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Comparing Images Using the Hausdorff Distance

Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Rucklidge

Abstract—The Hausdorff distance measures the extent to which
each point of a “model” set lies near some point of an “image” set
and vice versa. Thus, this distance can be used to determine the
degree of resemblance between two objects that are superimposed
on one another. In this paper, we provide efficient algorithms for
computing the Hausdorff distance between all possible relative
positions of a binary image and a model. We focus primarily
on the case in which the model is only allowed to translate
with respect to the image. Then, we consider how to extend
the techniques to rigid motion (translation and rotation). The
Hausdorff distance computation differs from many other shape
comparison methods in that no correspondence between the
model and the image is derived. The method is quite tolerant of
small position errors such as those that occur with edge detectors
and other feature extraction methods. Moreover, we show how
the method extends naturally to the problem of comparing a
portion of a model against an image.

Index Terms— Distance transforms, model-based recognition,
Voronoi surface.

I. INTRODUCTION

CENTRAL problem in pattern recognition and computer

vision is determining the extent to which one shape
differs from another. Pattern recognition operations such as
correlation and template matching (cf. [17]) and model-based
vision methods (cf. [4], [8], [11]) can all be viewed as
techniques for determining the difference between shapes. We
have recently been investigating functions for determining the
degree to which two shapes differ from one another. The goal
of these investigations has been to develop shape comparison
methods that are efficient to compute, produce intuitively
reasonable results, and have a firm underlying theoretical basis.
In order to meet these goals, we argue that it is important for
shape comparison functions to obey metric properties (see [3]
for related arguments).

In this paper, we present algorithms for efficiently com-
puting the Hausdorff distance between all possible relative
positions of a model and an image. (The Hausdorff distance
is a max-min distance defined below.) We primarily focus
on the case in which the model and image are allowed to
translate with respect to one another and then briefly consider
extensions to handle the more general case of rigid motion.
There are theoretical algorithms for efficiently computing the
Hausdorff distance as a function of translation [12], [14] and
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rigid motion [13]. Here, we provide provably good approxi-
mation algorithms that are highly efficient both in theory and
in practice. These methods operate on binary rasters, making
them particularly well suited to image processing and machine
vision applications, where the data are generally in raster form.
The three key advantages of the approach are as follows:

1) Relative insensitivity to small perturbations of the image

2) simplicity and speed of computation

3) natural allowance for portions of one shape to be com-

pared with another.

We discuss three different methods of computing the Haus-
dorff distance as a function of the translation of a model with
respect to an image. The first of these methods is similar in
many ways to binary correlation and convolution, except that
the Hausdorff distance is a nonlinear operator. The second
method extends the definition of the distance function to enable
the comparison of portions of a model to portions of an image.
The third method improves on the first two by using certain
properties of the Hausdorff distance to rule out many possible
relative positions of the model and the image without having
to explicitly consider them. This speeds up the computation by
several orders of magnitude. All three of these methods can
be further sped up using special-purpose graphics hardware
(in particular, a z buffer). We present a number of examples
using real images. These examples illustrate the application
of the method to scenes in which a portion of the object to
be identified is hidden from view. Then finally, we show how
the methods can be adapted to comparing objects under rigid
motion (translation and rotation).

A. The Hausdorff Distance
Given two finite point sets A = {a1,...,0,} and B =

{b1,...,b4}, the Hausdorff distance is defined as
H(A, B) = max(h(A, B), h(B, A)) (1)
where
h(A, B) = maxmin||a - bj] @
and || - || is some underlying norm on the points of A and B

(e.g., the Ly or Euclidean norm).

The function h(A,B) is called the directed Hausdorff
distance from A to B. It identifies the point a € A that is
farthest from any point of B and measures the distance from
a to its nearest neighbor in B (using the given norm || - }),
that is, h(A, B) in effect ranks each point of A based on its
distance to the nearest point of B and then uses the largest
ranked such point as the distance (the most mismatched point
of A). Intuitively, if A(A, B) = d, then each point of A must
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be within distance d of some point of B, and there also is
some point of A that is exactly distance d from the nearest
point of B (the most mismatched point).

The Hausdorff distance H(A,B) is the maximum of
h(A,B) and h(B,A). Thus, it measures the degree of
mismatch between two sets by measuring the distance of the
point of A that is farthest from any point of B and vice versa.
Intuitively, if the Hausdorff distance is d, then every point
of A must be within a distance d of some point of B and
vice versa. Thus, the notion of resemblance encoded by this
distance is that each member of A be near some member of
B and vice versa. Unlike most methods of comparing shapes,
there is no explicit pairing of points of A with points of B (for
example, many points of A may be close to the same point of
B). The function H(A, B) can be trivially computed in time
O(pq) for two point sets of size p and g, respectively, and this
can be improved to O((p + ¢)log(p + q)) [2].

It is well known that the Hausdorff distance H(A, B) is a
metric over the set of all closed, bounded sets (cf., [9]). Here,
we restrict ourselves to finite point sets because that is all that
is necessary for raster sensing devices. It should be noted that
the Hausdorff distance does not allow for comparing portions
of the sets A and B because every point of one set is required
to be near some point of the other set. There is, however,
a natural extension to the problem of measuring the distance
between some subset of the points in A and some subset of
the points in B, which we present in Section IIL

The Hausdorff distance measures the mismatch between two
sets that are at fixed positions with respect to one another.
In this paper, we are primarily interested in measuring the
mismatch between all possible relative positions of two sets,
as given by the value of the Hausdorff distance as a function
of relative position, that is, for any group G, we define the
minimum Hausdorff distance to be

Mg(A,B)= min H(g:14,9:B).
91,92€G

If the group G is such that for any g € G and for any points
T1, %3, [|9T1 — 972 = ||z1 — 22]|, then we need only consider
transforming one of the sets:

M¢(A,B) = min H(A,gB).
9€G

This property holds when G is the group of translations, and
Il - | is any norm, as well as when G is the group of rigid
motions and || - || is the Euclidean norm.

In the cases, we consider here (translations and rigid mo-
tions) the minimum Hausdorff distance obeys metric properties
(as was shown in [12] and [13]), that is, the function is every-
where positive and has the properties of identity, symmetry,
and triangle inequality. These properties correspond to our
intuitive notions of shape resemblance, namely, that a shape is
identical only to itself, the order of comparison of two shapes
does not matter!, and two shapes that are highly dissimilar
cannot both be similar to some third shape. This final property
(the triangle inequality) is particularly important in pattern

1 Actually, the order of comparison does matter in some psychophysical

studies. One interesting property of the Hausdorff distance in this regard is
the fact that the directed distance h(A, B) is not symmetric.

Fig. 1. Two sets of points illustrating the distances H (A, B) and Mr(A, B).

matching applications in which several stored model shapes
are compared with an unknown shape. Most shape-comparison
functions used in such applications do not obey the triangle
inequality and can thus report that two highly dissimilar model
shapes are both similar to the unknown shape. This behavior
is highly counterintuitive (for example, reporting that some
unknown shape closely resembles both an “elephant” and a
“hatrack” is not desirable because these two shapes are highly
dissimilar).

We focus primarily on the case where the relative positions
of the model with respect to the image is the group of
translations. Without loss of generality, we fix the set A and
allow only B to translate. The minimum value of the Hausdorff
distance under translation is then defined as

©)]

where H is the Hausdorff distance as defined in (1), and @ is
the standard Minkowski sum notation (i.e., B&t = {b+t|b €
B}). For example, Fig. 1 shows two sets of points, where the
set A is illustrated by dots and the set B by crosses. H(A, B)
is large because there are points of A that are not near any
points of B and vice versa. Mr(A, B) is small, however,
because there is a translation of B that makes each point of
A nearly coincident with some point of B and vice versa. We
generally refer to the set A as the “image” and the set B as
the “model” because it is most natural to view the model as
translating with respect to the image.

We now turn to the problem of efficiently computing
H(A, B) and Mr(A, B). The organization of the remainder
of the paper is as follows. We first discuss how to compute
H(A, B) for finite sets of points in the plane. The basic idea
is to define a set of functions measuring the distance from
each point of A to the closest point of B (and vice versa)
as a function of the translation ¢ of the set B. In Section
III, we show how to extend the method to the problem of
comparing portions of the sets A and B (e.g., as occurs when
instances are partly occluded). Then, in Section IV, we discuss
an implementation of the Hausdorff distance computation
for raster data, where the sets A and B are represented in
terms of binary rasters. This implementation is in many ways
similar to binary correlation. In Section V, we show how to
improve the basic implementation by ruling out many possible
translations of B without explicitly considering them. We then
present some examples and contrast the method with binary
correlation. Finally, we consider the case of rigid motion

Mr(A,B) = min H(A, B & 1)
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(translation and rotation) and present an example for this
problem.

II. COMPUTING H(A, B) AND Mr(A, B)

From the definition of the Hausdorff distance in (1) and (2),
we have

H(A, B) = max(h(4, B), k(B, A))
= max (maxmin le — b, max min ||a — b||)
a€A beB bEB a€A

I we define d(z) = minegpllz — bl and d'(z) =
minge 4 ||a — z||, we have

H(A, B) = max (r;lea;)‘( d(a), max d’(b))

that is, H(A, B) can be obtained by computing d(a) and d’(b)
for all @ € A and b € B, respectively. The graph of d(z),
{(z,d(z)) |z € R?} is a surface that has been called the
Voronoi surface of B [14]. This surface gives for each location
z the distance from z to the nearest point b € B. For points
in the plane, one can visualize this surface as a sort of “egg
carton” with a local minimum of height zero corresponding to
each b € B and with a “cone-shape” rising up from each such
minimum. The locations at which these cone shapes intersect
define the local maxima of the surface. Thus, note that the local
maxima are equidistant from two or more local minima (hence,
the name Voronoi surface by analogy to Voronoi diagrams that
specify the locations equidistant from two or more points of a
given set [16]). The graph of d’(x) has a similar shape with a
“cone-shape” rising up from each point of A.

A Voronoi surface d(z) of a set B has also been referred
to as a distance transform (e.g., [10]) because it gives the
distance from any point = to the nearest point in a set of
source points B. Fig. 2 illustrates a set of points and a top-
down view of a corresponding Voronoi surface, where brighter
(whiter) portions of the image correspond to higher portions
of the surface. The norm used in the figure is Lo.

We now turn to calculating the Hausdorff distance as a
function of translation:

H(A,B&t)

= ma (mapig la - 6+, maxmin o - (0+ )
- inll(a—t)—b inla — (b
max (max g a — )~ B, e min o — +0))
= max (ma.x d(a — t),maxd’(b+ t))
a€A beB

that is, H(A, B @ t) is simply the maximum of translated
copies of the Voronoi surfaces d(z) and d'(z) (of the sets B
and A, respectively). Now, define f4(t) = maxqeca d(a —t)
(the upper envelope (pointwise maximum) of p copies of the
function d(—t)), which have been translated relative to each
other by each a € A. This gives, for each translation ¢, the
distance of the point of A that is farthest from any point of
B@t, thatis, f4(t) = h(A, Bét), where h(:,-) is the directed
Hausdorff distance given in (2).

Fig. 2. Set of points and a corresponding Voronoi surface.

The directed Hausdorff distance fg(t) = h(B & t,A)
is defined analogously. Now, H(A,B @ t) is simply the
maximum of the two directed distance functions. Thus, we
define

f@®)

i

max(fa(t), fB(t))
max (Teai( d(a —t), max d'(b+ t))
H(A,Bot)

where H(-,-) is the Hausdorff distance as defined in (1), that
is, the function f(t) specifies the Hausdorff distance between
two sets A and B as a function of the translation ¢ of the set
B. Efficient theoretical algorithms for computing f(t) were
developed in [14]. There, it was shown that if A and B
contain, respectively, p and ¢ points in the plane; then, the
function f(t) can be computed in time O(pg(p + ¢) logpg)
when || - || is the Ly, L2, or Lo, norm. This running time can
be improved to O(pqlog pg) when using the L; or Lo, norms
[7]. These methods are quite complicated to implement and
are substantially less efficient in practice than the rasterized
approximation methods that we investigate in Sections IV and
V.

III. COMPARING PORTIONS OF SHAPES

In many machine vision and pattern recognition applica-
tions, it is important to be able to identify instances of a model
that are only partly visible (either due to occlusion or to failure
of the sensing device to detect the entire object). Thus, we wish
to extend the definition of the Hausdorff distance to allow for
the comparison of portions of two shapes. This will allow for
scenes that both contain multiple objects and for objects that
are partially hidden from view.
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A. Partial Distances Based on Ranking

The Hausdorff distance can naturally be extended to the
problem of finding the best partial distance between a model
set B and an image set A. For simplicity, we first consider
the directed Hausdorff distance from B to A: h(B, A). The
computation of h(B, A) simply determines the distance of the
point of the model B that is farthest from any point of the
image A, that is, each point of B is ranked by the distance to
the nearest point of A, and the largest ranked point (which is
the one farthest from any point of A) determines the distance.

Thus, a natural definition of “distance” for K of the ¢ model
points (1 < K < g) is given by taking the Kth ranked point
of B (rather than the largest ranked one)

hx (B, A) = Kiep min fla - |, @

where KZé p denotes the Kth ranked value in the set of
distances (one corresponding to each element of B), that is,
for each point of B, the distance to the closest point of A
is computed, and then, the points of B are ranked by their
respective values of this distance. The Kth ranked such value d
tells us that K of the model points B are each within a distance
d of some image point (and when K = g, all the points are
considered, and the value is simply the directed Hausdorff
distance h(B, A)). This definition of the distance has the nice
property that it automatically selects the K “best matching”
points of B because it identifies the subset of the model of
size K that minimizes the directed Hausdorff distance.

In general, in order to compute the partial directed “dis-
tance” hy (B, A), we specify some fraction 0 < f; < 1 of
the points of B that are to be considered. Each of the ¢ points
of B is ranked by the distance to the nearest point of A. The
Kth ranked such value, which is given by (4), then gives the
partial “distance,” where K = | fiq|. This K'th ranked value
can be computed in O(gq) time using standard methods such
as those in [1). In practice, it takes about twice as long as
computing the maximum.

This partial distance measures the difference between a
portion of the model and the image: the K points of the model
set that are closest to points of the image set. One key property
of this method is that it does not require one to prespecify
which part of the model is to be compared with the image. This
is because the computation of the directed Hausdorff distance
determines how far each model point is from the nearest image
point and thus automatically selects the K points of the model
that are closest to image points. In Section VI, we illustrate
this partial matching capability and contrast it with correlation.
We find that the directed partial Hausdorff “distance” works
well for partial matches on images where correlation does not.

The partial bidirectional Hausdorff “distance” is now nat-
urally defined as

Hix(A, B) = max(hr(A, B), hk(B, A)). )

This function clearly does not obey metric properties; however,
it does obey weaker conditions that provide for intuitively
reasonable behavior. These conditions are, in effect, that metric
properties are obeyed between given subsets of A and B
(of size L and K, respectively). In order to specify these

properties more precisely, we need to understand something
about the subsets of A and B that achieve the minimum partial
“distance”:

Claim 1: If H (A, B) = d, then there exist sets Ay C A
and Bx C B such that H(A, Bx) < d. Each of Ay, and By
will have exactly min(K, L) elements.

There are also “large” subsets of A and B that achieve the
distance d.

Claim 2: If Hy (A, B) = d, then there exist sets A7 C A
and B, C B such that H(A}, By ) = d, with L < |4}| <
max(K, L) and K < |B}| < max(K, L).

For proofs of these claims, see Appendices A and B.

It follows immediately that the identity and symmetry prop-
erties hold with respect to A7 and Bj, because H(:,-) obeys
these properties. Intuitively, this means that for the partial
“distance” with some given K, L, the order of comparison
does not matter, and the distance is zero exactly when the two
minimizing subsets A7 and B} are the same.

For the triangle inequality, the minimizing subsets may be
different when comparing A with B than when comparing
B with C. Thus, in general, the triangle inequality can be
violated. In the restricted case that the same subset B}, C
B is the minimizer of Hrx (A, B) and Hgp(B,C), then
by definition, H(A},By) + H(B,Cy) > H(AL,CY)).
Intuitively, this means that if two sets are compared with the
same portion of a third set (which is denoted B}, above), then
the triangle inequality holds. For practical purposes, this is a
reasonable definition: If two models both match the same part
of a given image, then we expect the models to be similar to
one another. On the other hand, if they match different parts
of an image, then we have no such expectation.

IV. THE MINIMUM HAUSDORFF DISTANCE FOR GRID POINTS

We now turn to the case in which the point sets lic on an
integer grid. This is appropriate for many computer vision and
pattern recognition applications because the data are derived
from a raster device such as a digitized video signal. Assume
we are given two sets of points A = {ai,...,a,} and
B = {b,...,b;} such that each point a € A and b € B has
integer coordinates. We will denote the Cartesian coordinates
of a point a € A by (ar,a,) and analogously (b,b,) for
b € B. The characteristic function of the set A can be
represented using a binary array A[k,[], where the k, Ith entry
in the array is nonzero exactly when the point (k,l) € A (as
is standard practice). The set B has an analogously defined
array representation Blk,I].

As in the continuous case in the previous section, we wish to
compute the Hausdorff distance as a function of translation by
taking the pointwise maximum of a set of Voronoi surfaces. In
this case, however, the point sets from which these surfaces are
derived are represented as arrays, where the nonzero elements
of the arrays correspond to the elements of the sets.

For the two sets A and B, we compute the rasterized
approximations to their respective Voronoi surfaces d’'(x) and
d(x). These distance arrays, or distance transforms, specify for
each pixel location (z,y) the distance to the nearest nonzero
pixel of A or B, respectively. We use the notation D'[z, y] to
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denote the distance transform of A[k,!] and D[z, y] to denote
the distance transform of B(k, ], that is, the array D’[z,y] is
zero wherever A[k, ] is one, and the other locations of D[z, y]
specify the distance to the nearest nonzero point of A[k,{|.
There are a number of methods for computing the rasterized
Voronoi surface or distance transform (e.g., [5], [15]), which
we discuss briefly below.

Proceeding with the analogy to the continuous case, we can
compute the pointwise maximum of all the translated D and
D' arrays to determine the Hausdorff distance as a function
of translation (only now we are limited by the rasterization
accuracy of the integer grid):

Flz,y]

_ _ _ ’

= max (Izleach[ax z,ay — Y, rgleach [bz +2,by + y])
©®

In order for F[z,y] to be small at some translation (zo, yo),
it must be that the distance transform D]z, y] is small at all
the locations A © (xo,y0) and that D’[x, ] is small at all the
locations B @ (zo,yo). In other words, every point (nonzero
pixel) of the translated model array B[k + zo,l + yo] must
be near some point (nonzero pixel) of the image array Alk, |
and vice versa.

When the input points have integer coordinates, it is straight-
forward to show that the minimum value of F[z,y] is very
close to the minimum value of the exact function f(¢). In
other words, the rasterization only introduces a small error
compared with the true distance function. Specifically, we
have the following claim:

Claim 3: Let tg = (20, yo) be a translation that minimizes
Flz,y]. (There may be more than one translation with the same
minimum F' value). Let t; = (z1,1) be a translation that
minimizes f(#;), which is the exact measure. Then, F[z¢, yo)
differs from f(¢,) by at most 1, when the norm used || - || is
any L, norm.

For a proof of this claim, see Appendix C. Note also that
when ¢t = (z,y) is a translation with integer coordinates x
and y, then F(z,y] = f(¢): The rasterized function is simply
a sampling of the exact function.

Thus, the minimum value of the rasterized approximation
F[z,y] specifies the minimum Hausdorff distance under trans-
lation to an accuracy of one unit of quantization. However, it
should be noted that the translation minimizing F[z,y] is not
necessarily close to the translation ¢, which actually minimizes
f(2). To see an example of this, let k be any odd number, and
let A be the set {(0,0), (k,0),(2k + 1,0)}. Let B be the set
{(0,0), (2k+1,0)}. Then, the translation ¢ that minimizes f(t)
(in the exact case) is (k/2,0) with Mr(A, B) = k/2. In the
rasterized case, however, Mr(A, B) = (k + 1)/2, with three
translations that generate this minimum value: ((k +1)/2,0),
((k = 1)/2,0), and (—(k + 1)/2,0). Thus, there there may
be minimizing translations in the rasterized case that are
arbitrarily far away from the minimizing translation in the
exact case. This is not a problem, however, since the value of
H(A,B @ t) for each of these translations is the same (and
the value at each translation must be within 1.0 of the exact

minimizing value). In other words, all three of these matches
have the same cost in both the exact and rasterized cases, and
this cost is nearly the exact minimum cost. In practice, we
generally enumerate all minimizing translations.

The function f(t) and its rasterized approximation F[z,y]
specify the Hausdorff distance H(A, B&t) as a function of the
translation ¢. The directed Hausdorff distance h(B @ t, A) is
also useful for comparing two bitmaps. In particular, in order
to identify possible instances of a “model” B in a cluttered
“image” A, it is often desirable to simply ensure that each
portion of the model is near some portion of the image (but
not necessarily vice versa). We denote by Fg|[z, y] the directed
Hausdorff distance from B to A as a function of the translation
(z,y) of B:

Fglz,y) =rl§1€;%(D’[bx+:c,by+y]. )
This measures the degree to which B(k,!] resembles A[k,!]
for each tramslation (x,y) of B. When each nonzero pixel
of B[k + z,l + y] is near some nonzero pixel of Afk,I],
then the distance will be small. If, on the other hand, some
nonzero pixel of B[k + z,l + y] is far from all nonzero
pixels of A[k, ], then the distance will be large. The directed
distance from A to B is analogously given by Fy[z,y] =
maxseca Dla; — z,ay — y]. Note that F[z,y] is simply the
pointwise maximum of these two directed distance functions.

A. Computing the Voronoi Surface Array D[z, y)

There are many methods of computing a distance transform
(or rasterized approximation to a Voronoi surface). In this
section, we summarize some of the approaches that we have
used for computing the distance transform D]z, y] of a binary
array E|[z,y] (where we denote the nonzero pixels of E[z,y]
by the point set E).

One method of computing Dz, y] is to use a local distance
transform algorithm such as that in [5], [10], or [15). In
practice, we use a two-pass serial algorithm that approximates
the distance transform using a local mask to propagate distance
values through the array (such as that of [5]). Better distance
values can be obtained using a method such as that of [15],
which produces distance transform values that are exact for
the L; and L, norms and are exact up to the machine
precision for the Ly norm. This algorithm first processes each
row independently. For each row of E[z,y], it calculates the
distance to the nearest nonzero pixel in that row, i.e., for
each (z,y), it finds Az such that E[r + Az,y] # 0 or
E[z — Az,y] # 0 and that Az is the minimum nonnegative
value for which this is true. It then scans up and down
each column independently, using the Az values and a look-
up table that depends on the norm being used to determine
Diz,y].

Another method that we have used to compute distance
transforms takes advantage of specialized graphics hardware
for rendering and z buffering. The form of D[z,y] is, as
noted in Section II, an “egg carton”: the lower envelope of
a collection of cone shapes, one cone shape for each point
e; € E (each nonzero pixel of E[z,y]), with its point at e;.
The exact form of the cone shapes depends on the norm being
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used. For the L; norm, the shapes are pyramids with sides
of slope +1 oriented at 45° with respect to the coordinate
axes. For the L., norm, they are again pyramids, but they are
oriented parallel to the coordinate axes. For the Ly norm, they
are cones of slope 1.

The computation of D[z, y] is simply to take the pointwise
minimum, or lower envelope, of the cone shapes rendered
as described above. Consider the operations performed by
a graphics-rendering engine set up to perform orthographic
(rather than perspective) projection and view this collection of
surfaces from “below.” It can render the cones and perform
visibility calculations quickly using a z buffer. Suppose that
location (zg,yo) in the z buffer contains value d. Then, the
closest surface to the viewer that intersects the line (z =
Zo,Y = Yo) is d away. This means that the lower envelope
of the “egg carton” is at height d at (z,y), and therefore,
Dlz,y] = d. Thus we simply render each of the cones
described above into a z buffer doing orthographic projection
(i.e., with a view from z = —o0). The running time of this
method is O(p), where p is the number of points in the set E.
This is because each source point results in the rendering of
a single cone, and then, the z-buffering operation is constant
time. With current graphics hardware, tens of thousands of
polygons per second can be rendered in a z buffer, and thus,
it is possible to compute D{z,y] in a fraction of second. For
the L, and L, norms, D[z,y] is computed exactly; for the
L norm, there may be some error in the computed D]z, y],
which depends on the resolution of the z buffer being used.

B. Computing the Hausdorff Distance Array F|z,y]

The Hausdorff distance as a function of translation Fz, ],
which is defined in (6), can also be computed either using
graphics hardware or standard array operations. For simplicity
of discussion, we focus on the computation of the directed
distance from the model to the image Fg{z,y| (the compu-
tation of F4[z,y] is analogous). Recall that F[z,y] is simply
the maximum of these two directed distances.

We previously saw that Fg[zr,y] can be defined as the
maximum of those values of D’[z,y| (the distance transform
of Alk,l]) that are selected by elements of B for each
translation (z,y) of B. Alternately, this can be viewed as
the maximization of D'[z,y] shifted by each location where
BIk,1] takes on a nonzero value:

F = Ibz =
Bl y]=max D' [b, +2, by +y] kdsBlk =1

D'k+z,l+y).
®
This maximization can be performed very rapidly with special-
purpose graphics hardware for doing pan and z-buffer oper-
ations. We simply pan D’[z,y] and accumulate a pointwise
maximum (upper envelope) using a z buffer. In practice, for
most current graphics hardware, this operation is not fast
because it involves repeatedly loading the z buffer with an
array from memory.
A second way to compute Fg[z,y], using standard array
operations, arises from viewing the computation slightly dif-
ferently. Note that (8) is simply equivalent to maximizing the

product of B(k,!] and D’'[z,y] at a given relative position

FB[xvy]:HiaiXB[k’l]Dr[k"'z»l"*'y]' 9

In other words, the maximization can be performed by “po-
sitioning” B[k, !] at each location (z,y) and computing the
maximum of the product of B with D’.

In order to compute Fp(z,y] using the method of (9), the
array Blk,!] is simply positioned by being centered at each
pixel of the distance transform D'[z, y]. The value of Fi[z, y]
is then the maximum value obtained by multiplying each entry
of B[k, ] by the corresponding entry D’[k +z,+ y]. Because
Bk, 1] is simply a binary array, this amounts to maximizing
over those entries of D'[k + z,l + y] that are selected by the
nonzero pixels of B[k,l], that is, we can view the nonzero
model pixels as probing locations in the Voronoi surface of
the image, and then, Fg[z, y] is the maximum of these probe
values for each position (z,y) of the model Bk, I].

This form of computing the directed Hausdorff distance
under translation is very similar to the binary correlation of
the two arrays B[k, ] and A[k,!]

Clz,yl =Y Blk,0Alk + z,1+y].
1

k

The only differences are that the array A[k, (] in the correlation
is replaced by the distance array D'[z,y] in (9) (the distance
to the nearest pixel of A[k,]), and the summation operations
in the correlation are replaced by maximization operations.
It should be noted that the directed Hausdorff distance is
very insensitive to small errors in pixel locations because the
Voronoi surface D'[z,y] reports the distance to the nearest
point of A[k, I]. Thus, if pixels are slightly perturbed, the value
of A[k,1] only changes a small amount. In binary correlation,
however, there is no such notion of spatial proximity. Pixels
are either directly superimposed, or they are not. Binary
correlation is one of the most commonly used tools in image
processing, and we will further examine the relation between
our method and correlation in Section VI.

C. Matching Portions of the Model and Image

We can use the partial distance Hpx (A, B @ t), which is
given in (5), to define a version of F'[z, y] that allows portions
of a model and image to be compared. For a given translation
t = (z,y) and fractions f; and f, representing the fraction
of the nonzero model and image pixels to be considered,
respectively, let K = | fiq] and L = | fop], and redefine

Fplz,y)= Hx(B®t, A) = K,‘szD’[bz +,by + 9]
Falz,yl = Hi(A,B&t) = L 4, D[a. — 7,0, — 9]
Flz,y] = HLk (A, B ® t) = max(Fa|z, y], Fp[z, y]).

When fi = fo = 1, then K = q and L = p, and this is the
same as the old version of F[z,y].

When we are considering the partial distance between an
image and a model, the model is often considerably smaller
than the image, reflecting the fact that in many tasks, a given
instance of the model in the image will occupy only a small
portion of the image. In this case, the above definition of partial
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distance is not ideal for the directed distance from the image to
the model H (A, B & t) because we must define L, which is
the number of image pixels that will be close to model pixels.
This number L, however, will depend on how many objects
are in the image.

A natural way to compute a partial distance from the image
to the model is to consider only those image points that are
near the current hypothesized position of the model since
those that are farther away are probably parts of other imaged
objects. In practice, it is sufficient to consider only the image
pixels that lie “underneath” the current position of the model.
If we are computing F[z,y] and the model is m by n pixels,
then we compute a different version of F4[z, y] that considers
just the points of A[k,!] that are under the model at its given
position: Blk + z,! + y]:

Falz,y] = max Alk, | Dfk — z,l — y].

z<k<mtz
y<i<nty

(10)

Note that given this definition of comparing just a portion
of the image to the model, it is possible to further compute
the “partial distance” of this portion of the image against the
model. This can be done by combining this definition with the
ranking-based partial distance. We can do this by adjusting the
value of L, depending on how many image pixels lie under
the model at its given position (because we are computing a
partial distance with just this portion of the image). In other
words, we let L = | for|, where r is the number of nonzero
image pixels that are “underneath” the translated model at the
current translation. For this, the definition of F4[z,y] in (10)
would be modified to use L** instead of max.

V. EFFICIENT COMPUTATION OF F[z,y]

The naive approach to computing F[zr,y], which is de-
scribed in (6), can take a significant time to run because it
considers every possible translation of the model within the
given ranges of = and y. We have developed some “pruning”
techniques that decrease this running time significantly. These
techniques take advantage of the fact that in typical appli-
cations, once F[z,y] has been computed, it will generally be
scanned to find all entries below some threshold 7. We can use
this to generate the (z,y) values where Flz,y] < T directly,
without generating all of F[z,y]. Here, we present some of
the techniques we have found to be useful.

The effects of these speed-up techniques vary, depending on
the image and the model being used. They are more effective
when the image is sparse and when the model has a large
number of points. In our work, we have seen speedups of
a factor of 1000 or more over the naive approach. Some
image/model pairs take only fractions of a second to compare
(some illustrative timings will be presented with the examples
below).

A. Ruling Out Circles

We wish to compute the Hausdorff distance as a function
of translation F[z,y], given a binary “image” A[k,l] and a
“model” Blk,[]. Let the bounds on A be 0 < k < m,,
0 <1 < n,, and the bounds on B be 0 < k < mp and

0 < | < ny. Although the array F[z,y] is, in principle, of
infinite extent, its minimum value must be attained when the
translated model overlaps the image in at least one location;
therefore, we only consider the portion where —m + 1 <
T < mgand —np +1 < y < n,.

One property of Fglz,y] is that its slope cannot exceed
1, that is, the function does not decrease more rapidly than
linearly. Thus, if Fg[z1,y1] = v (Where v > 7), then Fplz, 3]
cannot be less than 7 in a circle of radius v — 7 about the
point (z1,y1). (The actual shape of the “circle” depends on
the norm used; it is a true circle for Ly). In other words, if the
value of Fg[zy,y1] is large at some location, then it cannot
be small in a large area around that location. This fact can
be used to rule out possible translations near (z1,y:). More
formally, we have the following claim:

Claim 4: Let (z1,y1) and (z2,y2) be translations, with
—-my < T1,T3 < Mg and ~np < Y1,¥y2 < Ne. Then,
|Fplz1,y1] — Falz2, v2]| < ll(z1,41) — (22, y2)||. This is true
for all values of f; (which is the fraction of nonzero model
pixels considered).

For a proof of this claim, see Appendix D. We use this
fact in the algorithm detailed below in order to speed up the
computation.

This property does not necessarily hold for Fa[z,y]. I we
are considering only the portion of the image under the model,
as in Section IV-C, we might have a location where moving
the model by one pixel “shifts” some image points into or out
of the window, which can change the value of Fu[z,y] by
a large amount. This also implies that the property does not
necessarily hold for F[z,y]. In practice, however, this is not
much of an issue because generally, it is only for the image
array that we wish to skip over parts of a large array (e.g., by
ruling out circles). The model array is usually small enough
that we do not need this technique.

B. Early Scan Termination

We may also obtain a speedup by not computing Fg(z, y]
completely if we can deduce partway through the computation
that it will be greater than 7. Recall that Fp is computed
by maximizing over all the locations of D'[k + z,l + y]
that are “selected” by nonzero pixels of Bk, !], that is, each
nonzero pixel of Blk,!] in effect probes a location in the
Voronoi surface of A[k,[], and we maximize over these probe
values. Thus, if a single probe value is over the threshold 7 at
translation (z, y), then we know that F'[z, y] must be over 7 (it
is the maximum over all the probe values). Thus, we can stop
computing Fp for this translation because it is over threshold.

An analogous result holds for the partial distances. Let
K = |fiq]. The value of Hx(B & (z,y), A) is the Kth
ranked value of D’'[b, + z,b, + y] taken over all (b,b,),
where Blb,,b,] = 1 (there are g such locations). We probe
D' in q places and maintain a count of the number of these
values from D’ that exceed 7. If this count exceeds g-k,
we know that the K'th-ranked value must be greater than 7,
and therefore, Fg(z,y] > 7; therefore, we need not probe
any more locations for the translation (z,y). In fact, we can
determine the minimum possible value Fp[z,y] could have




HUTTENLOCHER ez al.: COMPARING IMAGES USING THE HAUSDORFF DISTANCE 857

at this location by assuming that the unprobed values are all
0 and calculating the K'th-ranked value of this set of values.
We can use this to eliminate nearby values of (z,y) from
consideration. This method works best for large values of f;.

C. Skipping Forward

A third technique relies on the order in which the space
of possible translations is scanned. We must scan the distance
transform array in some order; assume that the order is a row
at a time in the increasing x direction. In other words, for some
y, we first consider Fg[—ms + 1,y] and then Fg{—m; + 2, 9]
up to Fg[m, — 1,y]. In this case, it is possible to quickly
rule out large sections of this row by using a variant of the
distance transform.

Let D/, [z, y] be the distance in the increasing z direction
to the nearest location where D'[z,y] < 7 and oo if there
is no such location (in practice, D', [z, y] would be set to a
large value if there is no such location; a value greater than
the width of the array is sufficiently large). Formally

min Azx.
Az>0
D'[z+Az.y]<T

Dy [z, 4] =

Note that D!, [z,y] > D'[z,y] — 7. We can use D', [z, 9] to
determine how far we would have to move in the increasing
z direction to find a place where Fg[z, y] might be no greater
than 7. Let

GB[-’L',:U] = KIEZBD{{-z[bT + .’E,by + y]

If Gglr,y] is 0, then K of the values of D', , probed must have
been 0, and therefore, K of the values of D’, which would
be probed in the computation of Fg[z,y], would be < 7.
Further, if Gg[z,y] = Az > 0, then not only do we know
that Fg[z,y] > 7 but also that Fglz+1,y], ..., Felz+ Az —
1,y] > 7. (The proof of this is similar to the proof of Claim 4
and is omitted). We can therefore immediately increment x by
Az and skip a section of this row. Note also that we do not
need to compute Fg(z,y] at all if we compute Gp|z,y] and
find that it is nonzero. Early scan termination can be applied
to this computation.

This method has the advantage over ruling out circles in
that it does not require any auxiliary data structures to be
maintained; once Gp[r,y] has been computed, z can be
immediately incremented. The ruling out circles method must
keep track of what translations have been ruled out, and
updating this map can be time consuming.

D. Interactions Between Speed-up Methods

These techniques may be used in combination with each
other. However, using one technique may affect the efficiency
~ of others. Interactions to be noted are as follows:

* Using early scan termination greatly degrades the effect
of both ruling out circles and skipping forward. Early
scan termination will generally give a value for Fg(z,y],
which is only a small amount greater than , and there-
fore, very few locations will be ruled out; continuing the
scan could increase the value computed, thereby saving
work later.

A possible solution for this is to terminate the scan
when Fg[z, y] has been shown to be greater than 7 + R,
where R is some value so that on a terminated scan, a
circle of radius at least R could be ruled out; similarly,
terminate the scan when G gz, y] has been shown to be at
least R. The value of R is arbitrary and can be adjusted
for best performance.

* The order in which translations are considered can be
arbitrary if skipping forward is not used. The optimal
order may well not consider adjacent translations succes-
sively because this will tend to consider translations that
are on the edges of ruled out circles, and so much of
the neighborhood has already been ruled out. Consider-
ing a translation in a “clear” area would provide more
opportunity for ruling out other translations.

E. An Efficient Algorithm

These observations give us an algorithm that will produce
a list of values where F[z,y] < 7 quite efficiently.

Algorithm 1: Given two input binary image arrays A[k, (]
and Blk,l], two fractions fi,f2, 0 < f1,f2 < 1, and a
threshold 7 > O generate a list T of (translation, value) pairs
((z,y),v) such that v = F[z,y] and v < 7. Use the given
fractions of B[k,!] and Alk,!] for each translation (z,y) of
Bik, 1]. Consider only a fraction of that part of A[k,[] that is
covered by the translated B[k, [].

1) Let the bounds of A[k,!] be 0 < k < m, and 0 <
l < n, and the bounds of Blk,!] be 0 < k < m; and
0 <1< n.

2) Compute the array Dz, y] that specifies the distance to
the closest nonzero pixel of B[k, l], making D[z, y] the
same size as B[k, !].

3) Compute the array D’[z, y] that specifies the distance to
the closest nonzero pixel of A[k, (], making D’[z, y] with
~mp < T<Mg+mp—1and —np <y<ng+mny—1
(see Section IV-C).

4) Compute the array D [z,y] that specifies the dis-
tance to the closest pixel (in the increasing z direction)
of D'[z,y], which is less than or equal to 7. Make
D!, .[z,y] the same size as D[z, y].

5) Let the number of model pixels considered be K =
Lfiq].

6) Create an array M|[z,y| that is the same size as
D'[z,y). This will contain the minimum possible value
that Fg[z,y] can have, given the information we have
accumulated. Initialize Mz, y] to zero.

7) Create two lists T and 7". Initialize both to empty.

8) For each translation, let the number of image pixels
considered be L = |for], where r is the number of
nonzero pixels in Ak, ] that are covered by the current
position of Blk,l].

9) For each translation (z,y) of B[k, [] (scanned in reading
order top to bottom, left to right):

a. If M[z,y] > 7, then we need not consider this
translation at all and should proceed to the next
one. Otherwise, go to b.

b. Set o to zero.
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c.  For each b € B, consider D/, [b; + x,by + y].
If it is greater than R, increment o. In addition,
consider D'[b, +z, by, +y]. If, during this process,
o exceeds ¢ — K, then do hte following:

i.  Take the smallest of the I/, , values we have
seen that exceeded 0. Call this Ax.

ii. Take the smallest of the D’ values we have
seen that exceeded 7. Call this v'.

iii. For each value (z’,y'), set M(z',y'] =
max(M(z’,y'],v' = |l(z,y) — (=", y')|}). This
only needs to be done for the M [z', '] within
a radius of v — 7 of (z,y) and need not
be done at all for any (z’,%y’), which has
previously been considered in step 9.

iv. Skip to the next translation (z + Az,y) (if
z+ Az > m,, and go to the start of the next
Tow).

d. If o never exceeds ¢-K, then let v’ be the Kth
ranked value of the g values from D’ generated
in step 9c. This will be < 7 since no more than
g-K of these values can be greater than 7. Add
((z,y),v") to the list T".

10) The list 7’ now contains all the (translation, value)
pairs ((x,y),v’) such that v’ = Fplz,y] < 7. For each
((z,y),v") on the list T", do the following:

a.  Consider the values of Ala,,ay]Dla; —z,a, — ]
for all points a € A such that z < a, < T+ mp
and y < ay < y + np; compute the Lth ranked
value. (Recall that L = |for|, where r is the
number of points of A that lie under B[k,!]
for the current translation (z,y), as described in
Section IV-C.) Call this value v. We know that
Flz,y] = max(v',v).

b. If vis less than or equal to 7, add ((x, y), max(v’,
v)) to the list T

This algorithm can also be used to produce a list of
translations where the directed Hausdorff “distance” from the
model to the image is less than 7 by halting after step 9 and
using the list 7”.

VI. EXAMPLES

We now consider some examples in order to illustrate the
performance of the Hausdorff distance methods developed
above, using some image data from a camera in our laboratory.
The first test image is shown in Fig. 3. This binary image is
360 x 240 and was produced by applying an edge operator
(which is similar to [6]) to a grey-level camera image. The
computation of the Hausdorff distance under translation was
done using an implementation written in C of the algorithm
described above.

The model to be compared with the first test image is shown
in Fig. 4. The outline around the figure delineates the boundary
of the bitmap representing the model. The model is 115 x 199
pixels. Comparing this model against this image with 7 = 2
pixels, f1 = 0.8 and f, = 0.5 takes approximately 20 s

Fig. 3. First test image.
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Fig. 4. First object model.
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Fig. 5. First test image overlaid with the best match.

on a Sun-4 (SPARCstation 2). This produced two matches
at (87,35) and (87, 36). Fig. 5 shows the match at (87,36)
overlaid on the image. As a comparison, the naive approach
from Section IV-B takes approximately 5000 s to perform this
comparison process.

We also ran the algorithm on the image and model shown in
Figs. 6 and 7 using 7 = 1.42, f; = 0.66, and f, = 0.35. The
image is 256 x 233, and the model is 60 x 50. Four matches
were found at (99128)), (100128)), (99129)), and (100129)).
Fig. 8 shows the match at (99129)) overlaid on the image.
The computation took approximately 5 s.
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Fig. 6. Second test image.
Fig. 7. Second object model.
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Fig. 8. Second test image overlaid with the best match.

Our third test case consists of the image and model shown
in Figs. 9 and 10 using 7 = 2.83, f; = 1, and f» = 0.5. The
image is 360 x 240, and the model is 38 x 60. The model was
digitized from a different can, which was held at approximately
the same orientation and same distance from the camera. Four
matches were found at (199,95), (199,98), (200,98), and
(199,99). Fig. 11 shows the match at (199,95) overlaid on
the image. The computation took approximately 1.4 s.

Fig. 9. Third test image.

Fig. 10. Third object model.
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Fig. 11.

Third test image overlaid with the best match.

If several models are to be compared against the same
image, then the distance transform of the image need only
be computed once. Our implementation takes about 1 s to
compute the distance transform of a 256 x 256 image on a
Sun-4 (SPARCstation 2). Once this has been computed, the
comparisons can take as little as 0.5 s per model (256 x 256
images, 32 x 32 model). The time taken depends on the 7, fi,
and f; values used; larger 7 and smaller f; values increase the
time taken. A more cluttered image will also increase the time.

In order to compare the directed Hausdorff distance with
correlation, we computed the correlation of the stump model in
Fig. 7 with the second test image. We defined a “match” to be
a translation where the correlation function was at a local peak.
For this image, the correlation performed poorly. There were
eight incorrect matches that had a higher correlation value than
the correct match, and the correct match had a peak value of
only 77% of the largest peak. None of the incorrect matches
was close (spatially) to the correct match.
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Hence, we see support from these examples for our theoret-
ical claim that the partial Hausdorff “distance” works well
on images where the locations of image pixels have been
perturbed. Moreover, these same images cannot be handled
well by correlation.

VII. THE HAUSDORFF DISTANCE UNDER RIGID MOTION

The methods we have described for computing the Haus-
dorff distance under translation can be naturally extended to
computing the Hausdorff distance under rigid motion (trans-
lation and rotation). In this case, we require that the norm
used be the Euclidean norm (L2). As before, we fix the
set A and allow the set B to move (in this case rotate
and translate). The minimum value of the Hausdorff distance
under rigid (Euclidean) motion Mg (A, B) then gives the best
transformation of B with respect to A

Mg(A,B) = rrtnen H(A,(RyB) o t) (11)
where H is the Hausdorff distance as defined in equation (1),
(ReB)®t = {Reb+1t|b € B}, and Ry is the standard rotation
matrix. This distance is small exactly when there is a Euclidean
transformation that brings every point of B near some point
of A and vice versa.

We can compute a rasterized approximation to the minimum
Hausdorff distance under rigid motion. As above, the basic
idea is to compute the Hausdorff distance for all transforma-
tions of the model at the appropriate level of rasterization
and then find the minima for which the distance is below
some threshold 7. For translations, the appropriate level of
rasterization is, again, single pixels. For rotation, we want to
ensure that each consecutive rotation moves each point in the
model by, at most, one pixel. Each point b; in the set B is being
rotated around the center of rotation ¢, on a circle of radius
r; = ||b; — ¢y ||2. This means that the rasterization interval in 8,
A# should be arctan(1/r), where 7y is the radius of rotation
of the point in B, which is furthest from the center of rotation.

Our current implementation is restricted to computing only
the directed Hausdorff distance from the model B to the
image A. This is analogous to Fg[z,y] as defined in (7).
Furthermore, we consider only complete shapes (no partial
distances). Recall that the Hausdorff distance computation can
be thought of as probing locations in the Voronoi surface of
the image corresponding to the transformed model points. The
probe values for each transformation are then maximized in
order to compute the distance for that transformation. For rigid
motion, we build a structure that gives for each model point
a list of the locations through which the point moves as it
rotates (one location for each rasterized #). These locations
are relative to the center of rotation, and for each model point,
this list describes a circle about the center of rotation.

Consider the problem of determining the minimum (di-
rected) Hausdorff distance under rotation for a fixed translation
t: ming h((RyB) & t, A). We first initialize to zero an array
Q containing an element for each § value. During the com-
putation, this array will contain the minimum possible value
of the Hausdorff distance for each rotation on the basis of
the points that have been probed thus far. For each point,

we probe the distance transform of the image at each relative
rotated location and maximize these probe values with the
corresponding values in the array Q. Once all points in B
have been considered, the array @ gives the directed Hausdorff
distance for each discrete rotation at the current translation:

Q[i] = h((Rine B) & t, A).

We perform this computation for each rasterized translation
t. This algorithm is analogous to the naive algorithm for the
translation-only case.

As in the translation-only case, many possible translations
and rotations of B may be ruled out without explicitly consid-
ering them. We have begun to investigate speed-up techniques
for Euclidean motion and now describe the methods that have
proven successful.

First, we choose as the center of rotation that point of
B closest to the centroid of the model. This both reduces
the number of rasterized § values we need to consider and
explicitly makes the center of rotation into a point in B. This is
useful since the center of rotation does not move as # changes.
Thus, if at a given translation we probe the center point first
and find that the distance transform at that point is greater than
T, then we know that there are no good rotations of the model
at this translation.

Points of B that are close to the center of rotation will not
pass through many distinct grid points as they rotate about
it. In building the model rotation structure, we can therefore
store only the distinct grid points through which each point of
B rotates. In addition, we also store the range of rasterized
8 values to which each of these distinct points corresponds.
This compression of the rotation structure eliminates a large
number of extraneous probes. However, a single probe may
now be used to update several consecutive entries in Q.

Techniques that are analogous to ruling out circles and early
scan termination can also be used in # space to prune the search
for good transformations of the model.

If we find that for some rotation f and point b € B the
distance from Ryb+1¢ to the nearest pointin A isv and v > 7,
then all rotations that bring b into the circle of radius v — 7
centered at Rgb + ¢t may be eliminated from consideration.
These are the rotations in the range § + cos™1(1 — (v —
7)2/(2r2)), where r is the radius of rotation of point b. If
v — 7 > 2r, then all values of § may be ruled out. Note that
a conservative approximation to this range is 8 + (v — 7)/r,
which may be used if cos™! is too expensive to compute.
Considering the points in order of increasing radius of rotation
makes it likely that large 6 ranges will be eliminated early
on because a single large probe value for one of the “inner”
points will rule out more 8 values than it would for one of
the “outer” points.

By maintaining a list of ruled-out regions of 6 space,
the transformations resulting in a Hausdorff distance greater
than 7 can be quickly discarded. As noted in Section V-D,
combining early scan termination with ruling out circles for
the translation-only case may result in only small areas being
ruled out. This same problem holds in # space, and again, a
possible solution is to delay early termination until we can
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Fig. 12. Test image showing some blocks.

guarantee that the terminated scan eliminates at least some
minimum radius circle.

It is also possible to use pruning techniques in both rotation
and translation simultaneously. One possible technique is to
use the @ array generated for one translation to eliminate some
6 values for an adjacent translation. Since the slope of the
distance transform cannot exceed 1, in moving to an adjacent
translation, each probe value could, at worst, decrease by 1.
Thus, any angle for which the lower bound on the Hausdorff
distance is greater than 7+ 1 at the current translation can also
be ruled out at all adjacent translations. In practice, however,
we found that the extra overhead involved actually slowed
down the computation.

Finally, to illustrate the performance of our current imple-
mentation, we use an image of some children’s blocks on a
table. This example is taken from a demonstration in which
a robot arm locates blocks on the table using the Hausdorff
distance under rigid motion and then uses the blocks to build
an object that the user has specified. Fig. 12 shows the edge
detector output for the 360 x 240 grey-level camera image of
the blocks. The block model is shown in Fig. 13 and is simply
a square 31 pixels on each side. Matching this model against
the image using 7 = 3 pixels, 60 local minima are found
below threshold, corresponding to four rotations for each of
the 15 blocks that are completely in the field of view. The
matches are shown overlaid on the original image in Fig. 14.
Note that because we are only computing the directed distance
from the model to the image, even the blocks that contain
letters imprinted in the upward facing side are recognized. At
each translation and rotation of the model, we merely require
that there is an image point within three pixels of each point
in the transformed model. This is exactly what is needed for
this application, although large black areas in the image would
present problems because spurious matches would be found.
This matching takes approximately 216 s on a SPARCstation
2. Taking advantage of the symmetry of this particular model
would allow a four-fold increase in speed for this application.

With more time spent optimizing our pruning techniques,
the running time should be greatly improved, especially con-
sidering the improvement achieved over the naive algorithm
for the translation-only case.

Fig. 13. Block model.

N &

Fig. 14. Test image blocks overlaid with each matched block.

VIII. SUMMARY

The Hausdorff distance under translation measures the ex-
tent to which each point of a translated “model” set lies
near some point of an “image” set and vice versa. Thus,
this distance reflects the degree of resemblance between two
objects (under translation). We have discussed how to compute
the Hausdorff distance under translation efficiently for binary
image data. The method compares a 32 x 32 model bitmap
with a 256 x 256 image bitmap in a fraction of a second on
a SPARCstation 2.

The computation of the directed Hausdorff distance under
translation is in many ways similar to binary correlation. The
method is more tolerant of perturbations in the locations of
points than correlation because it measures proximity rather
than exact superposition. This is supported by empirical evi-
dence as well as by the theoretical formulation of the problem.
The partial Hausdorff “distance” between a model and an
image has been illustrated to work well on examples where
correlation fails. We have also extended our algorithms to work
with rigid motion. It is an open problem to develop efficient
methods, both theoretically and in practice, for computing the
Hausdorff distance under other transformation groups.

APPENDIX A
PROOF OF CLAIM 1

Proof: Let A’ be the points in A for which there is some
point in B within d:
A’ = {a € A|3b € B such that |ja - b|| < d}.
Similarly, let B’ be the points in B for which there is some
point in A within d. We must have |4’} > L and |B’| > K

since hp(A,B) = L., minyep|la — b} < d implies that
there are at least L points in A, which are closer than d to
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some point in B (and similarly, there are K points in B that
are closer than d to some point in A). In addition, since || - ||
is symmetrical (i.e., ||a — b|| = ||b — a]|), all the “neighbors”
of any point in A’ must be in B’ and vice versa.

The problem now reduces to finding A, C A’ and Bx C B’
having min(K, L) points each such that H(AL,Bgk) < d.
We will show that this is possible by building A and Bg
one element at a time while maintaining the invariant that
H(AL,Bgk) < d (i.e., that for each element of Ay there is
some element of By within d and vice versa).

Base Case: Pick any point a from A’. Put it into Ay, Find
any point b in B’ such that |ja — b|| < d. There must be at
least one. Put b into Bg. Then, H(AL, Bk ) = |la — b|| < d.

Induction Step: Suppose that Ay, and By each have n <
min(K, L) elements and that H(A, Bx) < d. There are now
two cases:

* Suppose that there exist a € A’ — Af, and b € B’ — By
such that ||a — b|| < d. Then, if we add a to A and b to
By, we will have increased the size of each set to n + 1
while maintaining the invariant.

* Suppose that no such a and b exist. Then, pick any point
a € A'— Ay, and consider its “neighbors”: points in B’ @t
within d. It must have at least one since it is a member of
A’. All the neighbors must be in By already; therefore,
it has at least one neighbor in Bg. Similarly, every point
b € B’ — By has at least one neighbor in Ay . Picking any
point in A’ — Ar and any point in B’ — Bg and adding
them to Ay and By, respectively, increases the size of
each set to n + 1 and maintains the invariant since every
point in the new A has a neighbor in the new By and
vice versa.

Since there are at least L elements in A’ and K elements
in B’, we will not run out of elements in A’-A; and B’-Byg
before achieving min(K, L) elements in Az and Bg.

This process builds Ay and Bg by ensuring that whenever
a pair of points are added, they will each have neighbors in
the augmented sets, which maintains the desired invariant. B

APPENDIX B
PROOF OF CLAIM 2

Proof: We will be uSing A/, B, A1, and Bg from the
proof of Claim 1 to construct- A7 and BY. Suppose (without
loss of generality) that K > L. Now, pick any K-L points
from B’-Bg (there must be at least this many points since
|Bk| = min(K, L) = L and |B’| > K). Let B} be the union
of By and these points. For each of the new points, pick one
of its neighbors from A’. Let A} be the union of Ay and
these neighboring points. |A7 | will be at most K and at least
L since |Ar| = L, and all these neighbors might have been
members of Ar. Thus, L < |A}| < K = max(K, L). Since
every point in B% has a neighbor (within d) in A and vice
versa, we know that H(A},By) < d. However, we must
have equality since if H(A7, By ) were strictly less than d,
then Hpx (A, B) would also be strictly less than d since A}
and B}, would then be minimizing subsets of sizes that are at
least L and K, respectively. n

APPENDIX C
PROOF OF CLAIM 3

Proof: We can see from the definitions of D and D’ that
if ¢ and y are integers and ¢t = (z,y), then D[z,y] = d(¢)
and D'[z,y] = d'(t). Thus, Flz,y] = f(t), and therefore, the
minimum value of F[z,y] is no smaller than the minimum
value of f(t): Flzo,yol > f(t1):

Since || - || is a norm, it satisfies the triangle inequality. Let
a be any point. d(a) is the distance from a to the nearest
point of B, and therefore, there is a point b in B such that
||b — a]| = d(t). Let o' be any other point. Then

d(a’) < |lb—d|| < It - all + lla — o'|| = d(a) + [la - a'l].

Similarly, d’(b') < d'(b)+||b—b'|| for any two points b and ¥'.
If t and ¢’ are any two translations, then d(a — ¢/) <

dla—t)+ |t —t'||and d'(b+t') < d(b+¢t)+ ||t —¢|. Then
/ / 1/ ’
= — <
f(t') = max (r&wd(a t'), rgleagcd(bth)) max

_ Y ' ’ Y
(glea}d(a )+t~ £ maxd b+ £) + |t tn)

= £ +1it -

Let t; = (zf,y}) be the grid point closest to ¢;: z; and
y} are the integers that minimize ||¢t; — ¢||. Since || - || is an
L, norm

£ = tall < 1ty = talls = |21 — 23] + 31 — 91| < 1.
F[zo,y0) < F[z},y}] since (zq,yo) minimizes F[z,y]. Thus

f(t1) < f(to) = Flzo,y0] < Flz},31]
= f(t)) < f(t) + [Ita — 1]l < f(ta) + 1.
=

APPENDIX D
PROOF OF CLAIM 4

Proof: From the proof of claim 3, we know that
Dl[x2s y?] S D’[xlvyll + "(xla yl) - (1132, y2)||

Let v; = Fglzy,y1] and va = Fplzs,y2]. Suppose that
v; < vy. We know that K = |f1g| of the nonzero model
pixels are within v; of some nonzero image pixel; there exist
(bz1,bx1),. .., (bTk, bz ) such that D'[b,+z1, be+y1] < v1,
for1 <j<K.

Now, consider the computation of v,. We will be “probing”
the values of D’'[b, + z2,b; + y2] for 1 < j < K (among
others). However, since

D'[by + 2,b + y2] < D'[bz + 21, b + 1] + [[(z1, 1)
—(z2,12)l < v1 + |[(z1, 1) — (z2,92)|l

there are at least K nonzero model pixels that are, at most,
v1 + |[(z1,%1) — (z2,y2)|| away from some nonzero image
pixel when the model is translated by (z2,y2). Since the
computation of v, computes the K'th ranked value of these
distances, we will have vs < vy + ||(Z1,91) — (22, 2)|-
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