
Using Intelligent Task Routing and Contribution Review to
Help Communities Build Artifacts of Lasting Value

Dan Cosley, Dan Frankowski, Loren Terveen, John Riedl
CommunityLab ∗

University of Minnesota
Minneapolis, MN 55455

{cosley, dfrankow, terveen, riedl}@cs.umn.edu

ABSTRACT
Many online communities are emerging that, like Wikipedia,
bring people together to buildcommunity-maintained arti-
facts of lasting value(CALVs). Motivating people to con-
tribute is a key problem because the quantity and quality
of contributions ultimately determine a CALV’s value. We
pose two related research questions: 1) How doesintelligent
task routing—matching people with work—affect the quan-
tity of contributions? 2) How does reviewing contributions
before accepting them affect the quality of contributions?A
field experiment with 197 contributors shows that simple, in-
telligent task routing algorithms have large effects. We also
model the effect of reviewing contributions on the value of
CALVs. The model predicts, and experimental data shows,
that value grows more slowly with review before acceptance.
It also predicts, surprisingly, that a CALV will reach the
same final value whether contributions are reviewed before
or after they are made available to the community.

Author Keywords
online communities, contribution models, intelligent task
routing, member-maintained, Wikipedia, editorial review

ACM Classification Keywords
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces—Collaborative computing

INTRODUCTION
Wikipedia members have collaboratively produced over one
million encyclopedia articles in dozens of languages since
2001. Distributed Proofreaders users have produced thou-
sands of books for Project Gutenberg [13]. ESP Game play-
ers have contributed millions of labels to an image database

∗ CommunityLab is a collaborative project of the University of
Minnesota, University of Michigan, and Carnegie Mellon Univer-
sity. http://www.communitylab.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2006, April 22-27, 2006, Montŕeal, Qúebec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

[18]. 35,000 RateYourMusic.com users are building them-
selves a music database, while freedb.org’s online music ser-
vice receives thousands of weekly CD submissions. The
common theme: groups of volunteer contributors building
community-maintained artifacts of lasting value (CALVs).

The content of CALVs is meant to be persistent and have
value to the entire community. This raises many issues, from
“who is the community?” (are trolls part of a Usenet group?)
to “what is valuable?” (comp.lang.perl split into subgroups
partly because of frustration with novice questions). In this
paper, we focus on two fundamental, related problems that
communities building CALVs must solve: motivating people
to contribute and ensuring that contributions are valuable.

Research Question 1: How does intelligent task routing af-
fect contributions to a CALV?Thorn and Connolly ana-
lyzed the problem of encouraging contributions using dis-
cretionary databases [16], an abstract model that applies rea-
sonably well to CALVs. A key problem is that discretionary
databases are public goods [6]. That is, everyone can con-
sume the information without using it up for others. It is
rational for individuals to consume information but not to
produce it because contributing has costs. Some people con-
tribute despite the cost [4], but the community as a whole
suffers because all would be better off if all contributed.

Reducing costs can encourage contributions. Wikipedia al-
lows almost anyone to edit almost anything, making it easy
to find work to do. Distributed Proofreaders uses mentors
to teach new members. The ESP Game makes contributing
fun. freedb.org uses music software to semi-automatically
submit information. RateYourMusic.com piggybacks on the
value people gain by maintaining their music collections.

We explore a computational approach to reducing contribu-
tion costs,intelligent task routing, that leverages social psy-
chology theory to match people with appropriate tasks. The
collective effort model [8] suggests a number of factors that
affect people’s motivation to contribute to groups. Online
communities that know something about their members may
be able to match people with tasks based on attributes of the
tasks that map to factors in the collective effort model. We
develop several general and simple task routing algorithms
that most communities could implement by choosing items:

• that a given user will probably like

• that a given user has experience with (i.e., has rated)

• that need work (like Wikipedia’s Community Portal)

• randomly (like Slashdot meta-moderation)

It turns out people are much more likely to contribute when
asked to edit items they have rated.

Research Question 2: How does reviewing contributions be-
fore accepting them affect the value of CALVs?Just con-
tributing is not enough. Because Wikipedia allows anyone
to contribute, and because these contributions become visi-
ble right away, it has become a lightning rod for the problem
of ensuring contributions are valuable.1 Reviewing contri-
butions is a natural strategy, but designing effective review
systems is hard because reviewing behavior is complex. For
example, the timing of contributions affects whether they re-
ceive adequate review in Slashdot [9]. Viégas et al. use
visualizations of editing behavior in Wikipedia to under-
stand how its review mechanisms improves quality by help-
ing members to repair vandalism and to negotiate disagree-
ments over content [17]. In our work we focus on how the
structure of review mechanisms affects contribution behav-
ior. We studied whether review is needed at all in prior work.
It is, but in our domain, peers were as effective as experts [3].

Here we focus on another important structural question:
should contributions be reviewed before being added to
the CALV, or can they be added first and reviewed later?
Both approaches can succeed. Distributed Proofreaders and
RateYourMusic require contributions to be reviewed before
they are added to the CALV. In Wikipedia, contributions are
immediately available and are reviewed by their consumers.
Both approaches can also fail. The ChefMoz.org restaurant
directory is impeded by its slow contribution review process,
while a 2005LA Timesexperiment with wiki-based editori-
als ended, overrun by vandals, in just two days.

We develop simple mathematical models of contributors’ be-
havior to explore the effect of reviewing contributions before
and after inclusion. The models predict that review before
inclusion hurts the CALV’s short-term value because of re-
view overhead. Surprisingly, the models predict no gain in
long-term value for review before inclusion. We compare
the models to data from MovieLens, where some contribu-
tors used a review before inclusion system while others used
review after inclusion. It turns out that the model is correct
that making contributions available immediately wins in the
short term, and it fits the data fairly well. However, we do
not have enough data to evaluate the long-run prediction that
both systems will achieve the same level of value.

EXPERIMENTAL DESIGN AND OVERVIEW
We address our research questions using field experiments
with the MovieLens recommender system, a web site with
thousands of active users per month. MovieLens contains

1e.g., http://slashdot.org/article.pl?sid=05/08/05/2012229.

Figure 1. The interface for editing movie information. The previous
editor’s changes are highlighted.

Figure 2. The front page interface, showing the five visible movies on
the chosen and recently edited lists.

about 8,800 movies that members can rate and receive rec-
ommendations for. It keeps a modest amount of information
about movies, including directors and actors, movie genres,
languages, release dates, and video availability. Members
can use this information to filter recommendations.

Its movie information is incomplete. For most of its life the
MovieLens database has been maintained by a single movie
guru. When the guru is busy, the database suffers. Some-
times he does not add actors and directors, movies released
on DVD are not always updated as “new DVDs,” and so on.
About 1/3 of the fields in the database are blank. This has a
direct impact on the value of MovieLens, for example, when
searches fail to return relevant movies.

To improve the database, we created an interface that allows
MovieLens members to edit information for movies (Figure
1). The interface highlights fields changed by the last edi-
tor of a movie and displays text appropriate for a subject’s

Strategy Description Theoretical justification Practical justification
HighPred Choose movies

a subject is pre-
dicted to like.

People often find recommended items valuable;
personal value increases motivation.

Almost any community that models its
members can compute some notion of
relevance.

RareRated Choose movies
the subject has
rated but few
others have.

Editing is easier if you know the movie; easier
tasks increase motivation. Further, rareness im-
plies a special ability to contribute; knowing that
contributions matter increases motivation.

Also easy to implement, and targets ef-
fort toward items that might not other-
wise be corrected.

NeedsWork Choose movies
with the lowest
Nfieldsvalue.

More missing information allows more valuable
contributions; knowing that contributions matter
increases motivation.

Chooses tasks that provide the maxi-
mum potential to increase value. Simi-
lar to Wikipedia’s Community Portal.

Random Choose movies
randomly.

Baseline algorithm. Easy and provides wide coverage.
Used by Slashdot meta-moderation.

Table 1. Four algorithms for matching people with tasks.

experimental group. We publicized the ability to edit movie
information by asking people to edit selected movies to edit
on the MovieLens main page (Figure 2). Prior to this, only
the guru had the power to edit movies in the database.

The main page displays a list of chosen movies and a list
of recent movies. The chosen list contains movies selected
by one of four intelligent task routing algorithms. The recent
list, similar to Wikipedia’s recent changes, contains the most
recently edited movies. Each list showed five visible movies
and a link to 15 more. Members were also able to edit infor-
mation for any movie they saw while using MovieLens.

Subjects and conditions
MovieLens members who logged in during the experiment
were randomly assigned one of four task routing algorithms
shown in Table 1. They were also randomly assigned to one
of two contribution review systems:Wiki-Like, where con-
tributions were made visible immediately, orPre-Review,
where contributions needed to be reviewed by anotherPre-
Reviewsubject before becoming visible.

We placed few restrictions on editing. Members who had
been with MovieLens for at least one month were eligible.
We limited subjects to 10 edits day to make the analysis less
sensitive to huge outliers. We debated this—why not let
users do what they want?—but it also has reasonable prac-
tical justifications: involving more users increases commu-
nity robustness, while industrious subjects are discouraged
from writing scripts to automate contributions using data
from other websites (which at least one person did!). Fi-
nally, Wiki-Like subjects were not allowed to edit movies
pending review by aPre-Reviewsubject, andPre-Review
subjects were not allowed to review their own edits.

Metrics
We used three metrics. A crucial aspect of whether a com-
munity succeeds in building a CALV is how much value
the community creates. A coarse metric,Nedits, counts
the number of edits people make. A finer-grained metric,
Nfields, counts the number of non-blank fields for a movie.
Nfieldsis not very precise because it cannot detect when bad
information is corrected. We chose it because many commu-
nities should be able to develop similar syntax-based met-

rics. More nuanced value metrics are possible, such as ask-
ing members to flag high- and low-value items or using read
and edit wear [7] to estimate value.

Another indicator of a community’s success is how many
members participate in the CALV’s upkeep; communities
that spread work among many members are more inclusive
and robust. This leads to the third metric,Neditors, the num-
ber of people who edited at least one movie.

We supplement these metrics with results from a survey we
conducted after the experiment concluded. 119 people, most
of whom used the editing features, responded to the survey.

Overview of editing activity
We collected behavioral data for 53 days in summer 2005.
A total of 2,723 subjects saw the contribution interface, with
437 subjects editing at least once. They performed a total of
2,755 edits. Of these editors, the mode was one edit, though
two subjects edited well over 100 times—quite a feat con-
sidering the 10 edit per day limit. Editing activity appears
to follow a power law distribution, a pattern we have seen in
many aspects of MovieLens, from movie popularity to the
number of logins, ratings, and forum posts per user.

RQ1: DOES TASK ROUTING AFFECT CONTRIBUTIONS?
We turn now to our first research question:How does intel-
ligent task routing affect contributions to a CALV?A com-
munity might want to match members with tasks for a num-
ber of reasons. For example, it might be useful if people
who review recent changes in Wikipedia know the topic
they are reviewing. User modeling research shows how to
build profiles of user interests (e.g., [14, 15]) and expertise
(e.g., [11, 12]) that can help match people with topics. An-
other reason to match people with tasks is to reduce their
workload. Wikipedia’s recent changes list is long because
people make dozens of changes per minute. A personalized
view that shows only pages the viewer is likely to work on
might increase viewers’ ability to contribute. A community
might also prefer to focus on tasks that seem most needed.
Wikipedia could highlight large recent changes rather than
small ones or solicit people to expand short articles rather
than review recent changes.

Neditors, Nedits, and Nfields by strategy

0

50

100

150

200

250

Neditors Nedits Nfields

Metric

C
ou

nt

HighPred
RareRated
NeedsWork
Random

Figure 3. Counts of unique editors, movies edited, and fieldsedited
for each strategy.RareRateddoes best on all, whileNeedsWorkhas the
highestNfieldsper edit.

Karau and Williams’ collective effort model [8] calls out
factors that influence people’s motivation to contribute to
groups. These factors include how much the person values
the task, how much effort the task requires, and how much
they believe their contribution matters to the group. Commu-
nities that model members’ behavior can try to operational-
ize these factors and use them to stimulate contributions.

We developed four algorithms to match people with movies:
HighPred, RareRated, NeedsWork, andRandom. Table 1
gives a brief description for each algorithm along with prac-
tical justifications and reasons why they might motivate con-
tributions based on the collective effort model. We chose
simple, single-strategy algorithms because they are easy to
understand and easy to implement. Further, they represent
algorithms used by real communities. Wikipedia’s Commu-
nity Portal is based on aNeedsWork-like algorithm, while
Slashdot assigns meta-moderation usingRandom.

When a subject logs in, the algorithm ranks all movies, re-
moves movies chosen for any subject in the last four hours
(to prevent movies from being picked repeatedly), and pop-
ulates the subject’s chosen list with the top 20 movies.

Results
To concentrate on the algorithms’ effect on behavior, here
we limit the analysis to the five movies visible on subjects’
chosen lists. For this experiment we collected data for 24
days in August 2005. In these data, 197 of 1,982 subjects
edited at least one movie chosen for them. Figure 3 shows
the performance of each algorithm onNeditors, Nedits, and
Nfields. We useRandomas our baseline.

RareRatedoutperforms all algorithms, includingRandom
both onNeditors (χ2(3, N = 1, 982) > 114, p < 0.01)
andNedits(χ2(3, N = 44, 352) > 203, p < 0.01). The
difference onNeditorswas striking: over 22% ofRareRated
subjects edited at least one movie, compared to about 6% for
the other groups.

NeedsWorkis interesting. It does worst onNeditors—a
surprise because survey respondents claimed they preferred

High Rare Needs
Pred Rated Work Random

Avg. prediction 4.33 3.10 2.57 2.85
Avg. # ratings 2,585 191 212 1,432
Avg. Nfields 5.65 5.76 3.10 5.53
Total showings 10,506 11,785 10,767 11,494
User-movie pairs 4,606 3,647 8,564 11,261
Distinct movies 1,598 2,903 770 6,363

Table 2. Statistics on the behavior of the four algorithms.

to edit movies that need more work than less (57 agreed,
50 neutral, 12 disagreed). But becauseNeedsWorkselects
movies that have the most missing information, its per-edit
improvement (ratio ofNfieldsto Nedits) is much higher than
for the other strategies (1.65 versusHighPred’s 0.21,Rare-
Rated’s 0.36, andRandom’s 0.45).

Finally,HighPred is dominated byRareRatedon all metrics
and byRandomonNeditsandNfields. Its per-item improve-
ment is especially low.

Algorithm characteristics
We computed statistics about the movies each algorithm
chose in order to better understand these differences. Table 2
shows that the four algorithms had distinct patterns of select-
ing movies. The first three rows tell us that the algorithms
accomplished their goals:HighPredchose movies with high
predictions,RareRatedchose movies with relatively few rat-
ings, andNeedsWorkchose movies missing the most infor-
mation. Otherwise, the algorithms chose movies of roughly
the same quality and predicted rating.HighPred chose rel-
atively popular movies, whileRareRatedand NeedsWork
both choose relatively obscure movies.

NeedsWorkchose many fewer distinct movies than the other
algorithms because it is not personalized—it always chose
the movies that needed the most work. Similarly, the user-
movie pairs row from Table 2 shows thatHighPred and
RareRatedtended to show the same movie to the same user
multiple times. In particular, several subjects in theRare-
Ratedgroup complained they wanted to see movies in their
chosen lists that they had not already edited. Designs that
choose different movies each time they ask a user to con-
tribute might perform better.

A closer look at RareRated
RareRatedwas the most effective strategy for convincing
people to contribute. It has a number of aspects that might
increase people’s motivation to participate according to the
collective effort model. First, people are more likely to know
about movies they have seen; editing known movies is eas-
ier and easier tasks increase motivation. Second, people are
more apt to like movies they have seen; personal value in-
creases motivation. Third, being one of a few people who
has seen a given movie might induce people to feel their con-
tribution is harder to provide and thus matters more; know-
ing that contributions matter increases motivation (e.g.,for
discussions and ratings [2,10]).

I prefer to edit... Agree Neutral Disagree
movies I like. 69 36 14
movies I have rated. 87 24 8
movies with few ratings. 43 65 11

Table 3. Survey responses to factors the collective effort model predicts
may affect motivation. Having rated an item matters most, rareness
matters least (χ2(4, N = 357) > 37, p < 0.01).

We used our post-experiment survey and a logistic regres-
sion model to help tease apart these factors. The survey
asked subjects people questions corresponding to the three
factors above. Table 3 shows people were most likely to
agree that having rated a movie matters and least likely to
agree that rareness matters.

We also built a logistic regression model to predict whether
a movie was edited using four attributes: whether the sub-
ject had rated the movie, the subject’s predicted (or actual)
rating for the movie, log of the movie’s popularity, and the
movie’sNfieldsscore. The first three correspond to the three
reasonsRareRatedmight increase motivation, while the last
seemed important to include. We used only movies shown to
theRandomgroup to create an unbiased sample. The model
has some predictive power (χ2(3, N = 11, 568) = 44, p <
0.01). Having rated the movie and the movie’sNfieldsscore
are useful predictors (p < 0.01); liking the movie and movie
popularity were not useful. Taken together, these results sug-
gest lead us to hypothesize that aRatedNeedsWorkalgorithm
would be a good alternative to explore in future research.

Discussion
These results show that intelligent task routing has large ef-
fects.NeedsWorkis intuitively appealing from the commu-
nity’s point of view, maximizing the value the CALV gets
per edit. However, it fails to consider individual motivation.
RareRateddid well because it both personalizes the movies
shown and, importantly, chooses movies people have seen.
The poor performance ofHighPred suggests that informa-
tion retrieval-style relevance by itself is not enough.

Having rated an item was so important that any task rout-
ing algorithm should consider members’ experience with
items when possible. A natural question is, given this,
what should a task routing algorithm consider next? We
explored this question by building a second logistic regres-
sion model to predict editing of movies shown to theRare-
Ratedgroup. Again, the model has some predictive power
(χ2(3, N = 12, 020) = 77, p < 0.01). Nfieldsand the per-
son’s rating are useful predictors (p < 0.01), while popular-
ity and average ratings were not useful. SinceNfieldsmat-
ters, developing useful measures of item quality is a logical
next step in improving task routing.

RQ2: HOW DOES REVIEW TIMING AFFECT CALVS?
We now turn from the problem of motivating individuals to
contribute to our second research question:How does re-
viewing contributions before accepting them affect the value
of CALVs?A common tactic for ensuring quality is to review
contributions, either by other members, as Slashdot does [9],

Figure 4. The recent list for the Wiki-Like (top) and Pre-Review(bot-
tom) conditions. Differences are highlighted.

or by experts, as many high-quality conferences do. There
are many design questions when building a system for re-
viewing contributions, including whether review is needed
at all, who can be a reviewer, and whether contributions need
to be reviewed before the community can use them.

We have explored the first two design questions in the con-
text of adding movies to MovieLens [3]. We found that at
least some review is required both to prevent anti-social be-
havior and to encourage people to contribute. We also found
that peers were about as good at reviewing as experts, at least
in MovieLens. Further, people were just as willing to con-
tribute whether peers or experts provided review, supporting
the goal of using peer-based review systems as a mechanism
for building scalable, robust, and valuable CALVs.

Here, we concentrate on the timing of review. As we saw in
the introduction, both including contributions immediately
and reviewing contributions before accepting them can suc-
ceed. We tried both approaches during the field experiment,
randomly assigning members to one of two conditions. In
theWiki-Like condition, contributions went directly into the
MovieLens database. In thePre-Reviewcondition, contri-
butions went to a queue of pending edits and only went live
after being reviewed (and possibly edited) by a second mem-
ber. Subjects saw a recent list that contains the items most
recently edited by others in their group. The recent list dis-
played five movies with a link to another 15. Figure 4 shows
how the interface differed for the two groups.

Below we present a model of how review timing affects
CALV quality, then use our experimental data to test the
model’s predictions. We combine modeling with a field ex-
periment to build support for our main result: accepting con-
tributions immediately is a win in the short term and will do
just as well in the long run.

A MODEL OF CONTRIBUTIONS AND VALUE
Survey respondents believeWiki-Like systems would in-
crease value more quickly whilePre-Reviewsystems would
result in higher long-term value. We present a model that
suggests they are half right. The model predicts how review
timing will affect the quality of CALVs. We make a number
of simplifying assumptions in order to get at the heart of the
effect of review timing, following Axelrod: “If the goal is
to deepen our understanding of some fundamental process,

then simplicity of the assumptions is important, and realis-
tic representation of all the details of a particular setting is
not.” [1]. Many of these assumptions can be lifted by adding
complexity to the model, but we believe the high-level pre-
dictions of the simple model apply to many CALVs.

In the model, a CALV consists of a number ofitems, each
of which has somevalue. Value might simply be the pres-
ence of an item: a MovieLens movie, a Wikipedia page, or a
response to a Usenet post. Value might account for quality,
perhaps by asking people to flag low-quality items. Value
might also include frequency of use, by counting page views
in Wikipedia or by weighing fields in MovieLens based on
their use in searches. We assume an item’s value ranges from
0 to some maximum, that the value of a given item does not
change unless someone contributes to it2, and that the num-
ber of items remains constant over the modeling period.

The CALV as a whole then has a value,V , ranging from 0 to
Vmax, the sum of the maximum value of all items. LetVt be
the value of a CALV at timet. We assume that time proceeds
in discrete periods. During a time period, the community can
increase the value of items, e.g. by correcting information
for a movie or improving a Wikipedia page. We model the
amount of value the community creates in a given time pe-
riod asGt, or “good work”. The community also sometimes
destroys value (e.g., through trolls, vandals, spammers, and
well-intentioned mistakes), which we model in the aggregate
asBt, or “bad work”. Good and bad work can overlap dur-
ing the same time period. We can state a basic model of how
a CALV’s value evolves:

Vt+1 = Vt + Gt − Bt (1)

The value of the CALV grows whenGt > Bt, remains the
same whenGt = Bt, and falls whenGt < Bt.

Modeling Wiki-Like
Gt andBt are not constant; otherwise, the equation above
suggests that CALVs can grow without limit. Many factors
influence how much value is created and destroyed in a given
time period, including the CALV’s current state and the mo-
tivation and abilities of community members. We assume
all of these factors are fixed except forVt. The intuition is
that asVt grows, members will find it harder to locate use-
ful work and easier to damage already-existing value. Much
of the work the community would do, then, is expended in
finding work rather than doing it.

Let γ be the amount of good effort the community as a
whole is willing to expend in a given time period to im-
prove the CALV, and letβ be the similar amount of bad ef-
fort it would expend to harm the CALV. Remembering that
0 ≤ Vt ≤ Vmax, we letPt = Vt/Vmax be the proportion of
its potential value a CALV possesses at timet. We extend
equation 1 to incorporate the task of finding work, by mul-
tiplying γ by the probability that a given item needs work
andβ by the probability that a given item is already correct.
2This is a bad assumption when information decays rapidly. For in-
stance, a database of gas prices at local stations must be constantly
updated or its value drops rapidly.

Good Check Bad Check
Good Edit +1 0
Bad Edit 0 -1

Table 4. Contingency table for contribution checking, under the as-
sumption that bad people are as malicious as possible. Good checking
of good edits creates value, while bad checking of bad edits destroys it.

Good Check Bad Check

Good Edit 1
2

H2

t

Wt

= 402

100 = 16 1
2

HtCt

Wt

= 40·10
100 = 4

Bad Edit 1
2

CtHt

Wt

= 10·40
100 = 4 1

2
C2

t

Wt

= 102

100 = 1

Table 5. A concrete example of computing the number of edits in each
cell of the contingency table whereHt = 40, Ct = 10, and Wt = 50.

That is,Gt = (1 − Pt)γ andBt = Ptβ:

Vt+1 = Vt + (1 − Pt)γ − Ptβ (2)

Equation 2 has the convenient property that as long as0 <
β, γ < Vmax, it ensures that0 <= Vt <= Vmax. Further,
at some pointGt will equal Bt, and the CALV will reach a
value equilibriumVlim at a timet where(1 − Pt)γ = Ptβ.
A little algebra shows this equation is satisfied whenPt =
γ/(γ + β), allowing us to compute the equilibrium:

Vlim =
γ

(γ + β)
Vmax (3)

In other words, aWiki-Like system reaches a value equilib-
rium below its potential that is determined only by the pro-
portion of good to bad effort members are willing to expend.

Modeling Pre-Review
We now turn to modelling thePre-Reviewsystem, where a
second person must approve contributions before they are
added to the CALV. Here, value is divided into two parts:
working on items, and approving (or rejecting) work. We
return to our fundamental model from Equation 1,Vt+1 =
Vt+Gt−Bt. Now, the formulae forGt andBt must account
for the fact that some of the community’s contributions are
allocated to editing items and some to checking those edits.3

One of four things can happen to a contribution, depending
on whether the editor and the checker are good or bad. Table
4 shows a payoff matrix that models “bad” people that ma-
liciously destroy content, one of the most common threats
seen in wikis.4 If both the edit and check are good, value is
created. If both are bad, value is removed. If one is good
and one bad, value is unchanged: either a bad edit is appro-
priately rejected or a good one is incorrectly rejected.

We now compute how the value of the CALV changes dur-
ing a given time. To do this we must first know how much
total work is done. LetHt = (1 − Pt)γ, Ct = Ptβ, and
Wt = Ht + Ct be the amount of good, bad, and total work
3The work of checking inWiki-Like systems is represented implic-
itly in β andγ: some of the effort ofγ at timet+1 will repair errors
introduced through the effort inβ at timet.
4But not the only possible matrix. Bad actors might sometimes
create value, e.g., a spammer might approve good contributions in
order to increase the community’s value as a market.

done during timet. We assume people evenly divide work
between editing and checking. The formulae for all four
squares in the contingency table have the same structure. For
instance, the probability of a Bad Edit isCt/Wt, and the (as-
sumed independent) probability of a Good Check isHt/Wt,
so the probability of a Bad Edit followed by a Good Check is
CtHt/W 2

t . To compute the number of times a Bad Edit fol-
lowed by a Good Check occurs, we multiply this probability
by the total number of edits performed:Wt/2 since half the
work goes into edits. The product isCtHt/2Wt. Table 5
presents all four formulae along with a numeric example.

Now we are ready to apply equation 1 and the payoff matrix
from Table 4. In this caseGt is just the number of edits that
wind up in the Good-Good quadrant, whileBt is the number
of edits that wind up in the Bad-Bad quadrant. The equation
for how much gets done per time period is:

Vt+1 = Vt +
1

2

H2
t

Wt

−
1

2

C2
t

Wt

(4)

Again, we can figure out the equilibrium for the value of the
CALV, Vlim, which happens when:

1

2

H2
t

Wt

=
1

2

C2
t

Wt

Ht = Ct

(1 − Pt)γ = Ptβ

We saw this equation when finding theWiki-Like equilib-
rium; the equilibrium for aPre-Reviewsystem is:

Vlim =
γ

(γ + β)
Vmax (5)

which is surprisingly the same as Equation 3! That is, if
Vmax, γ, andβ are the same, checking before accepting con-
tributions does not improve the eventual value equilibrium
the CALV reaches, compared to accepting them right away.

Rate of Convergence
Instead, checking imposes a cost. We can compare how
quickly Pre-ReviewandWiki-Like approach the value equi-
librium. The rate of convergencefor a sequence that con-
verges linearly toξ is usually defined asµ, where:

µ = lim
k→inf

|xk+1 − ξ|

|xk − ξ|
(6)

That is, if the order of convergence is linear, the rate of con-
vergenceµ is the ratio between the error at stepk + 1 and
the error at stepk [5]. µ must be between 0 and 1, and the
closer to 0, the faster the convergence. The convergence rate
for both systems is given by:

µ = 1 − x
γ + β

Vmax

(7)

wherex = 0.5 for Pre-Reviewandx = 1 for Wiki-Like.5

In other words, both systems reach the same final value, but
theWiki-Like system gets there faster.

5We derive these rates in the appendix.

Modeling adding movies to MovieLens

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1 2 3 4 5 6

Year

M
ov

ie
s

in
 M

ov
ie

Le
ns

WIKI

PEER

GURU

Figure 5. Modeling the effect of different systems for adding movies to
MovieLens., with V0 = 4, 000 and Vmax = 10, 000. For the PEER
and WIKI systems, γ = 160 and β = 40, while for the GURU system,
γ = 40 andβ = 0. WIKI is faster than the others. PEER never catches
up, but GURU does—after 5 years.

A concrete, yet fictional example
We first apply the model to a slightly fictionalized version of
adding movies to MovieLens. Our movie guru took over the
MovieLens database about 6 years ago, when it had about
4,000 movies. Based on his criteria for adding movies to
MovieLens, there are about10, 000 movies eligible to in-
clude. (This number grows by a few hundred each year,
but we will follow the model and assume that it is fixed at
10, 000). Based on his behavior, we can estimate thatγ = 40
andβ = 0 if only the guru adds movies. We will discuss
how to estimate these parameters later, when we evaluate
the model against the experimental data.

We can use the model to look at how the database might
have evolved if we had allowed more people to partici-
pate. Based on data from [3], we estimate the community’s
γ = 160 andβ = 40 for the task of adding new movies
to MovieLens.6 With these estimates, we can compare what
might have happened had we allowed the community to add
movies. Figure 5 shows that the value of the database would
have grown much faster than it did, and further, it would
have grown even faster if contributions were made visible
right away. The guru would eventually create a more valu-
able database—in five years.

A summary of assumptions and predictions
The model relies on a number of assumptions about how
editors and checkers interact through the CALV, which we
collect here for convenience.

1) Discrete Time Steps.One time step completes before the
next begins. Good and bad activities within each time step
may overlap.
2) Cumulative Value. The value of the CALV is the sum of
the value of individual items.

6Theβ = 40 consists of mistakes made when adding movies, such
as forgetting to add any information besides the title or adding in-
formation for the wrong movie.

Pre-Review Wiki-Like p-value
Subjects 1,353 1,370 -
Neditors 239 198 p < 0.10
Nedits 1,534 (873+661) 1,220 p < 0.05
DB Nedits 661 1,220 p < 0.01
DB Nfields 770 1,017 p < 0.50

Table 6. Overall editing performance of two groups. Pre-Reviewhad
1,534 total edits, of which 661 were checks. DBNeditsand DB Nfields
are the changes that actually occurred in the database. P-values are
from t-tests except forNeditors, where we used a chi-squared test.

3) Steady Item Value.The value of an individual item only
changes when someone changes it.
4) Value Ceiling. There is a fixed maximum attainable value
for the CALV. (The number of items is also fixed.)
5) Stable Motivation. The total amount of available effort
is stable while the value of the CALV changes.
6) Random Search For Work. Users randomly encounter
items to work on.
7) Effort Is Equal. The effort to fix an item, to check
whether an item needs fixing, and to check whether a fix
is correct is about the same.
8) Edits Equal Checks. In Pre-Review, as many checks
happen as edits.
9) No User Roles.Anyone can edit or check inPre-Review.

These are simplifications. For instance, people may give up
on a CALV with low value or one that grows too slowly,
violating Stable Motivation. Rapidly growing CALVs like
Wikipedia violateValue Ceiling. Cumulative Value fails to
model the fact that some items are more popular than others.
Many review systems violateNo User Rolesby having rel-
atively few editors who are allowed to check contributions.

We nevertheless believe these are reasonable assumptions
for understanding the broad effects of review timing. The
model makes several interesting predictions. The most sur-
prising is that the final quality will be exactly the same for
theWiki-Like andPre-Reviewmethods of making changes
to a CALV. Proponents of both models, from people dis-
cussing Wikipedia on Slashdot to several of this paper’s au-
thors, argue that their favorite model is better. Finding they
should yield the same quality in the long run was a surprise.
A second interesting prediction is thatWiki-Like will con-
verge much faster to this long-run quality. The reason is
simple:Wiki-Like does not waste as much effort checking.

RESULTS FOR REVIEW TIMING
We now examine what happened during the experiment, then
use that data to evaluate the model. In 53 days, 437 of 2,723
subjects edited at least one movie. Table 6 shows subjects’
behavior under the two systems.Pre-Reviewoutperformed
Wiki-Like on totalNeditsandNeditors. However,Wiki-Like
subjects made more edits that appeared in the database.

These differences happen because of checking in thePre-
Reviewgroup. Of 1,534 edits, 871 were initial edits while
661 were checks. This left 212 edits pending approval at the
end of the experiment—wasted work because these contribu-

Predicted versus actual increases in Nfields

0

200

400

600

800

1000

1200

1400

8/7 8/14 8/21 8/28 9/4 9/11 9/18 9/25

Date

In
cr

ea
se

 in
 N

fie
ld

s

Wiki Pred
Wiki Actual
Pre Pred
Pre Actual

Figure 6. Comparing the model’s predictions to actual editing behavior,
using estimates ofγ and β for both systems based on the half of the
editing data. As the model predicts,Wiki-Like outperforms Pre-Review.

tions were not available to the community. Survey responses
confirm that people prefer editing to checking (38 preferred
to edit, 17 to check, 64 did not care).

Pre-Reviewhad a higherNfieldsper movie changed in the
database thanWiki-Like (1.16 vs. 0.83). The average in-
crease inNfieldsfor both groups on the initial edit of a movie
was almost identical, so the increase happened whenPre-
Reviewreviewers made changes that improved the original
contribution. Note that the model does not account for this
increase; by using the payoff matrix in Table 4, it assumes
that reviewers can only approve or reject changes without
adding value of their own.

The model meets reality
We now compare the model to the experimental data. The
model makes three high-level predictions about theWiki-
Like and Pre-Reviewsystems. 1)Wiki-Like outperforms
Pre-Reviewin the short run. 2) The amount of value created
tapers over time. 3) They reach the same long run equilib-
rium. We will first fit the model to our data, then evaluate
how well it fits and whether its predictions are accurate.

To fit the model, we need to estimateV0, Vmax, γ, andβ.
We use theNfieldsmetric. 8,770 items with a maximum
per-item value of 8 yieldsVmax = 70, 160. The sum of
Nfieldswhen the experiment began wasV0 = 47, 280. To
estimateγ andβ, we use observed behavior for the first half
of the experiment. In 27 days, theWiki-Like group increased
Nfieldsby 654, so we knowGt − Bt = 654. The ratio of
good to bad edits wasGt/Bt ≈ 60. This lets us estimate
Bt ≈ 11 andGt ≈ 660. SinceP0 = V0/Vmax ≈ 0.67,
Gt = (1 − P0)γ, andBt = P0β, that gives usγ ≈ 2, 000
andβ ≈ 16 for the Wiki-Like group. Similar calculations
for thePre-Reviewgroup giveγ ≈ 3, 240 andβ ≈ 54.

Based on those estimates, Figure 6 compares the model’s
predictions to actual behavior. The model’s first two high-
level predictions are supported:Wiki-Like outperformsPre-
Reviewin the short run, and the amount of value created

tapers off over time. The predictions fit reasonably well,
overestimating somewhat for both groups. The quality of the
predictions also depends on how much data is available for
estimates. Had we only collected data for one or two weeks,
our estimates ofγ would be 30 to 40 percent higher because
contributions taper off faster than the model predicts. Its
predictions over the experimental period are nearly linear
becauseγ + β is small relative to the maximum value of
repository. Finally, we do not have enough data to evaluate
the model’s third prediction thatWiki-Like andPre-Review
will converge to the same value equilibrium in the long run.

Note that the model missed onPre-Reviewin two ways.
First, our payoff matrix from Table 4 was incorrect. Check-
ing added about 40% more value to an initial edit be-
cause reviewers were allowed to improve contributions they
checked. This means 1.4 would have been a more accurate
value in the Good-Good quadrant. Second, the model did
not account for wasted work because of theEdits Equal
Checksassumption. In this setting, about 1/4 of edits were
never checked. These two effects roughly balanced each
other here. This is not likely to be true in general, and a
more complex model that accounts for these effects might
be more directly useful in designing systems.

DISCUSSION
These results suggest thatWiki-Like systems create value
faster thanPre-Reviewones. More people contributed un-
der thePre-Reviewsystem overall, but since people prefer
editing to checking, a backlog of wasted work builds up.
The model also suggests that thePre-Reviewgroup will do
about the same as theWiki-Like group in the long term. Our
estimates ofγ andβ put Vlim nearVmax for both systems
becauseβ is small in MovieLens. This prediction would be
easier to test in a system with more bad contributions.

At a high level, the model accurately reflects the relative be-
havior of thePre-ReviewandWiki-Like systems. However,
contributions taper off faster than predicted. As a new fea-
ture, the contribution interface might have been used more
heavily at first than it would be in the long-term, violat-
ing theStable Motivation assumption. This would explain
the overestimation and the rapid taper. It might also be that
(1−P) andP are not the right probabilities of finding useful
work to do. Finally, it may be that counting all fields equally
made our value function too simple. Members rarely search
for films available on VHS; perhaps they would not notice
or care enough to fix errors in a movie’s VHS release date.

Pre-Reviewsystems may increase people’s willingness to
contribute (increaseγ) or deter people from damaging the
system (decreaseβ) compared toWiki-Like. Here, thePre-
Reviewgroup had more editors and total contributions, while
prior work showed that review before acceptance reduced
antisocial behavior compared to a system with no review [3].
Designers might use the model to reason about trade-offs
between short-term speed and long-term quality. Fielding
a Wiki-Like system until contributions taper off and then
switching to a higher-equilibriumPre-Reviewsystem may
let designers have it both ways. Changing review policy in

an established community requires caution, however: imag-
ine the outcry from its members if Wikipedia were to switch
to aPre-Reviewsystem.

AlthoughWiki-Like systems accumulate value more rapidly,
they also allow more bad content into the CALV that is
eventually corrected by other members. This is often held
against Wikipedia: even though there is much good content,
members may not know which content to trust, thus limit-
ing Wikipedia’s usefulness as a reference—and perhaps re-
ducing their motivation to contribute. Recent pages on fake
pop stars and articles modified by marketers show that this
concern is real.7 On the other hand, bad content is often
quickly removed, with obvious vandalism disappearing in
minutes [17]. Incorrect content may take longer to fix.

Extending the model to consider the amount of bad content
seen by members might be useful. The model could be ex-
tended in a number of other ways as well. In the experiment,
we noted that reviewers can add value and that work can
be wasted. The model assumed these effects away, but in-
corporating them would not be hard. More complete (but
complicated) models that reduce the number of necessary
assumptions may be more useful to designers. Enhancing
the model’s ability to account for the cost of finding work
is a natural next step. Systems that help people find work,
perhaps using intelligent task routing, will be able to redi-
rect effort from finding useful work to doing it. This will
improve their ability to create value, and the model should
account for that as well. The model is an interesting starting
point for thinking about designing systems that encourage
contribution, but it is by no means the last word.

CONCLUSION
This work takes a number of steps toward improving system
design for community-maintained artifacts of lasting value.

• Systems that solicit contributions from members can use
intelligent task routing to increase contributions. Even
simple algorithms have large effects.

• Algorithms based only on the community’s needs are less
likely to interest members than algorithms that consider a
person’s knowledge and ability.

• The model suggests CALVs tend to reach a quality equi-
librium that depends only on the proportion of good to bad
contributions from community members, not on whether
contributions are reviewed before acceptance.

• Both the model and empirical results show that review be-
fore acceptance slows the accumulation of value.

• Designers can use the model of CALV value evolution to
help reason about design alternatives once they collect a
moderate amount of behavioral data.

We are excited by the potential of CALVs to increase the
value and scope of community on the web. As tools for
7http://www.smh.com.au/news/icon/wikipedia-worries/2005/08/
23/1124562860192.html

finding and communicating with others became standard-
ized and accessible, discussion-based online communities
became widespread. We predict a similar rise of groups that
build these lasting, valuable community-specific resources.
Understanding how to build the tools that will help these
groups survive and thrive is an important next step for the
CHI and CSCW communities.

ACKNOWLEDGEMENTS
This work was supported by grants 0325837, 0324851, and
0534420 from the National Science Foundation.

APPENDIX: DERIVING CONVERGENCE RATES
Here we derive the rates of convergence for theWiki-Like
andPre-Reviewsystems. A useful equality is:

γ

Vlim

=
γ

γ
γ+β

Vmax

=
γ + β

Vmax

(8)

We derive the convergence forWiki-Like to Vlim:

µ =
Vt+1 − Vlim

Vt − Vlim

=
Vt − Vlim + (1 − Pt)γ − Ptβ

Vt − Vlim

(9)

=
Vt − Vlim

Vt − Vlim

+
γ − Ptγ − Ptβ

Vt − Vlim

= 1 +
γ − (γ + β)Pt

Vt − Vlim

= 1 −
Vt

Vmax

(γ + β) − γ

Vt − Vlim

= 1 −
Vt

γ
Vlim

− γ

Vt − Vlim

(by equation 8)

= 1 −
(Vt

Vlim

− 1)γ

Vt − Vlim

= 1 −

Vt−Vlim

Vlim

γ

Vt − Vlim

= 1 −
γ

Vlim

= 1 −
γ + β

Vmax

(by equation 8) (10)

Pre-Reviewalso converges toVlim:

µ =
Vt+1 − Vlim

Vt − Vlim

=
Vt + 1

2
H2

t

Wt

− 1
2

C2

t

Wt

− Vlim

Vt − Vlim

=
Vt − Vlim + 1

2
(Ht−Ct)(Ht+Ct)

Wt

Vt − Vlim

=
Vt − Vlim + 1

2 (1 − Pt)γ − Ptβ

Vt − Vlim

which is in nearly the same form as equation 9, except for
the1/2, and the derivation proceeds from there.

REFERENCES
1. R. Axelrod.The Complexity of Cooperation. Princeton

University Press, 1997.

2. G. Beenen et al. Using social psychology to motivate
contributions to online communities. InProc.
CSCW2004, 2004.

3. D. Cosley et al. How oversight improves
member-maintained communities. InProc. CHI2005,
pages 11–20, 2005.

4. R. M. Dawes and R. H. Thaler. Anomalies:
Cooperation.The Journal of Economic Perspectives,
2(3):187–197, 1988.

5. W. Gautschi.Numerical analysis: an introduction.
Birkhauser Boston Inc., Cambridge, MA, USA, 1997.

6. R. Hardin.Collective Action. Johns Hopkins, 1982.

7. W. C. Hill, J. D. Hollan, D. Wroblewski, and
T. McCandless. Edit wear and read wear. InProc.
CHI1992, pages 3–9, 1992.

8. S. J. Karau and K. D. Williams. Social loafing: A
meta-analytic review and theoretical integration.
Journal of Personality and Social Psychology,
65(4):681–706, 1993.

9. C. Lampe and P. Resnick. Slash(dot) and burn:
distributed moderation in a large online conversation
space. InProc. CHI2004, pages 543–550, 2004.

10. P. J. Ludford, D. Cosley, D. Frankowski, and
L. Terveen. Think different: increasing online
community participation using uniqueness and group
dissimilarity. InProc. CHI2004, pages 631–638, 2004.

11. D. W. McDonald and M. S. Ackerman. Expertise
recommender: a flexible recommendation system and
architecture. InProc. CSCW, pages 231–240, 2000.

12. A. Mockus and J. D. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. InProc.
ICSE2002, pages 503–512, 2002.

13. G. B. Newby and C. Franks. Distributed proofreading.
In Proc. JCDL2003, pages 361–363, 2003.

14. M. Pazzani and D. Billsus. Learning and revising user
profiles: The identification of interesting web sites.
Mach. Learn., 27(3):313–331, 1997.

15. P. Resnick et al. Grouplens: an open architecture for
collaborative filtering of netnews. InProc. CSCW1994,
pages 175–186, Chapel Hill, NC, 1994.

16. B. K. Thorn and T. Connolly. Discretionary data bases:
A theory and some experimental findings.
Communication Research, 14:512–528, 1987.

17. F. B. Víegas, M. Wattenberg, and K. Dave. Studying
cooperation and conflict between authors with history
flow visualizations. InProc. CHI2004, pages 575–582,
2004.

18. L. von Ahn and L. Dabbish. Labeling images with a
computer game. InProc. CHI, pages 319–326, 2004.

