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Abstract

We exploit the redundancy and volume of infor-
mation on the web to build a computerized player
for the ABC TV game show “Who Wants To Be A
Millionaire?”. The player consists of a question-
answering module and a decision-making mod-
ule. The question-answering module utilizes
question transformation techniques, natural lan-
guage parsing, multiple information retrieval al-
gorithms, and multiple search engines; results
are combined in the spirit of ensemble learning
using an adaptive weighting scheme. Empiri-
cally, the system correctly answers about 75%
of questions from the Millionaire CD-ROM, 3rd
edition—general-interest trivia questions often
about popular culture and common knowledge.
The decision-making module chooses from al-
lowable actions in the game in order to maxi-
mize expected risk-adjusted winnings, where the
estimated probability of answering correctly is a
function of past performance and confidence in
correctly answering the current question. When
given a six question head start (i.e., when start-
ing from the $2,000 level), we find that the sys-
tem performs about as well on average as humans
starting at the beginning. Our system demon-
strates the potential of simple but well-chosen
techniques for mining answers from unstructured
information such as the web.

1 INTRODUCTION

Machine competence in games has long served as a bench-
mark for progress in artificial intelligence (AI). While we
seem hardly close to building systems capable of passing
a full-blown Turing Test, machine excellence in a grow-
ing number of games signals incremental progress. Games
such as chess [13], checkers [27], Othello [7, 18], and Go
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[5] are formal enough to be solvable in principle, though
are far from trivial to master in practice due to exponential
size search spaces. In chess, checkers, and backgammon,
current machine players rival their best human competitors.
Recently, attention has turned to less structured game envi-
ronments, like crossword puzzles [16], video games [30],
and soccer [29], where game states, actions, or both are
not easily enumerable, making a pure search formulation
unnatural or impractical.

“Who Wants to be a Millionaire?” is a trivia game where
actions are enumerable, though competence depends on the
ability to answer general-interest questions—often requir-
ing common sense or knowledge of popular culture—and
to make decisions based on confidence, expected reward,
and risk attitude. True human-level competence at Million-
aire will likely require excellence in natural language pro-
cessing and common sense reasoning. We present a first-
order system that exploits the breadth and redundancy of
information available on the World Wide Web to answer
questions and estimate confidence, and utilizes a decision-
theoretic subsystem to choose actions to maximize ex-
pected risk-adjusted payoffs.

2 RELATED WORK

2.1 QUESTION ANSWERING

A large body of research exists on question answering. For
example, see the Question-Answering Track [32] of the
Text Retrieval Evaluation Conference (TREC). Systems in
this track compete against each other to retrieve short (50
or 250 byte long) answers to a set of test questions.

Question-answering systems typically decompose the
problem into two main steps: retrieving documents that
may contain answers, and extracting answers from these
documents. For the first part of the task, retrieving a set of
promising documents from a collection, the systems in the
TREC QA track submitted the original questions to various
information retrieval systems [32].

A number of systems aim to extract answers from docu-
ments. For example, Abney et al. [1] describe a system in



which documents returned by the SMART information re-
trieval system are processed to extract answers. Questions
are classified into one of a set of known “question types”
that identify the type of entity corresponding to the answer.
Documents are tagged to recognize entities, and passages
surrounding entities of the correct type for a given ques-
tion are ranked using a set of heuristics. Two papers [3, 21]
present systems that re-rank and post-process the results of
regular information retrieval systems with the goal of re-
turning the best passages. These systems use the general
approach of retrieving documents or passages that are sim-
ilar to the original question with variations of standard TF-
IDF term weight schemes [25]. The most promising pas-
sages are chosen from the documents returned using heuris-
tics and/or hand-crafted regular expressions.

Other systems modify queries in order to improve the
chance of retrieving answers. Lawrence and Giles [17] in-
troduced Specific Expressive Forms, where questions are
transformed into specific phrases that may be contained in
answers. For example, the question “what is x” may be
transformed into phrases such as “x is” or “x refers to”.
Joho and Sanderson [15] use a set of hand-crafted query
transformations in order to retrieve documents containing
descriptive phrases of proper nouns. Agichtein et al. [2]
describe a method for learning these transformations and
apply their method to web search engines.

Clarke, Cormack, and Lynam [8] describe a system that
exploits the redundancy present in their corpus by using
the frequency of each candidate answer to “vote” for the
answer most likely to be correct. This approach is similar
to the base approach of our system.

Recent work has shown that the Web can effectively
be used as a general knowledge database for question-
answering [9, 11, 22] and other related tasks. Fallman [12]
presents a spelling and grammar checking tool that uses the
Google search engine as its source of information, allowing
it to handle names as well as informal aspects of a language
such as idioms and slang expressions.

In contrast to most previous research, where systems are
designed to search for an unknown answer, we present a
system that aims to select the correct answer from a number
of possible answers.

2.2 DECISION MAKING

Decision theory formalizes optimal strategies for human
decision making [23], justified on compelling axiomatic
grounds [26, 31]. The likelihood of future states is en-
coded as a subjective probability distribution and the value
of future state-action pairs is encoded as a utility func-
tion; the decision maker optimizes by choosing actions that
maximize future expected utility. A growing subfield in
AI employs decision theory as a framework for designing
autonomous agents. When the agent’s state space grows
unmanageably large—as in many real-world settings—
graphical models such as Bayesian networks [14] or influ-

ence diagrams [28] that can encode probabilities and utili-
ties compactly are often used. In Millionaire, the space of
possible outcomes is small enough that decision trees [23],
that explicitly enumerate probabilities and utilities for all
future possibilities, are sufficient.

2.3 GAME PLAYING

Board games have dominated much of the history of AI in
game playing [5, 6, 13, 18, 27]. This paper follows instead
in the tradition of the crossword-puzzle-solving program
PROVERB [16]. Like PROVERB, our Millionaire player
brings together technologies from several core areas of ar-
tificial intelligence (including information retrieval, natural
language parsing, ensemble learning, and decision making)
to solve a challenging problem that does not naturally con-
form to the game-tree method for solving board games.
Other domains under recent and rapid investigation—that
are also not easily amenable to tree enumeration—include
video games such as Quake [30] and soccer [29].

The Millionaire game has been explored in some previ-
ous work. Vankov et al. presented an abstract decision-
theoretic model of Millionaire that yields a strategy for
a player to maximize expected utility; however, it is still
left up to the player to actually answer questions and as-
sess confidence.1 Rump [24] uses Millionaire as an educa-
tional tool to present problems in decision analysis includ-
ing probability estimation and calculating expected utility,
problems that our system must address. Clarke et al. [8]
apply their general-purpose question-answering system to
a set of questions asked on the Millionaire TV show (natu-
rally composed of more early-round questions), answering
76 out of 108 questions (70.4%) correctly.

3 PLAYING MILLIONAIRE

Millionaire, a game show on ABC TV in the United States,
might be characterized as a cultural phenomenon, spawn-
ing catch phrases and even fashion trends. The show orig-
inated in the United Kingdom and has since been exported
around the world. Computers are explicitly forbidden as
contestants on the actual game show by the official rules,
negating any dreams we had of showcasing our system
alongside Regis on national TV. We wrote our player in-
stead based on a home version of the game: the Millionaire
CD-ROM, 3rd edition.

3.1 RULES OF THE GAME

In Millionaire, the player is asked a series of multiple-
choice trivia questions. Each correct answer roughly dou-
bles the current prize. An incorrect answer ends the game
and reduces the prize to the amount associated with the
last correctly-answered “milestone” question, or zero if

1The paper describing the system, unfortunately, has been re-
moved from the web.



no milestones have been met. Milestones occur at the
$1,000 and $32,000 stages, after questions five and ten, re-
spectively. Answering fifteen questions correctly wins the
grand prize of one million dollars. The difficulty of the
questions (for people) rises along with the dollar value.

At any stage, after seeing the next question, the player may
decline to answer and end the game with the current prize
total. Alternatively, the player may opt to use any or all
available lifelines to obtain help answering the question.
Players are allotted three lifelines per game. The three life-
lines allow the player to (1) poll the audience, (2) eliminate
two incorrect choices, or (3) telephone a friend.

Our system does not address some aspects of Millionaire.
In particular, we do not attempt to play the fastest finger
round that determines the next player from a pool of candi-
date contestants. Winning this round entails being the first
one to provide the proper ordering of four things by the cri-
teria given in the question (e.g., “Place these states in geo-
graphic order from East to West: Wyoming, Illinois, Texas,
Florida.”). To be competitive, an answer generally must be
provided within several seconds. Our question-answering
system is neither designed to answer questions of this na-
ture nor is it capable of answering most questions quickly.
We also do not address extraneous tasks that people must
perform in order to play the game, including speech recog-
nition, speech synthesis, motor skills, etc.

3.2 CHARACTERISTICS OF QUESTIONS

The Millionaire CD-ROM game contains 635 questions
that are roughly comparable in nature and difficulty to those
on the TV show. The game places the questions into seven
difficulty levels. The lower difficulty levels contain more
common sense and common knowledge questions, while
the difficult questions tend to be much more obscure. Life-
line information is also provided in the game data and is
used in our game model.

For exploring algorithms and tuning parameters, we used
three random 90-question samples and one random 180-
question sample. Various reports on these training samples
are reported throughout Section 4. Final test results on all
635 questions are reported in Section 5.1.

3.3 OUR PLAYER

Our Millionaire player consists of two main components,
a question-answering (QA) module for multiple-choice
questions and a decision-making (DM) module. We de-
scribe each component in turn below.

4 THE QA MODULE

Our system exploits the redundancy present in text corpora
to answer questions. More precisely, we use the idea that
question words associated with the answer tend to appear
and are more likely to be repeated in multiple documents

that contain the answer. We use the World Wide Web as our
data source and several search engines (most prominently
Google) as our conduit to that data.

We bring together several AI techniques from information
retrieval, natural language parsing, and ensemble machine
learning, as well as some domain-specific heuristics, in or-
der to select answers and generate confidence measures.
This information is then fed into the decision-making mod-
ule, described later, to actually play the game.

4.1 THE NAIVE APPROACH: COUNTING

Our basic approach was to query Google with the question
along with each of the four answers. Google enforces a 10-
term limit on searches, so we performed stopword filtering
on the questions to shorten our queries. Because answers
were entirely comprised of stopwords in some cases, we
did not filter them. The program generated queries in the
format answer filtered-question to help ensure that the an-
swer words fit in under Google’s 10-term limit.

The response to the question was normally the answer that
produced the highest number of search results. However,
a number of questions are “inverted” in the sense that the
answer is the one that is unlike the other three. We are able
to identify nearly all of these by the presence of the word
“not” in the question. In such cases, we choose the answer
yielding the fewest results. This baseline strategy answers
about half of the questions correctly.

4.1.1 Simple Query Modifications

To improve on this strategy, we empirically found a small
number of query transformations and modifications that in-
creased the percentage of correct responses to 60%.

� Multiple-word answers are enclosed in quotes to re-
quire that they appear as a phrase in any search results.

� “Complete a saying” questions, identified by the pres-
ence of one of the strings “According”, “said to”, or
“asked to”, were handled by constructing each possi-
ble saying from the choices and requiring that it ap-
pear in the search results.

� When a query returns no results for any of the an-
swers, we use a series of “fallback” queries that pro-
gressively relax the query. Quotes and words were re-
moved from each query until at least one answer pro-
duced a non-zero number of search results.

� Longer web pages tend to contain lists of links, es-
says, manifestos, and stories; in general, their content
is less useful for answering questions. Since search
engines typically do not provide query syntax for re-
strictions on page size, we used a first-order approxi-
mation where we excluded .pdf files from the results.



Table 1: Pseudocode for DistanceScore, our proximity
scoring method for favoring question words that appear
near (within rad words of) answer words.

// wordList is the document split at spaces
DistanceScore(wordList, qWords, aWords, rad)
score, answerWords = 0
for i = 1 to |wordList| do

if wordList[i] is in aWords then
answerWords = answerWords + 1
for j = (i-rad) to (i+rad) do

if wordList[j] is in qWords then
score += (rad - abs(i-j)) / rad

if answerWords == 0 then return 0
else return score / answerWords

4.2 WORD PROXIMITY MEASURES

Our heuristics for finding phrases are a specific variation
of the general strategy of using proximity. Our belief—and
that of many of the teams working on the TREC question-
answering track [32]—is that not only do answers appear
in the same documents as questions, but that they usually
appear near the question words. In order to test proxim-
ity measures, we downloaded the first 10 (or all, if there
were less than 10) pages Google returned for each query.
We score each document based on a heuristic named Dis-
tanceScore that gives more credit to question words that
appear closer to answer words in the document. Each such
question word contributes a score between 0 and 1 to the
score depending on how close the word is. A radius pa-
rameter controls what is considered near and how much a
word adds to the score. We use the average score per an-
swer word in the document to further penalize documents
where answer words appear frequently but question words
do not. Table 1 gives pseudo-code for DistanceScore.

Figure 1 shows the performance DistanceScore at various
values for the radius on three 90-question samples, along
with the performance of the naive method. Small random
question samples were used to reduce the download and
computation time required. DistanceScore performs rea-
sonably well, doing worse than the naive method at low
radius values but overtaking it at higher ones.

4.2.1 A Third Expert: Noun-Phrase Proximity

We developed a third strategy, also based on proximity.
Since requiring multi-word answers to appear as phrases
in web pages improved the accuracy of the naive method,
another plausible strategy is to do the same for each of the
noun phrases contained in the question. Noun phrases were
identified using simple heuristics based on Brill’s Part-of-
Speech tagger. We submitted each

�
noun-phrase, answer �

pair to Google and scored the results the same way as be-
fore. The result-count method produced poor results; how-
ever, downloading the returned documents and using Dis-
tanceScore to score each document worked well and pro-
duced results comparable to the previous two strategies.

Figure 1: Question-answering accuracy versus proximity
radius when using DistanceScore, as compared to the naive
method on three 90-question samples. Each line represents
performance on one sample.

4.3 COMBINING STRATEGIES

Among the naive, DistanceScore based on naive, and Dis-
tanceScore based on noun phrase strategies, at least one
has the correct answer for about 85% of the questions in a
180-question sample. To exploit this, we look to answer-
combining (“ensemble”) approaches used commonly in
machine learning, as summarized in [10].

Using the following formula, we attempt to combine our
three strategies, or “experts,” and produce a single score
for each possible answer:

ci � ∑wS ��� Si � max
�
S1 � � n �	� over all strategies

where ci is the combined score for answer i, wS is the
weight for strategy S, Si is the score for strategy S for an-
swer i, and n is the number of candidate answers.

Using the above formula to score candidate answers, we
were able to reach 70% performance on the question sam-
ple. The weights yielding this, found empirically, were
around 
 0 � 05 of wn � 0 � 40, wp � 0 � 15, wpp � 0 � 45 for the
naive, word proximity, and noun phrase proximity strate-
gies, respectively.

4.3.1 Combining Search Engines

In addition to combining strategies, we investigated using
multiple search engines to improve results. We modified
each of the three strategies to submit queries to AllTheWeb,
MSN Search, and AltaVista, using syntax appropriate for
each engine. The scores are combined using the same for-
mula as above. Table 2 shows the results for each strategy
using each search engine.

Google performs better than the other engines individu-
ally. However, we can combine the results from multiple
engines, much as we combined the opinions of multiple
strategies. Manually choosing a single set of weights for
each

�
method, engine � pair showed that combining results



Table 2: Performance of the three strategies using different
search engines.

engine naive proxim phr prox combined
Google 55.6% 55.0% 68.9% 70%

AllTheWeb 56.1% 51.7% 58.3% 66%
MSN 44.4% 48.9% 47.2% 58%

AltaVista 46.7% 55.6% 56.1% 68%

across engines could result in better performance. For ex-
ample, combining Google with AltaVista results in 75% of
the 180-question sample being answered correctly.

4.3.2 Confidence-Based Weight Assignments

However, choosing the weights manually was difficult. The
optimal weights are probably sample-dependent and prone
to overfitting; minor changes often led to 2-4% drops in
performance. We modified our formula to assign different
weights to each scoring method on a question-by-question
basis, using the “confidence” of each scoring strategy S:

� Let xS be the “confidence ratio” defined by

xS �
�

lowestscore � secondlowestscore if “not” question;
secondhighestscore � highestscore otherwise �

� Let T � ∑ � 1 � x4
i � over all strategies

� The weight for strategy S is wS � � 1 � x4
S � � T .

This assigns higher weights to more confident scoring
methods. We chose the ratio between the second-best and
best scores because we found a large difference in the ratio
when the correct answer has the best score (mean ratio of
0.34) versus when the incorrect answer has the best score
(mean of 0.58). Using these confidence-based weights
generally results in slightly worse performance than hand-
tuned weights, with Google falling to 69%, AltaVista to
65%, and the combination falling to 74% on the 180-
question sample. Nonetheless, we believe that automatic
confidence-based weights are more robust and less prone
to overfitting than hand-tuned weights.

5 DISCUSSION: QA MODULE

Below we discuss several issues that came up in the course
of building the question answering subsystem, and ways in
that it could be improved.

5.1 OVERALL PERFORMANCE

We used confidence-based weights with the three-strategy
method on the entire set of 635 Millionaire questions. The
Google-based question-answerer got 72.3% of the ques-
tions correct, while one that used Google and AltaVista
got 76.4%. On a set of 50 non-Millionaire trivia questions

obtained from the shareware trivia game “AZ Trivia,” the
Google and AltaVista-based answerer answered 72% of the
questions correctly.

We consider this to be good performance over the unstruc-
tured (and not necessarily correct!) data available from the
web, supporting our claim that the web can be an effective
knowledge base for multiple-choice question-answering.

5.2 CHOOSING GOOD WEIGHTS

In a few cases, using confidence scores to combine strate-
gies caused the system’s accuracy to fall below that of the
best single strategy. This probably means that the “confi-
dence ratio” is not a good heuristic for all scoring meth-
ods. The ratio is also difficult to compare between different
engine-method combinations. For example, All The Web’s
ratios with the proximity score are consistently low, which
translates into high confidence for many questions—even
though this strategy only answers about half the questions
correctly. Conversely, Google’s ratios with the noun-phrase
proximity score (which performs excellently) are consis-
tently high, leading to lower confidences. The PROVERB
crossword puzzle solver [16], which utilizes a similar ap-
proach to consider candidate answers from multiple ex-
perts, avoids this problem by allowing each expert to sup-
ply its own estimated confidence explicitly rather than ap-
plying a single function to every expert.

5.3 SAMPLE “PROBLEM” QUESTIONS

It appears that we have run into another example of the
80-20 rule. About one-quarter of the Millionaire questions
are “hard” for the program. Below are examples of such
questions that suggest areas in which a program trying to
use the web as a knowledge base would need to improve.

Common Sense. How many legs does a fish have? 0, 1,
2, or 4? This information may exist on the web, but is
probably not spelled out.

Multiple Plausible Answers. What does the letter “I”
stand for in the computer company name “IBM”? Infor-
mation, International, Industrial, or Infrastructure? “In-
formation” probably appears just as often as “international”
in the context of IBM.

Polysemy. Which of these parts of a house shares its
name with a viewing area on a computer screen? Wall,
Root, Window, or Basement? The words “root” and “com-
puter” often co-occur (e.g., the Unix superuser). This ques-
tion also suggests that biases in the content of the web—
originally by and for technical, computer-literate users—
may hamper using the web as a general knowledge base in
some instances.

Non-Textual Knowledge. Which of these cities is located
in Russia? Kiev, Minsk, Odessa, or Omsk? The program
doesn’t know how to read maps.



Alternative Representations. Who is Flash Gordon’s
archenemy? Doctor Octopus, Sinestro, Ming the Merci-
less, or Lex Luthor? The word “archenemy” usually ap-
pears as two words (“arch enemy”) on Flash Gordon (and
other) pages.

6 THE DM MODULE

Answering questions is only half the battle. In order to ac-
tually play Millionaire, the system must also decide when
to use a lifeline and when to “walk away”. In order to com-
pute its best next move, the decision-making module con-
structs a decision tree [23] that encodes the probabilities
and utilities at every possible future state of the game. The
full tree consists of decision forks for choosing whether
to answer the question, use a lifeline, or walk away, and
chance forks to encode the uncertainty of answering the
questions correctly. The best choice for the program is the
action that maximizes expected utility.

Utility is not necessarily synonymous with winnings in dol-
lars. For example, suppose a contestant is at the $500,000
level. Even if he or she believes that by answering the fi-
nal question his or her chances are fifty-fifty of winning ei-
ther $1 million or $32,000 (expected value $516,000), the
contestant will almost surely walk away with a guaranteed
$500,000 instead. To model such risk-aversion we give
the agent an exponential utility function u � x � � 1 � e �

�
x � k � .

For any finite k � 0, the agent exhibits risk averse behav-
ior, though as k � ∞, the agent becomes risk neutral (i.e.,
maximizes expected dollar value). In general, after playing
many games, more risk averse agents will earn less prize
money on average, though will have a smaller variation
(standard deviation) of winnings.

6.1 MODELING THE GAME

We use the following specifications to construct the deci-
sion tree and play the game:

� For all questions beyond the current question, chance
nodes are assigned probabilities based on historical
past performance on a sample of questions from the
associated difficulty level.

� For the current question (i.e., after the question has
been asked and analyzed), the current chance node
probability is 1 � xα, where x is the ratio between
the second-highest score and the highest score ob-
tained from the question-answering module (or the
lowest score and the second-lowest score for “not”
questions), and α is a tunable parameter that will be
examined later. This lets us estimate confidence in our
answer to the specific question being asked.

� The estimated future effect of lifelines on probabil-
ity p is given by the function f � p � � � p2 � 2p, or
the lifeline’s performance based on historical data,

Table 3: Results of playing 10,000 games with k � 250 � 000
and α � 4. The columns show the current prize level, num-
ber of games ending, number of correctly-answered ques-
tions, number of incorrectly-answered questions, times the
player “walked away”, number of lifelines used, number
of lifelines that caused the the player to change its answer
to the correct one, and number of lifelines that misled the
player.

Stage #-win #-wrong #-right #-stop llused llgood llbad
0 4676 820 9180 0 1838 614 0

100 1 781 8398 1 1653 535 0
200 3 749 7646 3 1464 504 0
300 5 1227 6414 5 2526 722 76
500 7 1099 5308 7 2212 538 67
1000 3700 1048 4260 0 2404 517 51
2000 42 881 3337 42 1597 335 38
4000 46 710 2581 46 1030 219 19
8000 97 610 1874 97 625 62 21
16000 76 451 1347 76 388 48 10
32000 815 351 996 0 181 30 17
64000 37 254 705 37 118 11 11

125000 99 115 491 99 124 11 0
250000 156 56 279 156 72 1 1
500000 125 39 115 125 15 0 0
1000000 115 0 0 115 0 0 0
Avg. right: 5.29, winnings: $26328.87

whichever is greater. This models the idea that us-
ing a lifeline should raise the estimated probability of
getting the question correct.

� When lifelines are used by the player, a new re-
sponse and confidence level are calculated based on
the new information received. For the 50/50 lifeline,
the new response is simply the remaining choice with
the higher score. The phone-a-friend and poll-the-
audience lifelines are taken as an additional “expert”
with a weight based on historical data.

6.2 PLAYING THE GAME: RESULTS

Table 3 shows the results of a risk-averse player (k �
250 � 000) playing 10,000 games using the above model us-
ing the question-answerer that uses Google and AltaVista.
Questions were selected randomly from all the available
questions in the appropriate difficulty level for each stage.
Figure 2 summarizes the relationship between k, average
winnings, and standard deviation. The more risk neutral
the program is, the more it wins, and the more its winnings
vary between games. Note that these points lie essentially
along an efficient frontier (i.e., any gain in expected value
necessitates an increase in risk [20]).

We also explored the effects of changes in α, the expo-
nent in the function used to convert confidence ratios into
probabilities. Figure 3 graphs average winnings versus α
and Figure 4 graphs the average number of correctly an-
swered questions versus α. Using higher α raises the pro-
gram’s estimated probability of answering a question cor-
rectly. Choosing α too low or too high hinders game per-
formance since the program chooses to stop too soon or in-
correctly answers questions that it is overconfident about.
While high α values can produce high average winnings, it



Table 4: Human performance on the television show as re-
ported on ABC’s website in July 2001, compared to the
computer’s performance when given no handicap, and a
six-question handicap.

Stage human (pct) computer (pct) 6-handi (pct)
0 14 (2.0%) 4676 (46.8%) 0 (0.0%)

100 0 (0.0%) 1 (0.0%) 0 (0.0%)
200 0 (0.0%) 3 (0.0%) 0 (0.0%)
300 0 (0.0%) 5 (0.1%) 0 (0.0%)
500 0 (0.0%) 7 (0.1%) 0 (0.0%)
1000 195 (28.6%) 3700 (37.0%) 5447 (54.5%)
2000 0 (0.0%) 42 (0.4%) 0 (0.0%)
4000 4 (0.6%) 46 (0.5%) 61 (0.6%)
8000 9 (1.3%) 97 (1.0%) 249 (2.5%)
16000 40 (5.9%) 76 (0.8%) 231 (2.3%)
32000 166 (24.3%) 815 (8.2%) 2337 (23.4%)
64000 92 (13.5%) 37 (0.4%) 139 (1.4%)

125000 89 (13.0%) 99 (1.0%) 370 (3.7%)
250000 48 (7.0%) 156 (1.6%) 504 (5.0%)
500000 18 (2.6%) 125 (1.3%) 311 (3.1%)
1000000 8 (1.2%) 115 (1.2%) 351 (3.5%)
Avg. winnings: $76497 vs. $26328.87 vs. $77380.90

Figure 2: Standard deviation versus average winnings as
k ranges from 5,000 to 400,000 and α is fixed at 4. The
gray point is a risk-neutral player. As k increases, average
winnings and standard deviation both increase.

comes at the cost of many more games (65%) resulting in
a $0 prize as the player is too confident during early ques-
tions and saves its lifelines for later use. An α of 4 seems
reasonable; about 47% of games result in $0 in that case,
and the average winnings are relatively high.

7 DISCUSSION: DM MODULE

7.1 HARD QUESTIONS EASY, EASY ONES HARD

Table 4 compares the program’s winnings to humans’ win-
nings based on data from the ABC website as of mid-July,
2001. A striking feature of the program’s performance is
how often it wins nothing compared to people. Humans
almost always answer the first several questions correctly;
however, some are so obvious that the question-answerer
cannot find the correct answer on the web. People gen-
erally do not encode common knowledge into their web
documents. As a result, while the web seems to be a good
knowledge repository for general knowledge, it is more dif-
ficult to use it as a common-sense database.

Figure 3: Average winnings versus α. Black points are for
a risk-averse player (k � 250 � 000); gray points are for a
risk-neutral player.

Figure 4: Average number of questions correct versus α.
Black points are for a risk-averse player (k � 250 � 000);
gray points are for a risk-neutral player.

Observe that even if the question answerer could achieve
a 95% success rate on early questions, it would still only
have a 77% chance of achieving the $1,000 milestone. Its
actual performance is worse, correctly answering 86% at
level 1 ($100, $200, and $300) and 75% at level 2 ($500
and $1,000). Table 3 shows that as a result the program
often exhausts its lifelines early in the game. On the other
hand, we believe our program would have the upper hand
against most people in a one-question, level 7, winner-
takes-all match.

7.2 SIX QUESTIONS TO HUMAN

We might ask how well the program fares when given a
handicap—that is, assuming that the program is able to an-
swer the first N questions correctly without using any life-
lines. Figure 5 graphs the program’s winnings versus its
handicap. With a six question head start (going for $4,000)
and all lifelines remaining, a risk-averse computer player
(k � 250000) averages $77,381 with a standard deviation
of $202,296.

Data from ABC’s website as of mid-July, 2001 indicates
that people on the show won about $76,497 on average
with a standard deviation of $140,441. This suggests that,
given a six-question handicap, the program performs about
as well as qualified human players (i.e., those who self-
selected to play the game, passed stringent entrance tests,



Figure 5: Average winnings versus handicap. Black points
are for a risk-averse player (k � 250 � 000); gray points are
for a risk-neutral player.

and likely practiced for the game). Table 4 shows that even
with the handicap, the program’s performance is more vari-
able than a human’s, both winning big and losing early
more often than people. However, its performance is still
comparable, with “only” six “easy” questions separating
the program from human-level performance.

8 OTHER APPLICATIONS

While designed to play Millionaire, our system has other,
more practical applications. The most straightforward is
simply as a general-purpose question-answering system
that can answer questions, provided a small pool of can-
didate answers can be provided or generated by some other
means.

Combining the question-answerer with the decision maker
can be useful in domains where a non-trivial penalty exists
for answering a question incorrectly. For example, our sys-
tem could be adapted to take the Scholastic Aptitude Test
(SAT), an exam where answering a question incorrectly re-
sults in a lower score than not answering.

The general strategy of using search engines to mine the
web as a giant text corpus shows promise in a number of
areas. For example, web sites which provide content in
multiple languages could become a knowledge base for au-
tomatic translation. Natural language processing programs
could use the web as a corpus to help disambiguate parsing,
or to find commonly occurring close matches to ungram-
matical sentences.

9 CONCLUSIONS AND FUTURE WORK

We find that the web is effective as a knowledge base for
answering generic multiple-choice questions. Naive meth-
ods that simply count search engine results do surprisingly
well; more sophisticated methods that employ simple query
modifications, identify noun phrases, measure proximity
between question and answer words, and combine results
from multiple engines do even better, attaining about 75%
accuracy on Millionaire questions. When coupled with a

decision-making module and given a six question handi-
cap, our system plays the game about as well as people.

We believe that our system can be marginally improved in a
variety of ways: for example, by employing better schemes
for weighting multiple scoring methods, or by narrowing
down the domain of a question and using domain-specific
search strategies. We are also excited about the potential
promised by approaches for structuring web data [4], al-
though we believe that advances in automatic techniques
for applying such structure (e.g., better natural language
processing and common sense reasoning [19]) will be re-
quired for these approaches to succeed.

The call for such advances is a familiar one. From natural
language processing to computer vision, a similar barrier
exists across many subfields of AI: easy tasks (for people)
are hard and hard tasks easy. While statistical and brute-
force methods can go a long way toward matching human
performance, an often difficult-to-bridge gap remains.
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