Computer Science Education 0899-3408/98/0803-0251$12.00
1998, \ol. 8, No. 3, pp. 251-264 © Swets & Zeitlinger

Poser, an Online Review Tool in Java

Mark Lattanzi and Dan Cosley
James Madison University, Harrisonburg

ABSTRACT

This paper presents an online reviewing tool, Poser, written in the Java programming
language. Online quizzing tools have proliferated lately, but most are not so well-
suited for reviewing. Poser’s basic functionality is to provide students with a conve-
nient, interactive way to review course materials in a question/answer format.
Incorrect responses are corrected, along with an optional explanation. The program
keeps usage statistics and information on responses to questions. Poser can be an
important part of any course, because it gives students an easy way to test their under-
standing of the course materials from any Internet computer. We used Poser in two
introductory Computer Science courses and gathered some formative data which was
used to modify and evaluate the program. Over 100 students used the program and
they answered over 38,000 questions while reviewing for their final exams. Student
comments indicate that the program was very helpful. Overall, we feel that Poser was
a huge success and are planning a controlled study in the coming semesters to mea-
sure how much the use of the program facilitates student learning and understanding.

INTRODUCTION

Poser is an online program that students can use to review course material
from any web browser. Unlike the many quizzing programs already on the
net, this one is different in that it is a review tool rather than a quiz program.
Poser uses a Java applet and server to ask questions of the user. When a
guestion is answered, the program provides feedback (either congratulations
or the correct answer with an explanation). Poser then displays another ques-
tion to be answered.

We have placed the Poser applet on the home pages for several classes in
the department. When students come to the page to get notes, check grades,

Correspondence: Dr. Mark Lattanzi, 209 ISAT/CS Bldg, James Madison University,
Harrisonburg, VA 22807, USA. Tel: 540-568-2777. E-mail: lattanmr@jmu.edu

252 M. LATTANZI AND D . COSLEY

etc., they often take the time to answer a question or two—and, near test time,
a question or twenty. This is an easy way for instructors to reinforce the class
material. As an added bonus, by controlling which questions Poser asks,
instructors can emphasize the material they consider most important. Finally,
Poser gathers statistics on which questions are asked and the answers provid-
ed. This helps instructors determine where students may need more assistance.
It also helps instructors identify the common misunderstandings that students
may hold.

BACKGROUND

Academic Tools (Atools) Project

Poser is one of several programs developed at James Madison under the rubric
of the Atools (“academic tools”) project. Started in spring of 1997, the archive
includes utilities designed to make administering classes less burdensome so
that professors can spend more time on course content and quality. The col-
lection contains several utilities, including a self-maintaining bulletin board
suitable for locating tutoring services or exchanging textbooks, and a graphi-
cal mailing list manager, written in Java, that allows for easy mailing list main-
tenance over the web.

A natural candidate for addition to the archive was an online testing pro-
gram. However, many people have already done online testing and, in fact, the
web is replete with this kind of tool. The University of Hawaii's Ed Tech Tools
center maintains a list of over 40 quiz-related programs, most of which are
online (Shadian, 1998). Below are descriptions of a representative sample of
the web-based quizzing software currently available.

Current Quiz Software

Most online quiz programs use CGIl and HTML forms to administer quizzes.

This is a natural extension of the form validation that has long been used with
CGl scripts to verify information requests and product orders. The typical CGl

quiz program uses a server-side program to compile quiz files into HTML. The
quiz files themselves are usually text files with some sort of structure to indi-
cate questions, ranging from simple delimiters to SGML-based extensions of
HTML. Some programs include an editor that shields the user from the quiz
file syntax. Either way, after the quiz file is generated, it is translated into stan-
dard HTML. Questions are constructed using form elements, making it easy

POSER AN ONLINE REVIEW TOOL IN JAVA 253

to ask multiple-choice and true—false questions. Other question types, such as
essay and short-answer, are also possible.

When students want to take a quiz, they go to the quiz URL. Many pro-
grams ask for a user name and password, both to record data and provide some
measure of security. Once this information is entered, the quiz is presented.
Some programs, including Mallard (Brown, 1998) and QuizPlease
(McCormack, 1997), include ways to receive hints while taking the quiz; most
require all the questions to be completed before doing anything else. Once stu-
dents complete a quiz, they submit their answers. These are passed back to a
CGl script on the server. This script typically grades the objective portion of
the quiz, records results, and provides feedback to the student. Non-objective
guestions (e.g., short answers and essays) can be mailed to a grader.

Of course, there are variations on this theme. A few programs use
Javascript. This allows for greater interactivity; however, if the grading is done
on the client side, students can browse through the page’s source code in an
effort to find the answer. Two examples are JBC (Half-Baked Software, 1997)
and the Javascript QuizMaker (Attotron Biosensor Corporation, 1998). A few
Java-based programs, including JavaQuiz (Creagan, 1996), are also available.
Some programs offered nice features like randomizing the order of questions
and/or choices. Other good ideas included hints, explanations, and resources
for students to research questions.

JUSTIFICATION

A Reviewer, Not a Quizzer

Clearly, the world does not need another online quizzing program. However,
we decided that there is room for an online review tool that combines several
desirable traits. Poser is:

» Review-oriented.Although any of these quiz programsuld be used for
reviewing, most are better suited for actual quizzes. Several factors con-
tribute to this, including security measures, limits to the interactivity of
HTML forms, and the common reaction of students to a “quiz”. Poser’s
main theme is to increase student learning by providing a tool that allows
students to test their current knowledge effectively.

* Interactive. We dislike the way most tools present an entire quiz on one web
page. An eight-screen lump of quiz questions can be a disheartening experi-
ence for students. Poser asks one question at a time, provides immediate

254 M. LATTANZI AND D . COSLEY

feedback after each question, and allows students greater control over the
program. These traits make Poser much more interactive (and less daunting)
than other available tools. This results in increased student use and learning
(hopefully).

* Single-task.One of the philosophies behind the Atools archive is that each
tool should be simple and self-contained. Several of the better quiz tools
available are parts of larger suites, including Mallard and WebCT (Goldberg
et al., 1996). Though there is merit in large, powerful programs, they lead
to additional complexity. If what you want is simply a review tool, a self-
contained program like Poser is more appropriate. Poser is designed to be
quickly and easily installed and configured for use.

e Easy to useThis trait is also born of the Atools philosophy of simplicity.
QUIZIT, for example, is a powerful program that can track student progress
and history, and can ask adaptive quizzes (Tinoco et al., 1996). However,
instructors must learn a new syntax just to produce question files. It also
requires someone to install and maintain mSQL (a UNIX database server)
and to run programs to convert quiz files into HTML. Poser uses text files
for its questions (optionally created by a Java graphical application), and
requires no additional system tools for its use.

In addition, we wanted a program that was portable, flexible, and free. Some
of the programs available run on only one platform (typically UNIX). Many
were also limited to multiple-choice questions. By designing Poser in Java,
these problems disappear. The program can run on any Java-enabled machine,
and new question types can be easily added by extending two of Poser’s class-
es. The Question class understands how to read in review questions from the
text file, while the QuestionPanel class displays each question type in a nice-
ly formatted way. In addition, since Poser is free (source code and executa-
bles), it is easier for professors to experiment and evaluate with it.

Advantages
The advantages of Poser are many.

* Poser helps students study.

» Poser is readily available.

e Poser is easy and fun to use.

» Poser provides student feedback to the instructor.
* Poser emphasizes important points.

Each of these is discussed in turn.

POSER AN ONLINE REVIEW TOOL IN JAVA 255

Student review

Poser helps students review the course material as the course progresses,
instead of cramming just before an exam. Students regularly go to the course
home page to retrieve notes from the week’s lectures, get copies of class
assignments, review their grades, check the message board, or follow newly
posted links to pertinent websites. Each time a student visits the home page,
Poser is right there. Many students feel compelled to answer a question or two
before moving on. These little visits to the course material reinforce student
learning.

Readily available

Poser is readily available from any machine with a web browser. Since Poser
is written in Java 1.0, it can be viewed from any Java-enabled web browser
without any extra installation hassles. Students can (and do) access the pro-
gram from computer labs and from their networked dorm rooms. Accessibility
is one key to getting students to use Poser; software that must be downloaded
and installed by students may not be used to its fullest potential.

Easy to use

Another key to Poser’s success is its ease of use. When the web page is loaded,
Poser is waiting with a question or a list of topics and is ready to go. The ques-
tions are in the familiar true/false, fill-in, and multiple-choice formats and the
interface for answering is simple—a push button, a textfield, a radio button.
Upon answering, students receive feedback and then a new question.

Fun to use

Poser is fun to use. We have seen students compete for most questions
answered correctly and they can also set up informal “Jeopardy/Trivial
Pursuit” type games. Students also talk to each other about the various ques-
tions they have been asked (in effect, comparing notes).

Instructor feedback

Although Poser does not keep track of which students are answering questions,
the server does keep summary data on questions asked and answers given. This
data can be analyzed to see where students are having trouble. Extending the
system to log individual student information would detract from the program’s
ease of use and popularity—but it would not be difficult, and Poser could then
track individual students’ needs or administer actual online quizzes.

256 M. LATTANZI AND D . COSLEY

Emphasis of selected points

Instructors can also use their control over the questions asked to emphasize
important points from their lectures. As Erickson and Strommer point out, it
is not always easy for students to identify the key ideas from a lecture or dis-
cussion (Erickson and Strommer, 1991). Careful selection of questions can
help students focus their attention on the main issues.

POSER ARCHITECTURE

Poser is a relatively small and simple educational tool written entirely in Java
1.0 for portability. The software has three main components: a client applet, a
server, and a utility for creating questions in an appropriate format. The actu-
al question data reside in plain text files (“question files” or “quiz files”) and
complete the system.

Poser System Architecture
The interface to the user is a Java applet that can be easily included on any
web page. Figure 1 shows the applet’s interface. A question is displayed for
the student to answer. After selecting a choice, the student clicks the “Submit
Answer” button and receives immediate feedback. The applet keeps track of
how many questions have been tried and answered correctly. The “Reset Stats”
button resets these counters to zero. At any time, the student can select a dif-
ferent quiz (set of questions) to review with the “Select New Topic” button.
Poser can be included on any web page with the following code:

<APPLET code="poser.PoserApplet” width="100"
height="40">

<l— autostart is a mode where the applet automati-

cally starts a quiz when the page is loaded. The
default is no autostart —>

<PARAM name="autostart” value="HTML.quiz">
</APPLET>

Complete instructions are included with Poser's documentation. Once
included in a web page, the applet will work in any Java-enabled browser
(Netscape or Internet Explorer, 3.x or higher).

The next piece of the system is a Java server, which acts as a backend to the
applet. The server typically runs on the same host as the web server, but does

POSER AN ONLINE REVIEW TOOL IN JAVA 257

er, part of the ATools Project

 Select New Topic | NextQuestion | Resetstats | oui |
Fig. 1. The Poser applet interface.

not have to. It reads in the data files of questions and quizzes, and listens for

requests from Poser applets. If its data files are changed, it rereads them on the
fly. More than one server can be run on the same machine. Figure 2 shows how
the main parts of the system interact.

The “QuizMaker”, also shown in Figure 2, is a Java application that instruc-
tors can use to create question files. These files are delimited text, so they can
be edited directly; the quiz maker adds a convenient graphical interface for
manipulating the files. Users can change the order of questions; add, delete,
and duplicate questions; and edit questions with an interface tailored to the
guestion type. These question files are then read in by the PoserServer (top
middle of Fig. 2) and each question is parsed and stored by its type (multiple-
choice, true—false, etc.). The PoserServer has been previously installed, con-
figured with the text file quiz.ini, and run by the class instructor.

Whenever a student launches a PoserApplet (a simple click on the course
web page), the server sends a question to the applet to ask the student. The
QuestionPanel class in the applet displays the question in the student’s browser

258 M. LATTANZI AND D . COSLEY

PoserApplet

[QuizMaker } [PoserServer

1

Question Files

QuestionPanel }

Question
ethics.quiz QPMulti
access.quiz QPTruefalse

QPFillin
quizini |\])\])

Fig. 2. The Poser architecture.

window. The student then selects (or types in) their answer. Upon receiving an
answer, the applet evaluates it and provides feedback to the user. After read-
ing the feedback, the user can request another question. The applet fetches the
guestion from the server and the process starts again.

The server keeps track of which questions it has sent to each PoserApplet
connected to it, SO many students can use the software simultaneously.

Poser Database Files

Poser’s database consists of delimited text files, including a collection of ques-
tion files, an initialization file and a collection of question files. Figure 3 shows
part of a question file. These files contain several questions, each of which has
a type, the actual question (and distractors for multiple-choice), the correct
answer, and an (optional) explanation. Currently, Poser “knows” three types of
questions: multiple-choice, true/false, and fill-in-the-blank. The initialization
file tells the server which question files to include and the name to be presented
to users for each file. Additional topics can be added to the initialization file
while the server is running

Experiment
Spring 1998 was the first semester that Poser was used. It was used by 55 stu-
dents in an introductory computer literacy course (CS 138) to review for two

POSER AN ONLINE REVIEW TOOL IN JAVA 259

Multi

All of the following tags are required in a proper HTML
document except:

4

<HEAD></HEAD>

<TITLE></TITLE>

<BODY></BODY>

<HTML></HTML>

2

Truefalse

HTML is more oriented toward logical structure than phys-
ical layout.

T

Fillin
Additional information inside an HTML tag iscalledan __.
Attribute

Fig. 3. Example of part of a question file.

mid-term tests. These students were from all academic levels and represented
many departments in the university. Based on their initial feedback, the pro-
gram’s interface and statistic gathering were improved.

It was then reinstalled with more questions, so the CS 138 students could
use it to review for their final exam.

Another professor installed Poser for the final exam in an introductory pro-
gramming course (CS 139). Fifty students in this course used the program.

Procedure

For the formative portion of this experiment, a set of question files on the CS
138 course material was created and set up so the students could review for
their first two examinations. A file was created for each of the major topics

in the course and added to the Poser server one to two weeks before the test.
Use of the system was strictly optional, and students were encouraged to send
feedback concerning their experiences with Poser. This feedback was then
used to modify the Poser interface and to modify the Poser server to gather
more data about the program’s usage.

260 M. LATTANZI AND D . COSLEY

After revamping the program, it was reinstalled with a new set of question
files for the CS 138 students to use to review for their final exam. In addition,
a second server was installed for our CS 139 class to use in their review for
their final. In CS 138, 204 different questions across 10 topics were created.
The CS 139 students had 14 topics with 403 total questions. The Poser server
recorded the total number of student sessions and the total number of questions
asked in each session. Poser does not collect any statistics on individual stu-
dent performance, and, although it does track the number of times each ques-
tion is asked and the percentage of each answer given for each question, these
data were not analyzed in this study.

RESULTS

Initially, we gathered subjective feedback and commentary on the installation
and use of the program. Afterwards, we tabulated log files and examined the
usage of the program objectively.

Student Perspective

Student comments were collected for the first two tests in CS 138. These com-
ments were generally positive. Most said that the Poser helped them prepare
for the tests. After the first test, suggestions to change the interface and to pre-
vent questions in a question list from repeating were implemented. After the
second test, several students suggested that the program give feedback explain-
ing why the correct answer was correct.

Instructor Perspective

Setting up Poser and creating the data files is simple. Several graduate assis-
tants and seniors were asked to create question files to use with the system and
had no difficulty doing so. Question files and the server’s initialization file can

be changed on the fly. The log file can easily be processed to determine usage
patterns (if the instructor desires). One instructor suggested a small tool to
process Poser’s log files. The tool could analyze these files (much as web sta-
tistics tools analyze web server log files), generate a simple report of Poser’s
usage, and automatically mail the report back to the instructor. This feature
would allow instructors to easily monitor the usefulness of Poser (to their stu-
dents) and is under consideration for the next revision.

POSER AN ONLINE REVIEW TOOL IN JAVA 261

Usage Frequency

A rough analysis of the logs from the first two tests for CS 138 supported the
generally positive nature of the student comments mentioned above. About
10,000 questions were requested for the first test. This number was probably
inflated, because of the repeating question problem mentioned above. It was
surprising, then, to see that for the second test over 21,000 question requests
were logged—after the change to eliminate repeating questions was imple-
mented. Though tentative, this suggests that students who tried Poser on the
first test found it useful and spread the word to their classmates.

Table 1 shows the usage realized by the Poser software across four exami-
nations in the two different classes. Each of the columns represents the usage
of the package for the two-week period right before the examination. The table
contains some blanks because Poser was still under development during the
first two tests in the CS 138 course.

The first row represents the total number of students that used the Poser
software in each of the classes. Since Poser does not log student names (by
design), a survey was conducted in each class to determine the total number
of students that used the program. Row two shows how many questions were
asked of these students during their studying/reviewing time. Data for rows
three through six were only collected by the modified server for the two final
examinations. Row three shows the total number of unique questions available
for each examination. Row four shows the total number of different student
sessions. The next two rows, five and six, show the minimum and maximum
number of questions asked during a given session. Rows seven through nine
are derived measures from the collected data showing the average questions
per student and per session, and the average number of individual sessions per-
formed by each student.

Analysis

Analyzing the data in Table 1, we find some interesting results. The CS 138
student usage increased across the three examinations. We believe this trend
is the direct result of students realizing the benefits to be gained by using the
reviewer. Student testimony to their classmates increased the popularity of the
reviewer. The student comments that were solicited support this hypothesis.
The CS 139 usage logs showed that many of the students found the program
quite helpful (in that they answered 10 or more questions in a session), while
about 15 percent of them answered less than 10 questions. Since the CS 139
students were seeing the program for the first time, this was expected. Had the

262 M. LATTANZI AND D . COSLEY

Table 1. Usage Statistics for the Poser Software.

Column # 1 2 3 4

Row # Group CS 138 CS 138 CS 138 CS 139
Test 1 Test 2 Final Final

1 Number of Students in Class 55 55 55 50

2 Total Questions Asked 10000 21000 24500 13500

3 Total Unique Questions - - 204 406

4 Number of Sessions - - 363 293

5 Minimum Questions / Session - - 1 1

6 Maximum Questions / Session - - 550 783

7 Questions / Student 182 382 445 270

8 Questions / Session - - 67.5 46

9 Sessions / Student - - 6.6 5.9

class been more familiar with the program, we believe that the total usage
would have been greater.

Row seven warrants some explanation. Referring to the final exam for CS
138, if all 55 students using the program answered every question, thken 55
204 = 11,220 questions would have been asked. So, since 24,000 questions
were asked, on average each student went through the entire question database
twice during their studying. Clearly, the students in CS 138 were using Poser
to its fullest benefit by going through the questions multiple times, testing their
current knowledge. In fact, row nine shows that, on average, each student in
the class used the program on six different occasions.

Analyzing the final exam data for CS 139, we find that if all 50 students had
answered all 406 questions, then 20,300 questions would have been asked.
Here, we see that this was not the case. Only 13,500 questions were asked. We
attribute this to the fact that this was the first time CS 139 students had been
exposed to the program. Many students only answered one or two questions.
However, even the students in CS 139 used the program almost six different
times on average (row nine).

The above data clearly shows that Poser was a very popular program. We
have no correlation between usage and grade achieved on the examination
since Poser does not log student names. It would also be nice to see if using
Poser actually increases student learning, but no data exists on past student
performance (like standardized test scores). A formal study is being con-
structed from the Fall of 1998 to provide insights into both of these situations.

POSER AN ONLINE REVIEW TOOL IN JAVA 263
SUMMARY

Poser is still in its infancy. Tightly controlled empirical studies should be per-
formed to validate its usefulness for student understanding and learning, but
this preliminary investigation shows that the program is quite popular as a study
aid and well-received by the student populations of both of the test classes.
Across the entire first semester of the program’s use, over 70,000 questions
were asked to 105 students. Furthermore, the program was launched over 600
times by the students while studying for their final exams.

College students are sometimes stereotyped as not having great study skills
and habits, but this experiment has shown that given a readily available, easy
to use reviewing tool, students will use it extensively in their learning and
studying of the course material.

FUTURE WORK

Poser is a newborn product that appears to have potential. We have plans for
improving and developing it to be even more useful as a reviewing tool and as
a tool to verify student learning and understanding. However, since much of
Poser’s virtue is its simplicity, we do not want to add too much functionality
to the program, lest it become unwieldy for instructors to set up and maintain
and too complex for students to want to use. One non-disruptive change would
be to extend Poser to recognize new question types. Because of the object-
oriented design of the program, these new types could be added without mod-
ifying the system architecture.

Another obvious addition would be to implement user logging and use this
feature to track individual student difficulties and to collect grading informa-
tion. This could be very useful information; however, we have several reser-
vations. Adding a login mechanism and recording student performance would
make Poser more complex. We are also afraid that some students would not
use the program if they knew that their responses were being recorded. This
would defeat the purpose of the tool.

Finally, although adding logins and recording would make actual quizzing
possible, it is not obvious that doing this would be better or more convenient
than the traditional quiz. Jeff Hawkins, the inventor of the PalmPilot personal
organizer, described his company’s competition, not against other products, but
against pencil and paper (Gewirtz, 1998). Likewise, Poser’s “competition” is not

264 M. LATTANZI AND D . COSLEY

other computer software. Rather, it needs to be good, useful, and simple enough
to break established patterns. Instructors must decide it is worth the effort to add
Poser to their courses and students must find it to be a useful study aid.

To that end, some other enhancements in the works include:

» developing helper applications for analyzing the Poser’s log files and for
generating question files more efficiently;

» creating an online configuration tool for instructors as an alternative to
having to use text configuration files on the server side; and

e presenting students with a summary page at the end of each session, show-
ing the number of questions answered correctly and the total time spent.

A formal empirical study is being designed and will be implemented in the
Fall 1998 semester in several classes. Poser can be found at
http://atools.cs.jmu.edu/Poser/. It comes with all the necessary files, docu-
mentation on its installation and use, and a few sample quizzes on Computer
Literacy. Poser is distributed free of charge.

REFERENCES

Attotron Biosensor Corporation (1998). Javascript QuizMaker Home Page [Online]. Available:
http://www.attotron.com/pub/Quizmaker.html [1998, May 30].

Brown, D. (1998). Mallard Nestpage [Online]. Available: http://www.cen.uiuc.edu/Mallard/
[1998, May 30].

Creagan, D. (1996). JavaQuiz: A quiz shell in Java by Dan Creagan [Online]. Available:
http://204.233.101.40/javaquiz/quiz.html [1998, May 30].

Erickson, B.L., & Strommer, D.W. (1991Jeaching college freshme8an Francisco: Jossey-
Bass Publishers.

Gewirtz, D. (1998, February). The PalmPower Interview: Jeff Hawkins, creator of the
PalmPilot. PalmPower Magazine [Online], 42 paragraphs. Available: http://www.palm-
power.com/issues/issue199802/hawkinstwo001.html [1998, May 30].

Goldberg, M., Salari, S., & Swoboda, P. (19968)prld Wide Web—Course tool: An environ-
ment for building WWW-based coursEsth International World Wide Web Conference.

Half-Baked Software (1997). Markin from Creative Education Resources [Online]. Available:
http://www.net-shopper.co.uk/creative/education/languages/martin/jbc.htm [1998,
May 30].

McCormack, R. (1997). QuizPlease Home Page - Create quizzes and tests for the Internet -
Education - Software [Online]. Available: http://www.quizplease.com/ [1998, May 30].

Shadian, R. (1998). METR&D Center Ed Tech Tools—QuizCenter [Online]. Available:
http://motted.hawaii.edu/et_tools/quizcenter/ [1998, May 30].

Tinoco, L.C., Fox, E.A., Ehrich, RW., & Fuks, H. (199QUIZIT: An interactive online quiz
system for WWW-based instructid®roceedings of the VII Brazilian Symposium on
Educational Technology.

