing second-order image statistics.

In the case of a two-dimensional image grid, edges may correspond to any under-
lying orientation. Considering both horizontal and vertical directions using edges in
E2
K again yields a graph with maximum cliques of size 3. These cliques correspond

to spatial neighborhoods at different scales of observation and at different orientations
(horizontal or vertical), but in each case capture second-order spatial information based
on three nodes.

The inclusion of long-range edges in the SLRF offers the following advantages over
a local grid model:

– Improved information flow. The graph requires fewer hops to reach one node from
another, as is illustrated in Figure 1. In the example shown in the figure, the max-
imum graph distance between any two nodes is 2. Without long range edges, the
corresponding numbers would be 8. In general, it can be shown that any two nodes
v1 and v2 with grid distance d have graph distanceO(d/bK−1+bK). The decreased
graph distance facilitates the flow of information over the random field.

– Increased resistance to noise. Long-range edges address the local bias problem dis-
cussed in Section 1. For any n × n neighborhood S with n up to bK−1 (i.e. up to
the length of the longest edges), each node in S is connected to at least four nodes
outside of S. Hence the total amount of interaction between S and the environment
is now proportional to the area of S instead of its perimeter as in the 4-connected
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grid. This makes the strength of the spatial constraints between pixel blocks com-
parable to that of the data term over the block, suppressing noise-induced local bias
without resorting to increasing the weight of the spatial term (which tends to cause
over-smoothing).

The sparse nature of the SLRF also has the following computational benefits:

– Small, fixed clique size. As previously discussed, the size of the maximal cliques in
an SLRF is either 2 or 3 regardless of the span of the longest range interaction being
modeled. The low clique size allows arbitrary clique potentials to be optimized
globally using efficient approximation algorithms such as belief propagation. In
contrast, high-order random fields in general can only be optimized with continuous
methods that rely on gradient (e.g. diffusion [1]), which may not exist in problems
with discrete labels. Even when gradient-based methods are applicable, the running
time is still super linear in the size of the cliques. 1

– Low computational cost. Since SLRF models have only K different edge lengths
in an exponential series, the total number of edges in an SLRF is no more than K
times of that in the underlying grid. Hence an SLRF model is at most logb d times
as costly as one with only short edges, where d is the length of the longest ranged
interaction to be modeled. If on the other hand each node is connected to all the
nodes near it up to some distance d (such as in [15]), the resulting graph would
have Θ(d2) edges and hence much higher computational. Although the model can
still be called “sparse” from a graph theoretical point of view (as any graph with
edge density independent of its size will qualify), it is clearly not so from the aspect
of efficient optimization.

2.1 Cliques and clique potentials

Let C = C2K denote the set of all cliques in an SLRF with edges E2
K for a fixed K.

There are several distinct types of cliques in this set, which can be characterized by the
lengths of their edges. For instance,

C2K = C1,1,2 ∪ C2,2,4 ∪ ... ∪ C2K−2,2K−2,2K−1 (1)

where Ca,b,c is the set of 3-cliques with edge length a, b, and c. Each of these sets of
3-cliques corresponds to observations at a different spatial scale, based on the lengths
of the edges. Let T (c) denote the type of clique c, e.g. T (c) = (1, 1, 2) ∀c ∈ C1,1,2 and
T (c) = (1) ∀c ∈ C1.

We represent the likelihood of the random field as an exponential family of cost
functions f and g parameterized by θ, where fθT (c) is the spatial term and gθ is the data
term. Thus given observation I ,

pθ(X|I) =
1

Z(θ)
exp(−

∑
c∈C

fθT (c)(xc; I)−
∑
v∈V

gθ(xv; I)) (2)

1 The time for computing the gradient is linear in clique size for using linear filters, and quadratic
in the general case. At the same time, larger cliques also tend to require more iterations.
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where X is the labeling of the random field, and xc and xv are the configurations of
clique c and node v respectively. The configuration of a clique or node includes its
labeling, and may also include input-dependent latent variables such as image gradient.
This formulation is similar to a CRF except that parametric functions over the clique
and node configuration space Xf and Xg are used instead of features. The random field
becomes Markovian when f is independent of the observed data, i.e. fθT (c)(xc; I) =
fθT (c)(xc) and g is a function only of the observation at a single node, i.e. gθ(xv; I) =
gθ(xv; I(v)).

3 Parameter Estimation

To learn the parameters θ, it is desirable to find the maximum a posteriori (MAP)
estimate. By applying Bayes’ rule and assuming a uniform prior over the parameter
space, this is equivalent to finding the maximum likelihood (ML) estimate. Comput-
ing the maximum likelihood estimate is nevertheless hard on loopy graphs due to the
intractability of the partition function Z(θ) in pθ(X|I). This makes it impossible to
use the standard CRF learning scheme, since it is designed for tree-structured graphs
where the partition function can be computed efficiently using dynamical programming
[12]. Various approaches have been proposed to address this difficulty. Gradient descent
methods [18] have been used to obtain a local minimum in the negative log-likelihood
space. The expectation over the model is nonetheless intractable to compute and often
has to be estimated by MCMC sampling [1, 18], by loopy belief propagation [7, 19],
or approximated using the mode (i.e. MAP labeling) [20]. The last case resembles the
perceptron algorithms [21], except that the inference is not exact. As recently proposed
in [16], a basis rotation algorithm based on expectation maximization (EM) can be used
to learn parameters for filter based image models. This comes from a key observation
that the partition function can be kept constant by constraining the parameter vectors to
have unit norm. An alternative to maximum likelihood is using discriminative training
to optimize for some loss function, typically evaluated on the mode. Such a loss can be
minimized by descending along its derivative in the parameter space, when the mode
has a closed-form solution [14] (or approximate solution [6]).

Since some approximation must be used, we take the approach of optimizing for
the marginal likelihood of the random field cliques, which effectively approximates the
global partition function using the product of local partition functions over the cliques.
This can be considered as form of piecewise local training [22, 23], which minimizes a
family of upper bounds on the log partition function. It can be shown that maximizing
the marginal likelihood is equivalent to minimizing the Kullback-Leibler (KL) diver-
gence DKL(p0||pθ) between the empirical distribution p0 and the model distribution pθ
for each type of cliques. The minimization can be performed using gradient descent
with the standard update rule (as in [1])

δθ = η

[〈
∂fθ
∂θ

〉
pθ

−
〈
∂fθ
∂θ

〉
p0

]
,

where 〈·〉pθ and 〈·〉p0 denote the expectation with respect to the model and the empirical
distribution respectively, and η is the learning rate.



Sparse Long-Range Random Field and its Application to Image Denoising 7

Unlike in FoE we do not need to sample, since the model expectation can be com-
puted by summing over all possible values of clique configurations. This computation
is inexpensive in our model due to the small clique size. As noted in [1] performance
can be improved by learning an additional weight for the data term, which we also use
for our model.

4 Image Denoising

To test the effectiveness of our model, we apply it to the widely studied problem of
image denoising. As is conventional in the literature, the image is assumed to be gray-
scale and have been corrupted by additive white Gaussian noise of known standard
deviation. Since this is a well-defined generative process, we model the data term using
the known Gaussian noise model and only the spatial term needs to be estimated. As
described above we use 3-cliques since they capture second-order properties. In order
to illustrate the importance of these second-order statistics we considered the marginal
statistics of the images in the Berkeley dataset [24] that is commonly used in evalua-
tions of such methods. These images show a strong correlation between the distribution
of neighboring pairs, suggesting that simple pairwise models are less appropriate (see
Figure 2).

(a) (b) (c)

Fig. 2. Frequency (unnormalized, logarithm scale) plotted against gradients of the two neighbor-
ing pairs in a linear 3-clique, from the Berkeley dataset [24]. (a) The empirical marginal distri-
bution. (b) The would-be distribution if gradients of the neighboring pairs were independent. (c)
The distribution from a fitted Lorentzian cost function.

We denote clique c of type Cs,s,2s as a triplet (vc−s, v
c
0, v

c
+s), where vc0 is the center

node of c, vc−s is the left node, and vc+s is the right node. We limit our discussion
to horizontal cliques, as the case for vertical ones is essentially the same. Let d1(c) =
X(vc+s)−X(vc−s) and d2(c) = X(vc−s)+X(vc+s)−2X(vc0), whereX is the labeling of
the image. Hence d1 and d2 are proportional to the discrete first and second derivatives
of the image luminance respectively. In other words, the clique potential couples both
first and second order spatial information.

The Lorentzian function has been widely used to model the statistics of natural im-
ages (e.g., [25, 1, 6]). In our case, we use a family of 2-dimensional Lorentzian functions
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for the spatial term, i.e.

f(xc) = α · log(1 +
1
2
[(β1d1)2 + (β2d2)2]) (3)

where {α, β1, β2} is the set of parameters for cliques of type T (c). Hence f is intensity-
invariant and regulates both the first and the second derivatives of the spatial signal. We
choose this family since it not only fits the statistics of natural images (Figure 2) but
is also able to produce smooth gradient while preserving discontinuities. This form is
subtly different from filter based models, such as [1, 16], that use a linear combination
of functions over filter responses; in our case the first and second order derivatives are
coupled, that is both orders of derivatives are inputs to the same non-linear function
rather than using a linear combination of separate non-linear functions of each spatial
filter.

It has been noted that natural images are self-similar over different spatial scales [26,
27]. As a result, cliques with different scales (i.e. edge lengths) all have very similar
marginal distributions. This makes the marginals of cliques at different scales highly
correlated, which we also observed empirically. Hence using independently collected
marginals as the clique potentials is not a good model when dealing with natural scenes.
To account for this factor, we reweigh the distribution of smaller-scale cliques according
to the marginals of larger-scale ones, so as to make the former learn different trends
from what have already been captured by the latter.

4.1 Inference

For denoising, inference can be performed using either belief propagation (BP) [5] or
gradient based methods such as limited memory BFGS (L-BFGS) [28]. We experi-
mented with both and found that L-BFGS produces the same quality of results as BP
while requiring less running time. Hence the results we report in this paper are based
on using L-BFGS. It should be noted, however, that some problems in vision are of
a discrete nature and cannot be solved using gradient-based methods. In those cases,
discrete optimization techniques such as BP and graph cuts are required.

5 Experimental Results

To evaluate the model for image denoising we used the Berkeley Segmentation Dataset
and Benchmark [24] in order to compare the results with previous methods. The models
were trained on the training images in the dataset and performance was measured on a
subset of the testing images, which are the same as the ones used in [1, 13, 6, 14]. In all
the experiments we ran L-BFGS for 20 iterations, which we found to be sufficient for
our model. 2 This is in contrast to large-clique methods, which usually require many
hundred iterations to produce results of good quality [1, 14].

Table 1 shows the denoising performance of our model along with the results from
the FoE model in [1], the steerable random field (SRF) in [13], the Gaussian CRF in

2 We also experimented with conjugate gradient as the optimization method, which achieved the
same performance but needs a few more iterations (about 30 as opposed to 20 for L-BFGS).
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Table 1. Denoising performance of SLRF measured in peak signal-to-noise ratio (PSNR), higher
is better. Results from other random field based denoising methods are shown for comparison.
(Bold indicates the best performance among the 3-clique MRF models, asterisk denotes the best
overall result, and “–” indicates no published data available. )

Model \ Noise σ 5 10 15 20 25
SLRF, K=4 36.90 32.71∗ 30.39 28.86∗ 27.73
Local MRF, K=2 36.51 32.04 29.81 27.89 26.41

FoE [1] – 32.67 30.47∗ 28.79 27.59
GCRF [14] – – – – 28.04∗

Var. MRF [6] – – 30.25 – –
SRF [13] – – – 28.32 –

[14], and the variational MRF in [6]. This table reports the peak signal-to-noise ratio
(PSNR) of each method averaged over the 68 test images (higher is better). These results
demonstrate that the performance of our approach is comparable to that of recent top
performing random field methods using the standard measure of PSNR. However, as
is widely recognized, PSNR does not tell the entire story, thus we also consider some
example images in more detail both to show the overall quality and to highlight the
extent to which our method removes noise without smearing out the details.

(a) (b) (c) (d)

Fig. 3. Denoising output for a medium-texture scene. (a) Original image. (b) Corrupted by Gaus-
sian noise, σ = 25. (c) Restored using our SLRF model, PSNR = 28.63. (d) Restored using FoE
[1], PSNR = 28.72. The magnified view shows that our model, while having comparable PSNR,
does a significantly better job at preserving the small and low-contrast structures of the stonework
below the windows.

Figures 3 and 4 display sample outputs from our model (in c) and from FoE (in d),
illustrating the comparable quality of our method and FoE. In particular our method is
able to reproduce image texture without yielding to the visually unpleasant blockiness
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(a) (b) (c) (d)

Fig. 4. Denoising output for a high-texture scene. (a) Original image. (b) Corrupted by Gaussian
noise, σ = 25. (c) Restored using our SLRF model, PSNR = 26.02. (d) Restored using FoE,
PSNR = 25.55. Again, the detail illustrates that our model not only achieves good PSNR but also
produces less over-smoothing.

that other methods using small cliques tend to produce [29, 5]. The enlarged regions in
each of the images illustrate that our method is able to reproduce fine-scale texture better
than the FoE. For instance in the castle image (Fig. 3), the stonework detail below the
windows is smoothed out in the FoE but preserved in our model. The textured surface
of the rocks in the sheep image (Fig. 4) similarly illustrates the ability of our method to
preserve realistic texture while removing noise, rather than over-smoothing. Moreover,
our method produces a consistent level of sharpness across the whole image, and, unlike
FoE, does not tend to make high-contrast regions very sharp while low-contrast regions
very smooth (Fig. 3 and 4, compare (c) and (d)). This gives the output of our model a
more natural look.

Table 1 also shows that the model with long-range edges (K = 4) performed better
than the local model (K = 2), in terms PSNR, and that the difference is most pro-
nounced at high noise levels (e.g. σ = 25) as would be expected. Even at low noise
levels (e.g. σ = 5), where one would not necessarily expect much help from longer-
range connections, the long-range model still slightly outperformed the local model.
This suggests that long-range interactions increase robustness of the model without
sacrificing fine-scale precision. Figure 5 shows in side-by-side comparison some sam-
ple output of the long-range model and the local model. The difference in visual quality
between the two emphasizes that longer-range connections are useful and that our sim-
ple second-order models are capturing important properties of images, though these are
not completely reflected in the PSNR numbers.

In addition to the experiments with artificial Gaussian noise, we also test our model
on real-world noisy images. For color images, we simply transform them into YCbCr
space and apply the model on each channel separately. In all our experiments, Gaus-



Sparse Long-Range Random Field and its Application to Image Denoising 11

PSNR = 30.96dB PSNR = 30.08dB

PSNR = 28.78dB PSNR = 27.65dB

Fig. 5. Comparison of denoising outputs of the long-range and the local models. Input images
have Gaussian white noise with σ = 25 (PSNR = 20.17). Left: Results of the long-range (K = 4)
model. Right: Results of the local (K = 2) model. Observe that the outputs of the local model is
blocky and appear tainted while those of the long-range model are smooth and clean.

Input SLRF BLS-GSM [30]

Fig. 6. Results on two real-world noisy images used in [31]. For these two images, our model
assumes Gaussian white noise of standard deviation of 50 and 25 respectively. Despite the lack
of accurate noise model, The visual quality of the output of our method is as good as that of [31].



12 Yunpeng Li and Daniel P. Huttenlocher

sian white noise is assumed. Although this is suboptimal, we obtain qualitatively good
results as can be seen in Figure 6.

These results illustrate that our model utilizing sparse long-range connections achieves
state-of-the-art performance when compared with other random field methods for image
denoising. Arguably the better preservation of texture and more natural look compared
with FoE, without the blocky effects of other local methods, improves upon previous
results. Due to the small clique size and hence low complexity, our model is less prone
to artifacts, such as the ringing pattern, which occurs more often with higher-order
models. The highest PSNR has been achieved by wavelet based methods (e.g. [30, 31]);
nevertheless, such models tend to produce a larger amount of ringing artifacts.

Table 2. Running time of various image denoising methods

Method Image size Processor Running time (sec.)
SLRF 481×321 Xeon-3.0GHz 3.2

FoE [1] 481×321 Xeon-3.2GHz 376.9
GCRF [14] 481×321 Xeon-3.2GHz 97.8
GSM [30] 256×256 PentiumIII-1.7GHz approx. 40

Finally we compare in Table 2 the running time of our model with those reported for
some other methods, including both random field [1, 14] and wavelet-based [30]. These
results show that our method is a factor of 30 or more faster than the other random
field methods and about 10 times faster than the wavelet-based one (note that while the
running time in this last case is for a slower processor, the image is also considerably
smaller). The speed of our model makes it a practical denoising method even for high-
resolution images.

6 Conclusion

We have presented a model which explicitly represents long-range interactions but
only uses low-order cliques, thereby enabling much faster optimization than other ap-
proaches that rely on high-order cliques. For image denoising this model achieves state-
of-the-art PSNR results among random field methods, is better at preserving fine-scale
detail, and runs at least an order of magnitude faster. The low complexity nature of the
model not only reduces artifacts such as ringing, but also makes it readily interpretable
and easy to understand. The small clique size enables the use of efficient approximate
global inference algorithms for arbitrary clique potentials, whilst the explicit long-range
interactions effectively counters noise-induced local bias. The combination of speed and
expressiveness makes it an efficient and robust approach for low-level vision problems
in noisy domains.
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