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Abstract

Tracking articulated objects in image sequences remains
a challenging problem, particularly in terms of the abil-
ity to localize the individual parts of an object given self-
occlusions and changes in viewpoint. In this paper we
propose a two-dimensional spatio-temporal modeling ap-
proach that handles both self-occlusions and changes in
viewpoint. We use a Bayesian framework to combine pic-
torial structure spatial models with hidden Markov tempo-
ral models. Inference for these combined models can be per-
formed using dynamic programming and sampling methods.
We demonstrate the approach for the problem of tracking
a walking person, using silhouette data taken from a sin-
gle camera viewpoint. Walking provides both strong spatial
(kinematic) and temporal (dynamic) constraints, enabling
the method to track limb positions in spite of simultaneous
self-occlusion and viewpoint change.

1. Introduction

We consider the problem of detecting and tracking an ar-
ticulated object, such as a person in a video sequence, using
a two-dimensional parameterized model. The main focus
of our work is on handling self-occlusions and changes in
viewpoint, which remain challenging problems in the track-
ing of articulated objects. Our approach combines pictorial
structure spatial models and hidden Markov temporal mod-
els into a single unified framework. A pictorial structure [5]
consists of a set of rigid parts where certain parts are con-
nected by springs to allow for bending and stretching. The
parts and their constraints are two-dimensional, similar to
the cardboard people models used in [7] for tracking peo-
ple, but within a more general spatial modeling framework.
Hidden Markov models (HMM’s) have been used exten-
sively for tracking as well as for gait and gesture recog-
nition. In our approach the states of the HMM correspond
to parameterized pictorial structure models that capture spa-
tial characteristics of representative views or “key frames”.
The transitions between states capture temporal dynamics

based on interpolation between representative views.

The main distinguishing characteristic of our work is the
integration of parameterized spatial models and temporal
models into a common framework. When the states of an
HMM are themselves parameterized models, it is gener-
ally intractable to perform inference — e.g., to find the best
sequence of states for a given input sequence, or even to
find good such state sequences. Here we provide a good in-
ference procedure for object detection and tracking, when
the states of the HMM are pictorial structure spatial mod-
els. The resulting combined model provides both strong
spatial (or kinematic) constraints from the pictorial struc-
tures and strong dynamic constraints from the HMM. The
model clearly delineates between the spatial and dynamic
constraints, yet the two are brought together in a common
estimation framework.

There are a wide range of approaches to detection and
tracking, many of which are surveyed in [6]. In contrast with
our approach, most prior work that uses parameterized-state
HMM’s for tracking articulated objects is based on having
linear dynamic system (LDS) models for the states (e.g.,
[1, 8]). Such methods have strong dynamic constraints but
relatively weak spatial constraints, because the LDS mod-
els (and associated Kalman filtering techniques) capture pri-
marily dynamic rather than spatial characteristics. HMM’s
have also been used in conjunction with template spatial
models, for problems in gesture, gait and action recognition
(e.g., [3]) These methods differ from our work in that each
state is a template rather than a parameterized model, mak-
ing it difficult to adapt such methods to tracking the actual
configuration of parts for an articulated object. Parametric
HMM’s have been used in other contexts, such as gesture
recognition (e.g., [12]). But their work is more focused on
model learning, and difficult to apply to high-dimensional
problems such as tracking articulated objects.

Pictorial structure models have recently been success-
fully applied to tracking humans [10], but without explicit
models of the temporal constraints. Our work extends those
results by using an HMM temporal model, and as a con-
sequence is able to handle changes in viewpoint and self-
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Figure 1: The default configuration for a simple pictorial
structure model corresponding to a side view of a person
walking. Red denotes the person’s left limbs, blue their right
limbs and green their head and torso.

occlusions. The focus in [10] is on learning good appear-
ance models for the parts of an object, for use in track-
ing, whereas our focus is on combining spatial and tempo-
ral constraints. Thus the two pieces of work are complemen-
tary. Another recent approach to tracking articulated objects
uses a tree-based filtering method [11]. They demonstrate
the method for hand tracking but it could also be applied to
other articulated objects. In their approach a large number
of views are clustered together and the focus of the work is
on using a tree structure to rapidly search for the best match-
ing view. In contrast we use a small number of representa-
tive views for accurate tracking of multiple parts, by having
a highly parameterized pictorial structure model.

2. An Integrated Spatio-Temporal Articu-
lated Model

We now discuss the specifics of the pictorial structure
and HMM models, and how they fit together in an integrated
modeling framework. A pictorial structure is a paramet-
ric spatial model composed of multiple parts, with spring-
like connections between certain pairs of parts. An instance
of such a model consists of the parts P = (p1,...,pn)
and the connections C' = {c¢;;}, where each ¢;; repre-
sents the spatial constraints between parts p; and p;. Each
part p; has parameters representing the appearance of that
part. For instance the appearance of a part may be char-
acterized by local oriented filter responses, template mod-
els, feature detectors, etc. Each connection c;; has param-
eters that encode both the ideal relative spatial configura-
tion of two parts and spring-like constants controlling de-
formations from this ideal configuration. For instance the
spatial relations may specify a relative position and orienta-
tion together with covariances that characterize the degree
of bending and stretching between the parts.

If we let 4 = (P,C) denote such a pictorial struc-
ture model, then a configuration of the model is given by
© = (04,...,0,) where the 6; are parameters specifying
the location of each part p; in an image coordinate frame.
In a Bayesian framework the prior distribution of configu-
rations for a given model, P(O|u), characterizes the proba-
bility of different configurations occurring, independent of

any observed data. This prior is governed by the connec-
tion parameters C, as described in [4]. The highest proba-
bility such configuration can be thought of as the preferred
or “default” configuration of the model. Such a configura-
tion is illustrated in Figure 1 for a model corresponding to a
side view of a person walking, when their arms and legs are
maximally extended. We use the color red to denote the left
arm and leg, blue to denote the right arm and leg, and green
to denote the torso and head. Deviations from this maximal
prior probability configuration can be thought of as incur-
ring a cost, in that such configurations have a lower chance
of occurring.

The posterior distribution of the configuration parame-
ters,

PO,

characterizes the probability of different configura-
tions given a particular model p and image J. There are
several standard definitions of what constitute good con-
figurations. One definition is the MAP estimate, which is a
set of parameter values that maximize the posterior prob-
ability. Another definition is any set of parameter values
for which the posterior probability is high. Such values are
generally computed using sampling methods, where con-
figurations are selected at random, weighted by their
probability. Generally some other technique is used to se-
lect the best of these sampled configurations. Following
[4] we use the Chamfer distance as a selection crite-
rion.

Using Bayes’ rule, the posterior can be expressed in
terms of the product of a likelihood and prior,

P(JO, u)P(Olp) - (1)

In general for a high-dimensional parameter space O it is
not tractable to find the ©* that maximizes this probabil-
ity, or to sample values of © that have high probability. In
the case of pictorial structure models where the parts have a
tree-like skeletal structure, such as a human body or hand,
both these problems can be solved efficiently using dynamic
programming methods as described in [4].

We now turn from the spatial to the temporal component
of the models. Let S = {s1,...,sn} be a set of represen-
tative views of an object. Representative views are analo-
gous to “key frames” in animation, in that a video sequence
can be summarized by a sequence of representative views.
Intermediate frames between two representative views can
be generated by interpolation of those views. As noted in
the introduction, while representative view temporal mod-
els have been used in other work, in these models the views
are generally templates or exemplars and are thus not well
suited to tracking the configuration of parts of articulated
objects. In our case each representative view is a parame-
terized pictorial structure model rather than a template im-
age.



Figure 2: Four state model corresponding to a side view of
a person walking.

A hidden Markov model (HMM) is a stochastic finite au-
tomaton, where each state generates (or accepts) some ob-
servation. Let (); represent the hidden state and Y; repre-
sent the observation at time ¢, 1 < ¢t < T, where the states
take on values in some set S and the observations take on
values in some set O. An HMM is characterized by the tu-
ple A = (A, B,w) where the transition probabilities are
A(Za]) = P(Qt = j|Qt71 = Z) for Zv] € S’ the ob-
servation probabilities are B(i,k) = P(Y; = k|Q; = 1)
for k € O and ¢ € S, and the initial probabilities are
7(i) = P(Q1 = i) fori € S. For a good tutorial on HMM’s
see [9]. In our case the observation is the image at each time
t, and each state is a pictorial structure model correspond-
ing to some representative view.

Given an observed sequence of images Y =
(Y1,...,Yr) and an HMM A\ = (A, B,II) we want
to determine a corresponding best sequence of representa-
tive views Q* = (Q7F,...,Q%). This temporal estimation
problem is commonly expressed as that of finding a maxi-
mum posterior probability (MAP) state sequence

Q" = argmaxy P(Q|Y, \) ,

and can be solved in time O(T'n?) for a given model \ and
observation sequence Y using the Viterbi algorithm.

It is common to consider an HMM in terms of its state
space graph, where the nodes correspond to states and the
arcs correspond to non-zero entries in A(¢, 7). By way of il-
lustration, Figure 2 shows such a graph for the case of a
side view of a person walking (we focus more in depth on
walking in Section 3). The Figure shows each state together
with the highest prior probability configuration of the cor-
responding pictorial structure model for that state. The pic-
torial structures for all four states of this model consist of
the same set of parts, P. Only the spatial connection param-
eters, C, differ between states, as the only differences in the
views are in the expected part locations. The states shown at
the top and bottom of the Figure correspond to maximal ex-
tension of the arms and legs, and differ only in whether the

right arm and left leg are forward or vice versa. The states
shown at the sides of the Figure correspond to minimal ex-
tension of the arms and legs, and differ only in whether the
right leg is down and the left leg raised or vice versa.

Note that in this model the two states corresponding to
minimal extension of the limbs cannot be distinguished on
the basis of a single observed image, because they differ
only in which leg is bent. Similarly for the two states cor-
responding to maximal extension of the limbs. Over time
(and given a starting state) these ambiguities can be resolved
based on the allowable state transitions indicated by the ar-
rows, thus making it possible to distinguish between states
and thereby determine which parts are occluded. This illus-
trates how the combination of simple parameterized spatial
models and temporal models can be used to eliminate am-
biguity and localize parts that are occluded by other parts.

2.1. Combining the Spatial and Temporal Models

When the states of an HMM are parameterized models, it
is often not tractable to determine a best state sequence, Q*,
because the observation probabilities cannot be reasonably
estimated. For HMM’s with LDS state models, approximate
inference procedures have been developed (e.g, [8]). Here
we consider the case of HMM’s with pictorial structure state
models, where it turns out there is a simple inference proce-
dure. In this combined spatio-temporal model, the observa-
tion probability, B(i, k) = P(Y: = k|Q¢ = i), results from
the parameterized pictorial structure spatial model, y;. This
is simply the probability over all possible configurations,
which can be determined by integrating over the model pa-
rameters,

P(Y; = k) = [ P(Y; = k67,0 P(O4]u)d0; . 2

Computing this integral when ©; is a high-dimensional pa-
rameter vector, as is the case here, is generally intractable.
A standard approach to approximating such integrals is to
sample from the distribution. In our case this sampling can
be done efficiently because the distribution is the poste-
rior over configuration parameters in equation (1), which as
noted above can be sampled efficiently for a tree-structured
model. Moreover, as a byproduct of the sampling methods
in [4] the integral in (2) can actually be computed directly
without needing to sample configurations.

Given an image sequence Y = (Y1,...,Yr), the best
state sequence Q* = (Q7,...,Q;) can thus be computed
using the Viterbi algorithm, once the observation probabili-
ties B(i, k) = P(Y; = k|Q; = i) for each image and state
have been computed using the corresponding distribution of
the form in (1). For the best state () at each time ¢, sam-
pling can be used to find parameters ©* that correspond to
a high probability configuration of the model. Thus the best



state sequence naturally specifies a corresponding sequence
of configuration parameter values O7, ..., ©%., specifying
a high probability configuration of the best matching model
w; at each time t. These configurations take into account
both the spatial constraints in matching individual pictorial
structure models to images and temporal constraints in se-
lecting the best state sequence Q*.

The above sequence of configuration parameters is based
on matching the best representative view model at each time
frame. When parts are occluded, interpolation between suc-
cessive representative views can be used to predict better
part locations than are obtained by simply using one of the
representative view models. This can be handled easily in
the current framework in one of several ways. One approach
is to simply introduce additional states into the HMM that
are intermediate between representative views. These views
have connection parameters, C' that are based on interpola-
tion between adjacent representative views. The main dis-
advantage of this approach is that it increases the number
of states and pictorial structure models, which slows down
processing.

An alternative approach to obtaining better estimates of
the locations of occluded parts is to re-estimate the param-
eters O, at each time, after first finding the best state se-
quence without the addition of any interpolated states to the
HMM. The observation probability P(Y; = k|Q; = i) re-
flects how well the best model w; accounts for the observed
image at time ¢. This probability will be lower for time
frames that lie between two representative views compared
with those that are a good match to a single representative
view. This can be used to determine the degree to which
an image is intermediate between representative views and
then generate a corresponding interpolated model. The con-
figuration can then be estimated by matching this interpo-
lated model to the image rather than the model for the best
state. We use this approach to obtain better estimates for the
locations of occluded parts.

As described above the transition probabilities A are sta-
tionary, and do not vary with time. In our context it could
further be useful to have transition probabilities that vary
with time. For instance, one could envision stronger dy-
namic models where the transition probabilities vary. Given
such additional estimates the same Viterbi method can be
applied as above except A = (41,..., 4;) is varying with
time.

A drawback of the Viterbi approach is that it operates
on an entire sequence of frames at once, whereas in in-
teractive tracking applications it is desirable to do incre-
mental processing one frame at time rather than batch pro-
cessing on an entire sequence. There are several standard
ways of handling this including using the forward probabil-
ities from the forward-backward algorithm, rather than the
Viterbi method. This corresponds to summing rather than

Figure 3: Modeling transitions between viewpoints.

maximizing products of probabilities.

3. Application to Human Walking

In the remainder of the paper we consider the problem of
tracking a walking person, including determining the loca-
tions of their limbs, using silhouette data taken from a sin-
gle camera viewpoint. Human walking has relatively sim-
ple temporal characteristics, yet this problem is still chal-
lenging due to single-frame ambiguities, self-occlusion and
changes in viewpoint. This section will show how the picto-
rial structure based HMM framework introduced above can
be used to tackle these difficulties effectively.

3.1. A Model of Walking

When only a single viewpoint is considered the simple
four state model introduced above, and shown for a side
view in Figure 2, provides a generic description of walking
as a cyclical gait between four representative views. Simi-
lar four-state models have been proposed and used in a wide
variety of contexts, both in computer vision and in studies
of human walking.

To allow for changes in viewpoint, we consider the eight
possible viewing directions of front, back, left, right and 45-
degree views halfway between them (front-left, front-right,
back-left and back-right). The only allowable state transi-
tions between viewpoints are to stay at the same viewpoint
or to change to one of the immediately adjacent viewpoints.
These states and transitions are illustrated in the graph at
the top of Figure 3. Each node in this graph actually cor-
responds to an entire cyclical gait model. We use the four-
state gait model in Figure 2 for the two side views, a similar
model for the four 45-degree views, and a one-state model
for the front and rear views, as illustrated in the expanded



box at the bottom of Figure 3. The 45-degree gait models
differ from the side models in having less occlusion of the
arms and legs in the minimum extent configuration and a
smaller spread of the arms and legs in the maximum extent
configuration. For the front and back views the gait model
consists of just a single state because the positions of the
arms and legs do not change appreciably during the walk-
ing cycle from these viewpoints.

The full walking model thus has 26 states, four states for
each of the side views (left and right), four states for each
of the 45-degree views, and one state each for the front and
back views. Conceptually there are three different types of
transition edges in this graph: self transitions from a given
representative view to itself, gait transitions from one state
in a gait cycle to the next but maintaining the same view-
point, and view transitions where the viewpoint changes but
the state in the gait cycle stays the same. One could fur-
ther imagine a combined transition that simultaneously goes
from one viewpoint to the next and one gait state to the next,
but we do not consider that here.

3.2. Estimating Model Parameters

Given the graph structure there are a number of param-
eters to be estimated. We use the maximum likelihood es-
timation approach in [4] to learn pictorial structure spatial
models from a set of labeled training images. Each training
image specifies the viewpoint and the locations of the ten
model parts (torso, head, and upper and lower left and right
arms and legs). All spatial relations between the parts are
learned from the examples, including covariances capturing
the degree of change in the relative locations of the parts for
a given representative view. In practice many of the view-
points have the similar spatial relations between their parts,
so training need not be done separately for each viewpoint.
For instance in the 26 view model above there are only 5 dis-
tinct spatial arrangements of parts: the minimum and maxi-
mum extent side views, the minimum and maximum extent
45 degree views, and the front/back view.

For the transition probabilities in the HMM we sim-
ply use constants corresponding to each of the three tran-
sition types identified above: 7, for self transitions, 74 for
gait transitions and 7, for view transitions. The transition
probabilities for a given node are then obtained by nor-
malizing these values so that the total over all outbound
edges from the node is 1.0. We set these constants such that
Ts > Tg > Ty, and use the same values for all experiments.

In order to generate more accurate locations of occluded
parts we interpolate the pictorial structure model parameters
between the representative view states, as discussed above.
We use linear interpolation of the parameters, although for
walking a more accurate model would reflect that near the
representative views the change is slower than halfway be-

tween such views. The number of intermediate views is de-
termined by the rate of walking. In principle this can be es-
timated from sample video sequences, but we simply use a
fixed value at the moment.

This modeling approach provides a framework for learn-
ing parameters such as the transition probabilities. Thus
possible extensions to this work include clustering images
to automatically identify distinct views, and estimation of
HMM parameters using EM.

3.3. Approximations

While pictorial structure matching is efficient given the
large number of parameters to be estimated, it still takes
approximately half a minute to match a ten-part person
model to an image using a 2 GHz processor. With one pic-
torial structure model per state, the processing requirements
for a large spatio-temporal model such as the one here is
thus many minutes per frame (although quite easily paral-
lelized). In this section we consider two methods for speed-
ing up processing in the specific case of tracking walking
people. The resulting technique runs at about 15 seconds
per frame for the full model considered above (on a 2.0 GHz
Pentium 4). The first technique uses the horizontal vari-
ance of the silhouette pixel locations to determine the best
state sequence, and then only matches the pictorial struc-
ture model that corresponds to the best state at each time.
The second technique uses a bounded velocity assumption
to limit the parameter range that is searched in finding the
best pictorial structure parameters for a given image frame.

Our goal here is to compute a best state sequence
(Q1,...,Q%) without needing to estimate the inte-
gral in (2) for every model and image. Thus we con-
sider an approximation to the observation probabili-
ties P(Y; = k|Q: = ). This approximation is based
on using the horizontal variance of the model pixel lo-
cations rather than the full model. As has been observed
in other work (e.g., [2]), most of the change in the sil-
houette of a walking person is in the horizontal loca-
tions of the pixels. Let f(¢) denote the variance in the
z-locations of the silhouette pixels at time ¢, where the sil-
houette has first been scaled to a standard height in or-
der to accommodate overall size changes. We define
the normalized horizontal variance as the difference be-
tween f(¢) and a smoothed version of f(¢). Namely,
g(t) = f(t) — (f(t) » Gp(t)), where G, is a Gaus-
sian of standard deviation p, the period of f(t). The pe-
riod, p, can be determined easily using auto-correlation
or the FFT. If the speed of walking changes substan-
tially then windowing can be used to vary the smooth-
ing.

An example of the normalized horizontal variance is
shown in Figure 4 for a video sequence of a person walking
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Figure 4: The normalized horizontal variance, g(t), for a
person walking in a circle, illustrating the combined effects
of changes in viewpoint and gait cycle.

around in a circle, so the viewpoint is changing. The Figure
also shows corresponding representative pictorial structure
models for several of the views. Note that the primary ef-
fect of the normalization is to create a common “zero point”
around which ¢(t) oscillates in a periodic manner. The gait
cycle is captured by the oscillation of the function and the
viewing direction is captured by its amplitude. In order to
explicitly represent the amplitude at each time we also com-
pute the separation between the minimal and maximal val-
ues over each period, h(t) = gmax(t) — gmin(t) Where the
min and max are computed for the period containing ¢.

For states within a gait cycle, the horizontal variance
¢(t) distinguishes the two minimal extent states, which have
negative values of g(t), from the two maximal extent states,
which have positive values. Analogously to the pictorial
structure models, in a single time frame the two minimal
extent states cannot be distinguished from one another, nor
can the two maximal extent states, but these states are dis-
tinguishable based on transitions between states over time.

For changes in viewpoint, the amplitude A(t) distin-
guishes the two side views (colored magenta in the Figure),
which have high amplitude, from the four 45 degree views
(cyan), which have moderate amplitude, from the front and
back views (black), which have low amplitude. However,
even with the associated state transitions, 4 (t) is not enough
to distinguish different 45 degree views. Recall the view
transition diagram in Figure 3. The transitions from a side
view (or from a front/back view) are both to 45 degree views
which have essentially the same amplitude. However, while
the overall amplitude is the same, these two views differ
in terms of whether or not the 45 degree viewing direction

aligns both the forward and backward arms with the torso
(and vice versa for the legs as they are in opposing posi-
tions to the arms) while the viewpoint change is happening.
Thus we also compute the amplitude of the normalized hor-
izontal variance separately for the upper half of the silhou-
ette (corresponding to the arms) and the lower half (corre-
sponding to the legs) to capture these differences. Call these
amplitudes h* and h!, respectively.

We use a normal distribution to model these parameters
for a given state ¢. Thus there are a total of eight parameters
to this model, the mean and variance for each of the nor-
malized horizontal variance g, its amplitude, i, and the am-
plitudes for the upper and lower halves h* and h'. Let v;
denote these eight parameters for state ¢. We approximate
the observation probabilities using P(Y; = k|v;). Given
the best state sequence Q* = (Qf7,..., Q%) found using
this approximation, we then compute the spatial parameters
O, for each time frame by matching the pictorial structure
model corresponding to state () to the image at time ¢ by
sampling from the distribution in (1). As discussed above,
the pictorial structure model is interpolated between repre-
sentative views, so as to provide a stronger prior on the lo-
cations of parts and thus increase the localization accuracy
for occluded parts.

In the final step of computing the spatial parameters ©;,
we use a bounded velocity assumption to further speed up
matching by eliminating large portions of the parameter
space from consideration when sampling the posterior dis-
tribution of model parameters in equation (1). The location
of each part is characterized by a set of parameters. Bound-
ing the velocity implies bounds on the degree of change
in the parameters from one time frame to the next. This
makes it possible to restrict the domain over which the pos-
terior must be estimated. We use a simple hypercube, lim-
iting each parameter to an interval around the correspond-
ing value for the previous time-frame. Recall that estimat-
ing the posterior involves computing both the likelihood and
prior over possible values of these parameters for each part,
whose domains are in turn limited. This results in an order
of magnitude speedup. Such windowing cannot only drasti-
cally shrink the volume of the state space that needs to be
computed, it can also improve the accuracy of the match-
ing results when there is a good prior on the part locations
but certain parts are hidden from view.

3.4. Examples

In this section we present some experimental results to
demonstrate the capabilities of the method in tracking a hu-
man silhouette. We consider three sequences, the first two
have a fixed viewpoint and in the third a person walks in a
circular path so that the viewpoint changes extensively.

The first two sequences are from the multi-view imagery
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Figure 5: This graph illustrates our experimental frame-
work. The three major steps are, (1) silhouette extrac-
tion, (2) state labeling using approximation, (3) windowed-
sampling based pictorial structure matching.

in the CMU HID dataset. Each sequence is an 11 second
clip of a person walking on a treadmill. One sequence is
taken from a side-view and the other from a front-side 45
degree view. The third sequence, from Michael Black, is of
a person walking in a circle and poses substantial challenges
in terms of self occlusion and viewpoint change, demon-
strating the power of having integrated spatial and temporal
models (we refer to this as the PARC sequence).

Our experimental framework can be summarized by the
illustration in Figure 5. There are three major steps in the
whole process. The first step is silhouette extraction using
background subtraction because of the stationary camera.
The remaining steps of processing are all covered in the pre-
vious sections. The second major processing step involves
calculating the horizontal variance measures and Viterbi es-
timation of the best state sequence given the walking model
and the horizontal variance. The third major step is esti-
mation of the model parameters for the pictorial structure
model corresponding to the best state at each time ¢ (in-
cluding the use of interpolated models between representa-
tive views). These model parameters are then used to over-
lay the model on the original images. The calculations are
all done using a size-normalized coordinate frame and then
mapped back into image coordinates.

Figure 6 shows some of the results for the side-view
walking sequence. These frames illustrate that our approach
can handle self-occlusion and the ambiguity in the identity
of the parts in individual frames. Note that the distinctions
between the left (colored red) and right (colored blue) limbs
are correctly tracked over time, including through occlu-
sions. The matching is completely automatic, except that for
the first frame we specify whether the left arm and right leg
are forward, or vice versa, as this cannot be distinguished
from the image data. This is done by setting the initial state

Figure 7: Results for the 45-degree view of the treadmill se-
quence.

probabilities of the HMM. Figure 7 shows some results for
the 45-degree viewpoint sequence, again correctly tracking
the parts over time and through occlusions. These two se-
quences illustrate the capabilities of the single-view four-
state HMM gait model, using pictorial structures for the
states.

Figure 8 shows the results of our method for the PARC
sequence, where a person walks in a circle. Note the sub-
stantial changes in viewpoint and self occlusions. This re-
sult demonstrates that the full model, incorporating both
viewpoint and gait changes, can successfully track the left
and right side limbs over a sequence that combines many
successive changes in viewpoint simultaneous with the self-
occlusions due to the gait cycle. This is a challenging se-
quence and we are not aware of other methods that can suc-
cessfully track the parts over time as demonstrated here.

4. Conclusions

We have presented a modeling framework that integrates
pictorial structure spatial models with hidden Markov tem-
poral models, and have shown an efficient inference proce-
dure for finding a maximum a posteriori (MAP) probabil-
ity state sequence for such a model. Our method also pro-
duces a sequence of configuration parameters correspond-
ing to a high posterior probability match of the model at
each image frame. We then described an approximation that
uses the horizontal variation of pixel locations to more ef-
ficiently determine a MAP state sequence. The results il-
lustrate the ability of this combined spatio-temporal model-
ing technique to correctly track the position and identity of a
person’s limbs through self occlusions and changes in view-
ing direction.
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Figure 8: Results for the multi-viewpoint sequence.



