
Approximate Matching for Peer-to-Peer Overlays with Cubit

Bernard Wong∗

bwong@cs.cornell.edu

Aleksandrs Slivkins†

slivkins@microsoft.com

Emin Gün Sirer∗

egs@cs.cornell.edu

Abstract

Keyword search is a critical component in most content

retrieval systems. Despite the emergence of completely

decentralized and efficient peer-to-peer techniques for

content distribution, there have not been similarly effi-

cient, accurate, and decentralized mechanisms for con-

tent discovery based on approximate search keys. In this

paper, we present a scalable and efficient peer-to-peer

system called Cubit with a new search primitive that can

efficiently find the k data items with keys most similar

to a given search key. The system works by creating a

keyword metric space that encompasses both the nodes

and the objects in the system, where the distance be-

tween two points is a measure of the similarity between

the strings that the points represent. It provides a loosely-

structured overlay that can efficiently navigate this space.

This overlay also enables multi-keyword searches and

supports boolean expressions over keywords. We eval-

uate Cubit through both a real deployment as a search

plugin for a popular BitTorrent client and a large-scale

simulation and show that it provides an efficient, accu-

rate and robust method to handle imprecise string search

in filesharing applications.

1 INTRODUCTION

Peer-to-peer data distribution techniques have recently

become widely deployed because they are efficient, scal-

able and resilient to attacks. Recent studies indicate that

at least 71% of the data volume on long-haul links is due

to peer-to-peer filesharing applications [34]. Yet locating

content in a peer-to-peer system poses significant prob-

lems. Imprecision stemming from partial specifications

of keywords, common variations of search terms and

misspellings are common. For instance, approximately

20% of all Google queries for “Britney Spears” misspell

the artist’s name [1]. Efficiently routing a query to a set

of objects whose keys are close but not identical to the

search key is a difficult problem known as approximate

matching.

Modern peer-to-peer substrates do not provide effi-

cient primitives for approximate matching. Unstruc-

tured peer-to-peer systems such as Gnutella [2] provide

a search primitive, which is typically based on query

∗Dept. of Computer Science, Cornell University, Ithaca NY, 14853.
†Microsoft Research, Mountain View, CA 94043.

broadcast 1. Gnutella nodes receiving the search query

match it against their database of known items using a

fuzzy similarity metric to yield approximate matches.

Such broadcast-based approaches are inefficient as they

may take up to N hops in the worst case, where N is

the number of hosts, and place a superlinear aggregate

load on the network. In contrast, structured peer-to-

peer systems [39, 41, 47, 36, 29, 24] provide an efficient

lookup primitive that can typically locate a target within

O(log N) hops. While these systems provide strong

worst-case bounds, the lookup operation does not per-

mit approximate matching. Naive approaches to layer

approximate matching on top of a DHT lookup, by in-

serting each object under all possible key variations or

performing every query in parallel with all variants of the

search key, lead to highly inefficient solutions. Systems

that permit range lookups [14, 17] can perform a lookup

within a range defined by numeric coordinates, but are

difficult to adopt for use with approximate string match-

ing. Overall, existing systems provide inefficient and ap-

proximate search or efficient and precise lookup, but not

efficient and approximate match. As a result, the highly

popular BitTorrent distribution mechanism still relies on

centralized components called torrent aggregators for the

initial search, rendering it vulnerable to a variety of at-

tacks. For example, the world’s largest torrent aggregator

has been the target of attacks by hackers [3], was forced

to shut down temporarily [4], and may be forced to shut

down permanently [5].

In this paper, we present Cubit, a scalable peer-to-peer

system that can efficiently find the k closest data items

for any search key. The central insight behind Cubit is to

create a keyword metric space that captures the relative

similarity of keywords, to assign portions of this space to

nodes in a light-weight overlay and to resolve queries by

efficiently routing them through this space. The system

comprises a protocol for object and node assignment, a

gossip-based protocol for maintaining the overlay, and

a routing protocol to efficiently route queries. The fo-

cus of Cubit is on providing approximate keyword search

for multimedia content with limited content description.

Keywords are derived from the content’s filename and

information specific to the content type, such as the com-

ment section of torrent files or the extended video infor-

1Optimizations, such as supernodes and expanding ring search,

make the broadcast process more efficient, but the primitives are still

based fundamentally on flooding.

1



mation for YouTube video clips.

An efficient algorithm, based on small-worlds net-

works [26], for navigating this keyword metric space en-

ables Cubit to quickly identify approximately matching

objects. Cubit assigns a random location in space to

each overlay node, and each node maintains the set of

objects for which it is the closest. Objects are further

replicated to a few closest peers to ensure high availabil-

ity. Each node keeps track of neighbors in a concentric

ring structure based on edit-distance that provides a node

with near authoritative information about its local re-

gion, and with sufficient out-pointers to forward queries

towards more authoritative nodes. Cubit discovers the

nodes with keywords that are similar to the search term

by first examining its local ring members, and retriev-

ing additional closer candidate nodes from these selected

members. The search is repeated with these new candi-

dates that have more information in the proximity of the

search term’s region than the previous members. This

protocol quickly converges to the closest nodes with a

high success rate.

Search queries in Cubit are not limited to single key-

words. The search primitive supports using a multi-

word similarity metric to match search queries to ob-

jects. Cubit also supports combining keywords using

user-specified boolean operators, enabling users to pre-

cisely define their search query. This is done efficiently

by leveraging probabilistic data structures to represent,

disseminate, and operate on relatively large intermediate

result sets with low, constant size overheads.

Traditional load-balancing techniques for DHTs that

replicate objects to nearby neighbors cannot be used for

approximate matching, as queries cannot be safely short-

circuited unless an exact match is found. We introduce

a novel load-balancing technique based on virtual nodes

to disperse hot-spots in keyword popularity that supports

short-circuiting queries for approximate matches.

We evaluate Cubit through both a real deployment in a

search plugin for Azureus, a popular BitTorrent client,

and large-scale simulations. Cubit outperforms DHT-

based approximate search techniques, requiring an or-

der of magnitude fewer RPCs; it can successfully answer

30% more queries than DHTs using Soundex hashing,

and can accommodate any language for which a word

similarity metric can be defined. Currently, there are

more than 6, 000 active users of the Cubit search plugin.

Overall, this paper makes three contributions. First, it

describes a keyword space that captures the similarity of

keywords, and outlines a scalable and efficient protocol

for routing queries to nodes that are closest to a search

term in the space, thus yielding a DHT with an approx-

imate match primitive. Second, it puts Cubit in context

of prior theoretical work on small-world networks, and

obtains provable small-world guarantees for the routing

protocol which (unlike the notions from prior work) ap-

ply to the keyword space. Finally, the paper demonstrates

through both a real deployment and large-scale simula-

tions that the system is accurate, efficient, and robust. In

particular, it can place the target object in the top 20 re-

sults for more than 94% of the queries even with a high

degree of perturbation in the search terms.

2 APPROACH

An object stored in Cubit is characterized by one or more

keywords. Cubit’s approach to approximate matching

relies on an accurate notion of distance between key-

words. Such distance should correspond to our intuition

on which keywords are similar and which are different.

The choice of any particular distance is driven by domain

requirements; the Cubit’s core is agnostic to this choice.

For example, Euclidean distance would be a reasonable

choice if a keyword is a vector of network coordinates of

a node (e.g. [33, 18]), whereas relative entropy would be

more appropriate for representing the distance between

the feature vectors of two images (e.g. [32]).

Keyword space. In this paper, we focus on keywords

that are (short) text strings, such as artist names or words

in a movie title. Our notion of distance targets mis-

spellings; in particular, the distance between a given key-

word and its misspelling should be small. Cubit mainly

uses the most common notion of distance on strings,

the Levenshtein distance, commonly known as the edit

distance. It is equal to the minimum number of inser-

tions, deletions and substitutions needed to transform

one string to another. We also evaluate Cubit using the

Damerau-Levenshtein distance, an extension of the edit

distance that includes the transposition of two characters

(a common typo) as a single operation. Once the notion

of distance is fixed – throughout the paper it will be the

edit distance, unless noted otherwise – the keywords in-

trinsically lie in the keyword space, a metric space on

keywords with a metric given by the edit distance.2

Consider a typical keyword space taken from the

movie database released by Netflix [6] consisting of

about 12, 000 keywords from 17, 770 movie titles. By

definition, all edit distances are integer values. Since

most keywords are short, distances in the keyword space

tend to be small – e.g. the median is 5, and the 90-th

percentile is 9. Thus the size of a ball around a typical

node grows with the radius much faster than (say) in a

two-dimensional grid. In fact, a typical keyword space is

very different from the “standard” metric spaces such as

Euclidean space. To appreciate this difference, consider

the example in Figure 1 with a set of five keywordswhich

cannot be embedded into the coordinate plane. Such an

2Ametric space on a set X is a pair (X, σ), where σ is a metric, i.e.

a non-negative symmetric function σ that obeys (σ(a, b) = 0 ⇐⇒
a = b) and triangle inequality σ(a, c) ≤ σ(a, b) + σ(b, c).

2



Figure 1: The edit distance between keywords: five keywords

which cannot be embedded into the coordinate plane so that all

distances are preserved. Preserving the distances between four

nodes (all but ring) distorts the distances to the fifth node.

embedding becomes increasingly more inaccurate with

additional keywords, even if we allow more dimensions.

Cubit’s use of the keyword space obviates such an inac-

curate embedding.

Multi-Keyword Matching. Search queries typically

consist of more than one keyword. Moreover, not all key-

words relevant to the desired object may be included in

the query, and some of the keywords may be misspelled.

For example, a user may search for a long movie title us-

ing only a few (misspelled) keywords among those that

appear in the title. Cubit matches multi-keyword queries

to objects using the phrase distance between a query and

an object, which we define as the sum, over all search

terms, of the minimal edit distance between the search

term and the object’s keywords. (Note that the ordering

of keywords does not matter.)

Cubit also supports user-specified boolean expressions

over keywords and phrases to enable the construction of

fine-grained, multi-keyword search queries. A phrase in

the boolean expression matches an object if the phrase

distance between the two is smaller than a threshold

value, defined as the user-specified error probability per

character times the phrase length. Objects that satisfy the

boolean expression are returned to the user.

Node ID Assignment. Cubit nodes are distributed in the

same space as keywords. Each node in Cubit is assigned

a unique string ID chosen from the set of keywords as-

sociated with previously inserted objects in the system.

The ID of a node determines its “position” in the key-

word space. This position determines how a given node

is used in Cubit. First, each Cubit node is responsible

for storing the set of keywords for which it is the clos-

est node. Second, Cubit implements a distributed proto-

col which navigates through nodes in the keyword space,

gradually zooming in on a neighborhood of a given (pos-

sibly misspelled) keyword, and thus locates nodes that

store possible matches. The details of the protocol are

not critical at this stage; the crucial point is that the nav-

igation happens within the keyword space rather than on

a ring or some other highly structured artificial routing

space of a typical structured peer-to-peer network.

Node IDs are chosen to provide a good coverage of

the keyword space. A natural approach is to choose node

IDs at random. Since the distribution of words in a hu-

man language is known to be very different from that of

random strings, we choose node IDs at random among

keywords. Specifically, at join time each node indepen-

dently selects a random keyword, ensuring uniqueness

by detecting ID collisions.

Navigation. The navigation protocol is the core compo-

nent of Cubit. To support this protocol, Cubit creates and

maintains a multi-resolution overlay network on nodes

such that each node has several peers at every distance

from itself; the peers at a given distance are chosen to

maximize the coverage of that region. Such overlay de-

sign is inspired by the small-world construction [26] in

which a grid is augmented by a sparse set of randomly

chosen edges, with roughly the same number of edges

for each distance scale. In the resulting graph a simple

greedy routing algorithm (which on each step minimizes

the distance to target) succeeds in finding short routes to

any given target with high probability.

In Cubit, the distance scales are linear rather than ex-

ponential because the keyword space has a very small

diameter. The small-world-like overlay is created via

an underlying low-overhead gossiping protocol under

which nodes randomly exchange peer identifiers and thus

randomize their peer sets. Since the distance to the tar-

get can be easily computed from the corresponding node

ID, the greedy routing algorithm requires very little state

and is easy to implement in practice. Both the overlay

creation and the small-world navigation happen, essen-

tially, in the keyword space. In Section 5 we discuss how

the small-world navigation is affected by the properties

of this space.

3 FRAMEWORK

The basic Cubit routing framework builds on the small

world overlay introduced in Meridian [44] for routing

in the network latency space. The framework relies on

multi-resolution rings to organize peers, a ring member-

ship replacement scheme to maximize the usefulness of

ring members, and a gossip protocol for node discovery

and membership dissemination.

Multi-Resolution Rings. Each Cubit node organizes its

peers into a set of concentric rings. In each ring, a node

retains a fixed number, kring, of neighbors whose dis-

tance to the host lies within the ring boundaries. This

ring structure enables a Cubit node to retain a relatively

large number of pointers to other nodes within its vicin-

ity, while also providing a sufficient number of pointers

to far-away peers.

The Cubit ring structure is illustrated in Figure 2. The

3



Figure 2: A Cubit node organizes its peers into concentric

rings, each with a fixed number of nodes. In this example, the

solid circles represent peers in node A’s peer-set, the empty

circles represent other nodes, and the squares represent object

keywords in the system. The shaded region depicts the sub-

space that is closer toA than any other node. The master record

for each keyword in the shaded region is stored at node A.

ith ring has inner radius Ri = αi and outer radius Ri+1,

for i ≥ 0, where α is a constant. (We use α = 1.) Each
node keeps track of a finite number of rings; all rings

i > i∗ for a system-wide constant i∗ are collapsed into a
single, outermost ring that spans the range [αi∗,∞].

In addition to the multi-resolution rings, each node

maintains a small leaf set, a set of nodes used for ob-

ject replication management and collision detection on

node joins. The leaf-set contains a node’s (βfrepl)-closest
neighbors, where β ≥ 1 is a parameter and frepl is the
replication factor; that is, the number of nodes at which

each keyword is replicated.

Ring Membership Management. The number of nodes

per ring, kring, represents a trade-off between accuracy

and overhead. A large value of kring allows each node to

retain more information for better route selection during

query routing, but requires additional overhead in both

memory and bandwidth. The utility of a ring member is

in relationship to the amount of diversity it can provide to

the ring. Diverse ring members provide better coverage

and minimize “holes” in the keyword space, reducing the

likelihood that a node is overlooked in query routing.

For each ring, the node retains a constant number lring
of additional nodes that serve as potential ring candi-

dates. During ring membership selection, an infrequent

periodic event, the node selects a the subset of kring ring
members from the kring + lring candidates. The goal is

to achieve a good coverage of the corresponding annulus

in the keyword space. The specific heuristic used to ac-

complish this is to assign each candidate node a point in

the (kring + lring)-dimensional space, where each dimen-

sion represents its distance to one of the candidate nodes,

and choose a subset of kring nodes that forms a polytope

with the largest hypervolume. The quality of the local

embedding used in the polytope computation is not criti-

cal. Any heuristic for picking a geometrically diverse set

of peers would suffice; the polytope volume provides a

principled way to select such diverse peers [44].

Gossip Based Node Discovery. Cubit uses a standard

anti-entropy push-pull protocol [21] for node discovery

and dissemination. At each gossip round, a Cubit node

collects a random selection of its ring members, and

pushes this collection along with its own node informa-

tion to a randommember in each of its rings. At the same

time, it pulls back a random selection of nodes from each

of the selected ring members. The exchanged nodes are

kept as members in the appropriate ring or as replace-

ment candidates if the ring is full.

Additionally, nodes exchange their leaf-set with their

leaf-set members periodically at a more frequent rate, to

ensure that changes to the leaf-set are disseminated more

quickly than changes to more distant neighbors.

Replication Management. Cubit replicates objects in

order to achieve high availability. The number of replicas

of an object naturally falls over time as nodes exit the

system. We introduce a simple replication management

protocol to maintain the number of replicas at the desired

level frepl.
The primary node for a given keyword is the one clos-

est to the keyword, with a fixed tie-breaking rule. This

node is responsible for the keyword and its associated

objects, and the replication thereof. Each node period-

ically checks if it is the primary node for the keywords

currently at the node. This check can be performed lo-

cally by comparing the keywords with the node IDs of

the nodes in the leaf-set.3 Each node ensures that an ob-

ject is replicated at the frepl − 1 closest leaf-set members

for each of its keywords that map to that node. Missing

replicas are re-created from the primary copy and dis-

seminated to the appropriate nodes. Replicas are reaped

locally at the expiry of their leases.

At an even lower periodic rate, each node verifies that,

for each of the secondary replicas it owns, the primary

node for the replica has a copy of the object. This ad-

ditional check ensures that the primary node will even-

tually have a copy of the object if there exists a replica

somewhere in the network, limiting the impact of tran-

sient routing errors that cause incorrect initial placement

of the replicas.

Load Balancing. Since search terms tend to follow

a Zipf distribution, the resulting skewed load distribu-

tion can lead to excess routing load on nodes within the

vicinity of popular keywords. Traditional DHT-based

load balancing techniques [35, 19, 38] based on object

caching by intermediate nodes are not applicable to Cu-

3It is possible (though unlikely) that for a brief time interval two or

more nodes will consider themselves primary for the same keyword.

Such behavior does not reduce accuracy of the search protocol. At

worst, it can only increase replication level.

4



Figure 3: Cubit’s load-balancing protocol prevents popular

keywords from overwhelming a node. In this example, the

keyword “love” is closest to node A and is generating a high

degree of load. Node A creates a virtual node around the key-

word, which includes its leaf set and all objects within a p edit-

distance radius. This virtual node is sent to A’s nearest neigh-

bors to the keyword. Queries that arrive at these neighbors for

keywords within the region can be answered without node A.

bit, as an intermediate node can not safely short-circuit

a search query unless it can find an exact match. We in-

troduce a novel load-balancing technique that supports

short-circuiting of queries for approximate matches.

In Cubit, if the load generated by queries for a popular

keyword w overwhelms the available resources of node

i, the node manufactures a virtual node at w with all the

information it has on that region in the keyword space.

This includes the objects in the region and the node’s

leaf-set, allowing the virtual node to answer queries on

its behalf for that region. The virtual node is dissem-

inated to node i’s moff nearest neighbors to w, which

are the most likely locations to intercept and short-circuit

search queries for w. Node i is then tasked with keeping

the moff virtual nodes updated with changes to objects in

the off-loaded region as well as changes to its leaf-set. If

one of the moff nodes becomes overwhelmed, it can re-

quest node i to increase the off-loading factor moff. Vir-

tual nodes are not disseminated via gossip and thus do

not skew the node distribution. This off-loading oper-

ation disperses hot-spots in keyword popularity without

requiring global information or coordination. Figure 3

illustrates the protocol.

4 QUERY ROUTING

The following sections describe protocols that make use

of the basic infrastructure described in Section 3 to pro-

vide the necessary primitives for performing approxi-

mate keyword matching.

Object Insert. An object in Cubit is fully described by

a set of keywords. In the case of our BitTorrent imple-

mentation, these keywords are taken from the filename

and embedded comments in the torrent file. A copy of

the object descriptor is replicated at the r closest nodes

to each of its keywords. The form of the object descrip-

tor is unrestricted; in our BitTorrent implementation, a

Algorithm 1 SEARCH PROTOCOL

Require:
E: Search event R: Local ring set

U: Outstanding queries H: Leaf set

1: N← E.GETREMOTENODE(), I← E.GETQUERYID()

2: K← E.GETFANOUT(), T← E.GETKEYWORD()

3: if E.TYPE() = SearchRequest then

4: A← GETKCLOSESTNODES(T, K, R + H)

5: N.SEND(SearchReply, I, T, A)

6: else if E.TYPE() = SearchReply then

7: C← E.GETRESULTS() - CHECKED[I] - PENDING[I]

8: CHECKED[I]← CHECKED[I] + {N}
9: PENDING[I]← PENDING[I] + C - {N}
10: A← CHECKED[I] + PENDING[I]

11: A← GETKCLOSESTNODES(T, K, A)

12: if A ⊆ CHECKED[I] then

13: for all V in A do

14: V.SEND(FetchObjRequest, I, E.SEARCHTERMS())

15: else

16: for all V in A ∩ C do

17: V.SEND(SearchRequest, I, K, D, T)

object descriptor is made up of the set of keywords and a

pointer to the owner of the torrent file.

When a Cubit node receives an object insertion re-

quest, it concurrently issues a closest node search for

each keyword using the search protocol described in the

next section. The object is initially inserted at the clos-

est node, and the the closest node further replicates the

object to the frepl - 1 closest neighbors to the keyword,

chosen from peers in its leaf-set.

Search Protocol. For the basic (non-boolean) queries,

the goal is to obtain the k* objects nearest to the set of

keywords, as measured by the phrase distance, where k*
is a parameter in the system. For each keyword in the

search phrase, the protocol obtains the k* closest objects
from each node which meets the following edit distance

criterion: its ID is within an edit-distance of q from the

keyword, where q is the product of the keyword length

and the expected number of perturbations per character

(which is a parameter in the system). The protocol se-

lects nmin closest nodes if fewer than nmin nodes meet

the criterion, where nmin is called the search fan-out.

The protocol runs from a fixed node, called the local

node. It maintains three lists: the checked list of nodes

that have already been queried, the pending list of nodes

waiting to be checked, and the failed list of nodes such

that the corresponding RPC failed or timed out. Initially

all three lists are empty.

The protocol inserts the local node into the pending

list and enters the following loop. If there exists a node

i in the pending list that meets the edit-distance criterion

or is equidistant or closer to the keyword than the closest

nmin nodes in the checked list, the local node performs

an RPC to node i for some of the members in its ring

sets: either for all nodes that meet the the edit-distance

criterion or for the lmin closest neighbors to the keyword,

for some constant lmin ≥ nmin, whichever is larger. If the

5



RPC fails or times out, node i is moved from the pending

list to the failed list. Otherwise, it is relocated to the

checked list and the new nodes are placed in the pending

list unless they have already been checked or have failed

a previous RPC. The loop terminates if such node i does
not exist.

The k* closest objects to the keywords are retrieved

either from all checked nodes that meet the edit-distance

criterion, or from the nmin closest checked nodes,

whichever set is larger. The collected objects for all the

search terms are ordered by their phrase distance and the

k* closest objects are returned as the result of the search.
Algorithm 1 is the pseudo-code for the search proto-

col. The edit-distance criterion checks are omitted to im-

prove the clarity and readability of the protocol. Figure 4

illustrates an example search query.

Boolean Queries. Advanced search queries in Cubit

are constructed as boolean expressions, where each term

in the expression is either a keyword or a phrase. The

boolean search protocol converts a boolean expression

into disjunctive normal form, creating a set of conjunc-

tion clauses that are connected by OR operators. It uses

the standard search primitive to find objects within a

threshold phrase distance from each positive term in each

clause. The standard search is modified to include all the

negative terms in the same conjunction clause that act as

filters, ensuring that it avoids returning objects within the

threshold distance of these negative terms without requir-

ing explicit searches on them. The union of the results

from the conjunction clauses is returned.

As the number of objects matching a single keyword

can be very large, the collection of intermediate results

are sent as Bloom filters [15] to reduce the bandwidth re-

quirement of the protocol. The Bloom filters are of suf-

ficient size to distinguish between thousands of objects

with a very low (0.1%) false-positive probability and re-

quires several orders of magnitude less space than send-

ing the actual objects. The compressed Bloom filters are

usually only hundreds of bytes in size in our experiments.

Since Bloom filters support union and intersection oper-

ations, all intermediate set operations can use the Bloom

filters directly. The actual objects that make up the final

filter are fetched from the closest nodes of the positive

search terms in a final request. In this request, the closest

nodes are tasked with repeating their previous search but

would only return objects that are in the final filter.

Node Join. A new node first contacts its given seed

nodes to obtain their node IDs and, through a random

walk, discovers additional nodes in the network and ob-

tains random keywords from each node. After collect-

ing a sufficient number of nodes, it issues a closest node

search for each received keyword. If the closest node’s

ID is different from the keyword used in the search, then

the keyword is used as the node ID for the new node.

Simultaneous node joins can, with a very small probabil-

ity, result in more than one node with the same ID. In this

case, the leaf-set discoverywill ultimately alert the nodes

of the collision, and the node with the lower IP address

will drop out and rejoin the system.

Once a unique ID is selected, the new node obtains ad-

ditional ring members from the ring members of its clos-

est node. It also retrieves the primary replicas of objects

with keywords that are closer to the new node than the

node they are currently residing at. The protocol for this

operates iteratively. It asks each of its k closest nodes if

there are any primary replicas that should be copied to

the new node that it does not already have. If at least one

is closer, the protocol repeats with a larger k until no new

primary replicas that should be copied are discovered.

Security. A formal treatment of the security properties of

a gossip-based small-world network is beyond the scope

of this paper. We describe some common attacks tar-

geting the Cubit layer and outline changes to the routing

protocol to address them. These changesmay incur small

performance penalties to query routing.

Keyword Hijacking. An attacker can arbitrarily choose

as its node ID a keyword for which it wants to return

false information. Such information censorship is possi-

ble with unmodified Cubit as the correct execution of the

node join protocol cannot be verified by other nodes in

the network. To protect against this attack, Cubit can use

a node ID selection protocol that deterministically con-

structs IDs from the IP address of the node. Each node

is seeded with the same source of keywords, such as a

dictionary, and the hash of the IP address is used as an

index into the keywords for selecting the node ID. A re-

mote node’s ID is verified before it is added into a node’s

ring set or before it is used in query routing. This modifi-

cation primarily affects the distribution of objects across

the nodes, so the set of seeded keywords should resemble

the set of all keywords in the system. The seeded key-

words should at least be taken from the same language

as the keywords in the system.

Query Disruption. An attacker can try to disrupt query

routing by returning false information. The disruption

can be significant in a localized region, prematurely ter-

minating search and insertion queries. This attack can

be circumvented without changes to the existing query

protocol; it can be mostly negated by an increase in the

fan-out factor nmin. A query only terminates once the top

nmin nodes to the search term is found. By increasing the

nmin, an attacker has a proportionally smaller influence

on query routing in the region. Queries can typically

just route around non-cooperatingnodes. Increasingnmin

comes at a price of additional overhead in query routing.

In addition, heavier weight techniques such as PeerRe-

view [23] can be used to identify misbehaving nodes and

cleave them from the network.

6



Figure 4: The Cubit search protocol iteratively zooms in on the target region. In this example, x is the location of the search term

in the keyword space, the solid circles are node A’s peers, empty circles are other nodes, and the circle around x includes all nodes

within edit-distance q of x. Node A first finds the nmin = 2 closest nodes to x from its peer-set, and requests their nmin closest

nodes. Then two new closer nodes are discovered and subsequently sent the same query. The protocol terminates when all nodes

within the circle around x, or the nmin closest nodes have been discovered. These nodes are queried for their closest objects to x.

Spam Injection. An alternative method to disrupt the

system is to increase the noise to signal ratio of the key-

words and objects in the system. This attack can be ad-

dressed in a number of ways. Cubit can provide object

insert capabilities only to trusted users by requiring ob-

jects to be signed by a certificate authority. Keyword tar-

geted attacks can be bounded by limiting the injection

rate. A node can reject an insert request if the same node

has been repeatedly inserting the same or similar key-

word. A more complete solution is the introduction of a

distributed reputation system [43,20], where poorly rated

objects are either discarded or are given a lower rank in

response to search queries.

Sybil Attacks. Sybil attacks can allow the attackers to

take control of a region of the keyword space. Counter-

measures such as [30, 16] can be used to lower the join

rate of the attackers, reducing the extent of the attack,

or make the attack prohibitively expensive to undertake,

though standard impossibility results apply [22].

5 THEORETICAL ANALYSIS

The basic search protocol in Cubit performs a decentral-

ized nearest-neighbor search on the node IDs, using a

greedy routing algorithm on the overlay links. The goal

of this protocol is to find near-optimal matches using a

small number of hops. In this section, we lay out some

principled reasons why this protocol is plausible.4 The

state-of-the-art theoretical approach is based on small-

world networks [26], where one investigates whether the

routing performance can be guaranteed by randomness

and diversity in the overlay.

Let us put Cubit in the context of prior work on

small worlds.5 A typical small-world analysis relies

on the properties of the underlying graph or a metric

space. The prior work offers small-world constructions

for specific graphs such as grids, trees and hypercubes,

4The real-life performance is validated empirically in Section 6.
5See [26] for a comprehensive survey; we omit further citations.

or “nice” metric spaces such as those with bounded

growth, treewidth, grid dimension, or doubling dimen-

sion. (These constructions discuss the existence of a

suitable overlay, rather than a distributed construction

thereof in a peer-to-peer setting.) The provable guar-

antees tend to be asymptotical, such as O(log N) hops,
where N is the number of nodes. The literature also pro-

vides several impossibility results for some seemingly

“tractable” metric spaces and “reasonable” overlay con-

structions.

Underlying the small-world overlay in Cubit is the

keyword space – the metric space on keywords in which

distance function is the edit distance. Indeed, the overlay

construction in Cubit is tuned to the edit distances be-

tween node IDs (which are essentially a random subset

of keywords), and the “greedy routing” is greedy with

respect to the edit distance between the node ID and the

target string. As we discussed in Section 3, a typical key-

word space is nothing like the spaces considered in prior

work on small worlds. Most notably, the distances in the

keyword space are small and take a very small number

of distinct values. Both the small-world-friendly proper-

ties from the prior work and the corresponding analyses

break simply because of the low maximal to minimal dis-

tance ratio.

The goal of this section is to understand small worlds

on the keyword space. We ask the following: what fea-

tures of the keyword space make a small-world-type

construction possible? In a more specific sense, we are

looking for features that enable a rigorous analysis.

We identify a property of a metric space which is cru-

cial for the algorithm, called progress ratio, verify that

this property holds on the keyword space, and show that,

given a uniform selection of node IDs and of ring mem-

bers, this property is sufficient to guarantee good perfor-

mance of the greedy routing. To the best of our knowl-

edge, this property and the corresponding analysis con-

stitute a novel small-world technique.

7



Setup. Consider the basic greedy algorithm: choose

any peer which is closer to the target if such peer exists,

and stop otherwise. This algorithm completes in a small

number of steps (bounded from above by the distance

from the original node to the query target) but may stop

far from the target. The search protocol used in Cubit

builds on this greedy search, but adds more redundancy

in order to improve accuracy.

We assume that the overlay is randomized. Specifi-

cally, we assume the following two properties:

(P1) node IDs are distributed u.a.r. 6 over Q,

(P2) for each ring i of each node x, the peers are dis-

tributed u.a.r. over nodes y such that d(x, y) = i.
Such assumptions are standard in the small-worlds liter-

ature. In Cubit, they motivate the peer-selection protocol

which randomizes and diversifies the peer sets.

Let us fix some notation. Let d(·, ·) denote the edit

distance on strings. Let Q be the set of all keywords.

Let Q∗ be the set of all queries that we are interested in,

e.g. all keywords with at most one misspelling. Each

Cubit node has an ID in Q. By abuse of notation, we

extend the edit distance d(·, ·) to nodes. For each string

w and radius r, the ball in the keyword space is denoted

B(w, r) = {u ∈ Q : d(u, w) ≤ r}.

Provable guarantees. Following the literature, we

would like to argue that every few hops the search al-

gorithm makes a significant progress towards the target.

In prior work, this meant decreasing the distance to tar-

get by a constant factor. In our setting, it suffices to make

any progress, i.e. decrease the distance by one.

Consider a query q ∈ Q∗. Let x be the current node,

and let r = d(x, q) − 1. We would like to guarantee that

the algorithm can make progress towards q, i.e. that x
has a peer in B(q, r). Intuitively, x is likely to have a

peer in B(q, r)∩B(x, r′), for some r′, if the intersection
is large compared to B(x, r′) and contains enough node

IDs; to ensure the latter, the intersection needs to be large

compared to B(q, r). To formalize this intuition, we de-

fine a quantity PR(x, q) which measures the likelihood of

making progress; we call it the progress ratio:

PR(x, q) = max
r′

|B(x, r′) ∩ B(q, r)|

max(|B(x, r′)|, |B(q, r)|)
.

Using the progress ratio, we formulate a “local” guar-

antee for a given (x, q) pair, and then use it to prove a

“global” guarantee for the search algorithm. (The proofs

are omitted due to space constraints.) Both guarantees

are probabilistic; we assume randomization properties

(P1-P2), and the probability is over the choice of node

IDs and peers. Let kring be the number of peers per ring.

6u.a.r. = uniformly at random. In fact, it suffices to use an approx-

imate u.a.r. assumption, e.g. each element x is drawn independently

with probability p(x) ∈ ( 1

2n
, 2

n
), where n is the number of elements.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

F
ra

c
ti
o

n
 o

f 
Q

u
e

ri
e

s

Progress Ratio

50th
25th
10th

Figure 5: The progress ratios for 1000 randomly chosen node

IDs and 500 randomly chosen queries. For each p = 10, 25, 50
we present a CDF plot for the p-th percentile progress ratio

rp(q), where the CDF is taken over all queries q. For instance,

a high value of r10(q) is a strong positive evidence: namely, for

90% of node IDs the progress ratio is better than r10(q).

Lemma 5.1 Fix query q ∈ Q∗ and node x. Suppose

there are k nodes within distance r = d(x, q) − 1 from

q. Then one of these nodes is a peer of x with probability

at least 1 − O(exp(−PR(x, q) × min(k, kring))).

Theorem 5.2 Fix query q ∈ Q∗. Suppose for some

k ≤ kring and each node x we have PR(x, q) ≥ 3

k
log N ,

where N is the number of nodes. Then with probability

at least 1−O(N−2) the greedy search algorithm always

finds a k-nearest neighbor of q .

Discussion. High progress ratio is similar to the ball

growth property in [25] in that it is also a local property

of balls in a metric space, and it enables a similar type of

analysis. However, the property in [25] is geared towards

low-dimensional grids and similar metric spaces, and is

not even remotely applicable to the keyword space.

Our analysis indicates that the progress ratio values on

the order of 1/kring tend to imply good performance of

the greedy routing. To verify that the progress ratio val-

ues are typically high, we considered the Netflix data set

as the keyword space Q. We picked 500 queries at ran-

dom from Q∗, and 1000 node IDs at random from Q,

and computed PR(x, q) for every id-query pair (x, q). To
characterize the progress ratios relevant to a given query

q, we let rp(q) denote the p-th percentile among the val-

ues {PR(x, q) : all nodes x}, and analyze how the values

rp(q) are distributed over the queries. These results are

summarized as CDF plots in Figure 5.

Interestingly, the progress ratio values for the Netflix

dataset are significantly higher than those for a set of ran-

dom strings with the same length distribution. Naturally

occurring keyword spaces differ from random ones in

ways that are essential to our problem. Not surprisingly,

our experiments show that the overall accuracy of Cubit

on the Netflix dataset is much better.

8



 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

F
ra

c
ti
o

n
 o

f 
S

u
c
c
e

s
s
fu

l 
Q

u
e

ri
e

s

Error Probability per Character

NetFlix
BitTorrent

Figure 6: Error probability per character vs. accuracy.

6 EVALUATION

We implemented the full protocol described in the pre-

ceding sections as an Azureus plugin. We evaluate Cu-

bit through both a large-scale simulation on real-world

datasets and a physical deployment on PlanetLab [12].

6.1 Simulation

We use three different real-world datasets to parameter-

ize our simulations. The first is the Netflix database [6],

consisting of 17, 770 movie titles. We collected our sec-

ond dataset by crawling a popular BitTorrent website for

media files, consisting of over 39, 000 torrents. These

two datasets represent different extremes, with the Net-

flix dataset providing clean input with no duplicate en-

tries, in contrast to the much noisier BitTorrent data. Our

third dataset is the CiteSeer [7] database with the titles of

over 400, 000 academic papers. While not representative

of file sharing content, the large dataset enables Cubit’s

sensitivity to the number of objects in the system to be

measured at a much broader scale.

The system is evaluated against search queries con-

structed from keywords of a randomly chosen title, with

perturbations introduced to simulate typos and spelling

variations. Only two-thirds of the keywords from each

title were used in each search query to closer emulate

typical user behavior. The error probability per char-

acter is the probability that, for each character in the

search string, the character has been replaced by a ran-

dom character. It is a measure of the signal to noise ra-

tio of search keys and is used to control the difficulty

of search queries, where a higher error probability rep-

resents a more difficult query. Additionally, we evalu-

ated search queries where keywords were modified with

real human typos and misspellings from the SearchSpell

database [8].

Because of the skewed distribution of English words

and the conservative way we are measuring success,

100% success is not always possible. For instance, a

3-typo query for the “Lost Ark” includes “Last Orc”

and might legitimately return an entirely different set of

objects; it is possible for the intended object to not be

present among the search results if the randomly intro-

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

DHT Cubit

N
u

m
b

e
r 

o
f 

R
P

C
 R

e
q

u
e

s
ts

 p
e

r 
Q

u
e

ry

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

DHT-Soundex
Random

Cubit-Lev
Random

DHT-Soundex
SearchSpell

Cubit-Lev
SearchSpell

Cubit-Damerau
SearchSpell

F
ra

c
ti
o

n
 o

f 
S

u
c
c
e

s
s
fu

l 
Q

u
e

ri
e

s

(b)

Figure 7: (a)Number of RPC requests per query for a DHT-

based system and Cubit. (b) Fraction of successful queries

with keywords created from random character perturba-

tions, and keywords created from the SearchSpell database.

The dotted lines show the metric upper-bounds.

duced typos veer into a different portion of the keyword

space. We nevertheless retain this conservative success

criteria, and indicate the highest achievable success rate

as the metric upper-bound where applicable.

In the following experiments, unless specified other-

wise, each test consists of 4 runs of 1024 nodes, 10 nodes

per ring (88.2 peers per node on average), an error proba-

bility per character of 0.25, a search fan-out of 2, a repli-

cation factor of 4, with 1000 search queries for each run.

The results are presented as the mean result of the runs,

and error bars represent 95% confidence intervals. Each

simulation run begins from a cold-start, with each new

node only knowing at most 8 existing nodes in the net-

work; additional neighbors are discovered through the

gossip protocol. An equal fraction of the movies are in-

troduced by each joining node.

Accuracy. We first examine Cubit’s accuracy with

search queries with increasing levels of difficulty. A

search query is considered to be successfully resolved

if the original movie it was derived from is a member

of the result set, essentially the first page of results pre-

sented to the user, which is at most 0.1% of the total

number of movies in the system. Our accuracy metric

is equivalent to recall, a common statistical classification

used in information retrieval 7. Figure 6 shows that Cu-

bit can successfully answer queries where a third of the

characters in the search string is expected to be erroneous

with more than 90% accuracy. Surprisingly, for queries

where half the characters in each search keyword are ex-

pected to be perturbed, Cubit is still able to successfully

resolve them more than 75% and 90% of the time for

the Netflix and BitTorrent datasets respectively. Cubit

achieves a higher accuracy on the BitTorrent dataset be-

cause the average number of words of a BitTorrent title

is 6.6, nearly twice that of a Netflix title at 3.6. A higher

number of words per title provides proportionally more

7One cannot meaningfully present precision, the complementary

classification to recall, as our datasets do not include relevance infor-

mation between objects.

9



 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1000  2000  3000  4000  5000  6000  7000  8000

F
ra

c
ti
o

n
 o

f 
S

u
c
c
e

s
s
fu

l 
Q

u
e

ri
e

s

Number of Nodes

Figure 8: Number of nodes vs. accuracy.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1000  2000  3000  4000  5000  6000  7000  8000

N
u

m
b

e
r 

o
f 

R
P

C
 R

e
q

u
e

s
ts

 p
e

r 
Q

u
e

ry

Number of Nodes

Per query
Per keyword

Figure 9: Number of nodes vs. RPC requests per query.

keywords per query which improves search accuracy.

The accuracy metric itself does not capture how much

work and how many nodes must be contacted to answer

the query. A DHT can be 100% accurate if it searches for

every misspelled version of a keyword, but would also

be highly inefficient. We illustrate the latent costs in Fig-

ure 7(a). We use a basic DHT implementation based on

Pastry [39] for comparison, with a base parameter of 16

and a replication factor of 4. The shortest search term

is used by the DHT, as it has the fewest error permuta-

tions. For search queries where exactly one error is intro-

duced to each keyword, a DHT solution requires nearly

900 RPC requests before finding the sought object. In

contrast, Cubit requires only 27 RPC requests, an order

of magnitude fewer than the DHT solution, for a query

accuracy of more than 96%.

Pairing Soundex hashing, a phonetic algorithm for

mapping English words by sound, with DHT routing, as

proposed in [46], enables approximate matching without

resorting to searching for every possible spelling permu-

tation. Figure 7(b) shows that this approach achieves a

success rate of 64% for keywords with random charac-

ter perturbations and 75% for keywords taken from the

SearchSpell database where some of the misspellings are

phonetically similar. Cubit using the standard Leven-

shtein distance achieves over 94% accuracy for random

character perturbations and 83% accuracy for Search-

Spell misspellings. The drop in accuracy is because

phonetic misspellings and character transpositions which

make up a significant portion of the SearchSpell database

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  50000  100000  150000  200000  250000  300000  350000  400000

F
ra

c
ti
o

n
 o

f 
S

u
c
c
e

s
s
fu

l 
Q

u
e

ri
e

s

Number of Unique Objects in the System

Figure 10: Number of objects in the system vs. fraction of

successful queries using the CiteSeer dataset.

do not match well with Levenshtein distance. Even an

ideal, centralized service struggles to meet our defini-

tion of accuracy when using the Levenshtein distance for

matching, with a metric upper-bound accuracy of 97%

and 86% for keywords with random character perturba-

tions and SearchSpell misspellings respectively.

In contrast, Cubit using the Damerau-Levenshtein dis-

tance, which counts the transposition of two characters

in a keyword as a single operation, reduces the distance

between the misspellings and their origin word and im-

proves Cubit’s accuracy to just under 90% for Search-

Spell misspellings with a metric upper-bound of 93%.

Damerau-Levenshtein based Cubit performs identically

with the same overhead in all other experiments as the

Levenshtein version; the transposition operation only

minimally affects the edit-distance between correctly

spelled words, and randomly generated misspellings and

their origin word. These results illustrate the importance

of pairing a distance metric that closely matches the ex-

pected type of errors.

Scalability. We next examine the scalability of the Cu-

bit framework. To be able to directly compare exper-

iments with different number of nodes in the network,

the number of nodes per ring is configured to be propor-

tional to the logarithm of the system size. Figure 8 shows

that search accuracy is largely independent of the system

size, with Cubit maintaining a 94% accuracy across the

tested system sizes. These results indicate that the greedy

search protocol very rarely terminates prematurely as a

small increase in the hop length due to an increase in sys-

tem size has a negligible effect on the accuracy. Figure 9

shows how the number of RPC requests per query and

per searched keyword grows with the number of nodes.

The growth rate is proportional to the maximal number

of hops times the number of nodes per ring. The former

is upper-bounded by a small constant, while the latter is

set to log(#nodes) yielding logarithmic scaling.

Another measure of scalability is Cubit’s sensitivity to

the number of unique objects in the network. To allow

for a more comprehensive evaluation, we use the Cite-

Seer dataset consisting of more than 400, 000 academic

10



 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0  5  10  15  20  25  30  35
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

F
ra

c
ti
o

n
 o

f 
S

u
c
c
e

s
s
fu

l 
Q

u
e

ri
e

s

N
u

m
b

e
r 

o
f 

R
P

C
 R

e
q

u
e

s
ts

Number of Nodes per Ring

Accuracy
RPC Requests

Figure 11: Number of nodes per ring vs. accuracy and the

number of RPC requests per query.

paper titles in our evaluation. In these simulations, rather

than returning 0.1% of the total number of unique objects

in the system as the result set, we fix the result set to 10

objects to allow for a fair comparison. Figure 10 shows

that there is an expected small linear decrease in accu-

racy with increasing number of objects in the system. A

fifty fold increase in objects results in less than 3% de-

crease in search accuracy. The search accuracy on the

CiteSeer dataset is considerably higher than on the Net-

flix dataset. This is primarily due to the relatively longer,

more distinctive titles found in academic papers, result-

ing in a sparser, more search friendly keyword space.

A significant concern with boolean search queries is

the large number of intermediate search objects that must

be sent between nodes. Cubit uses Bloom filters as inter-

mediate storage in order to reduce the bandwidth over-

head. To verify the technique’s effectiveness, we exam-

ine the bandwidth requirement of boolean searches on

the Netflix dataset which on average contains 3.6 key-

words per object. In our experiments, we use the con-

junction of two-thirds the total keywords of the object as

the boolean search expression. The median bandwidth

used per boolean search query is only 17 KB with only

trace amounts of false positives.

Parameters. The performance of Cubit depends on sev-

eral key parameters, such as the number of nodes per ring

and the query fan-out factor. The number of nodes per

ring represents a tradeoff between protocol maintenance

and query performance. A low nodes per ring value pro-

vides poor coverage of the space and requires more RPC

requests to complete a query, where a high nodes per ring

value requires additional state to be kept and maintained

at each node. Figure 11 shows that accuracy is mostly

unaffected by the number of nodes per ring, in contrast

to the number of RPC per query which decreases dramat-

ically from two nodes per ring to four, and flattening out

at sixteen nodes per ring.

The query fan-out bounds the number of closest nodes

a query traverses simultaneously, and can significantly

improve accuracy by circumventing dead-end paths. For

example, a query with a fan-out of two will attempt to

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1  2  3  4  5  6  7  8

F
ra

c
ti
o

n
 o

f 
S

u
c
c
e

s
s
fu

l 
Q

u
e

ri
e

s

Fanout

Figure 12: Search fanout vs. accuracy.

 0

 25

 50

 75

 100

 125

 150

 175

 200

 1  2  3  4  5  6  7  8

N
u

m
b

e
r 

o
f 

R
P

C
 R

e
q

u
e

s
ts

Fanout

Per movie
Per keyword

Figure 13: Search fanout vs. the number of RPC requests.

find the two closest nodes to the search term at every

step, essentially interweaving two simultaneous closest

node queries without introducing overlaps in the search

space. Figure 12 illustrate that increasing fanout from

one to two nets a 4% improvement in accuracy, with fur-

ther increases netting subsequently smaller gains. How-

ever, the accuracy comes at the cost of requiring addi-

tional RPC requests. Figure 13 shows that the number of

RPC requests increase linearly with the fan-out factor.

The object replication factor also plays a role in the

performance of the system. Figure 14 shows that increas-

ing replication from one to four increases search accu-

racy by more than 12%. Increasing replication beyond

four gives only marginal accuracy improvements.

Replication and churn. The object replication fac-

tor trades off accuracy against bandwidth for replica

management. Figure 14 shows that increasing repli-

cation from one to four increases search accuracy by

more than 12%. Increasing replication beyond four

gives only marginal accuracy improvements. The band-

width requirement is proportional to the replication fac-

tor, the average number of movies per node, and the node

churn rate. To quantify the bandwidth requirement for

replica management, we added churn to our simulations.

The node lifetime distribution was collected from our

Azureus deployment of more than 6, 000 Cubit users.

Under this realistic churn scenario, the bandwidth re-

quired for replica management is less than 1.6 KB/s for

each Cubit node, which compares favorably to 2 KB/s

used for the maintenance of the BitTorrent DHT on a host

11



 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1  2  3  4  5  6  7  8

F
ra

c
ti
o

n
 o

f 
S

u
c
c
e

s
s
fu

l 
Q

u
e

ri
e

s

Replication Factor

Figure 14: Replication vs. accuracy.

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

Churn Churn (4 fanout) Churn (8 replicas) Churn (both)

R
e

la
ti
v
e

 C
h

a
n

g
e

 i
n

 t
h

e
 S

u
c
c
e

s
s
 R

a
te

Cubit Configurations

Figure 15: Relative change in accuracy due to churn. Real-

istic churn rates have modest effects. Increased fanout or object

replication (or both) can compensate for the effects of churn.

with a 256 Kb/s upstream connection [9].

Beyond its effect on maintenance traffic, node churn

can also negatively affect search accuracy. This is pri-

marily due to stale ring members that create “holes” in

the keyword space, preventing queries from routing to

the target region. However, introducing node churn into

the simulation results in a barely perceptible decrease in

search accuracy (Figure 15). This is because the gossip

rate is sufficiently high to detect and remove stale ring

members. In our deployment, an average ring member

receives a gossip request every two minutes, and the ac-

tual measured median lifetime of a node is 20 minutes.

Raising the values of other system parameters, such as

the query fan-out and replication factor, provides ways to

maintain search accuracy under higher levels of churn.

Load-balancing. We next examine how well the load-

balancing protocol disperses hotspots in query routing.

In this experiment, we overload the system by issuing a

misspelled keyword query from 100 random nodes. In

response, the top ten most highly frequented nodes re-

quest their neighbors to create virtual nodes. We then re-

peat the queries and compare the concentration of queries

that frequent the top ten most visited nodes before and af-

ter virtual node creation. We vary the offload fan-out γ
and plot the average number of queries that frequented

the top ten nodes and their reduction in average load.

Figure 16 shows that the Cubit load-balancing protocol is

effective at reducing the load at request hotspot through

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 2  4  6  8  10  12  14  16  18  20  22  24  26  28  30  32
 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

L
o

a
d

 R
e

d
u

c
ti
o

n
 o

f 
th

e
 T

o
p

 1
0

 N
o

d
e

s
 (

%
)

#
 o

f 
Q

u
e

ri
e

s
 t

h
a

t 
F

re
q

u
e

n
t 

th
e

 T
o

p
 1

0
 N

o
d

e
s

Off-load Fanout

Load Reduction (%)
Average Load

Figure 16: Offload fanout versus load at hotspots.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

F
ra

c
ti
o

n
 o

f 
S

u
c
c
e

s
s
fu

l 
Q

u
e

ri
e

s
Error Probability per Character

Figure 17: Error probability per character versus the accu-

racy in the Azureus deployment.

the introduction of virtual nodes. Even an off-load fanout

of 8 can reduce the load by more than 40% on average.

6.2 Azureus Deployment

We implemented a Cubit plugin for the Azureus BitTor-

rent client to provide approximate matching of available

torrents. The torrents are currently taken from crawls of

popular torrent websites and from trackerless torrents in

the Azureus DHT. Torrents in the system automatically

expire after a set time-out; persistence beyond a single

time-out requires reinjections, similar to OpenDHT [37].

The system is currently deployed, with 107 Plan-

etLab nodes acting as gateway nodes to the network.

More than 10, 000 torrents have been injected into the

system, with hundreds of new torrents injected daily.

We examine Cubit’s accuracy on the Azureus deploy-

ment by issuing 125 search queries with different er-

ror probability per character values. Figure 17 shows

that Cubit can successfully answer queries where half

the characters are expected to be perturbed with more

than 90% accuracy which closely matches our simula-

tion predictions. There are currently more than 6, 000
active users. The plugin is available at our project web-

site at http://www.cs.cornell.edu/˜bwong/Cubit.

7 RELATED WORK

Cubit is a system for performing approximate matching

in peer-to-peer overlays. We separate past work into two

categories, routing in overlay networks and approximate

matching techniques, and survey both in turn.

12



Routing in overlay networks. Cubit is a loosely struc-

tured overlay network that most closely resemble a dis-

tributed hash table. It differs from previous DHTs [39,

41,47,36,29,24]by providing a novel approximatematch

primitive rather than supporting only precise lookups.

Query routing in Cubit is similar to routing in

CAN [36], SWAM [11], and Meridian [44]. CAN is a

coordinate-based approach in which each node knows

its immediate closest neighbor in each of the dimensions

and greedily routes to the destination. CAN works best

when the embedded node set resembles a grid or a torus;

it is not designed to work on highly non-homogeneous

point sets such as the (embedded) keyword space. Bor-

der cases in dealing with churn makes CAN difficult to

implement and deploy in practice. SWAM [11] is similar

to CAN but partitions the coordinate space into a Voronoi

diagram instead of a regular grid. This provides SWAM

with stronger guarantees in performing nearest neighbor

search, but incurs additional complexity and overhead for

the node join protocol.

While the Cubit framework builds on top of Merid-

ian [44], a system for resolving network-latency related

queries, the two systems differ inherently and signifi-

cantly in the problems they address, the way they per-

form routing, and the kinds of optimizations they em-

ploy. The Cubit framework is much more general in

that it supports distance metrics beyond network laten-

cies, and enables significantly more complex boolean

search queries. Since Cubit queries are more complex

because they necessitate finding the set of all nodes that

meet a particular constraint, and because Cubit nodes

constitute a key/value database instead of the more con-

strained node/latency space, the protocols for node join

and query routing are significantly different. Cubit also

introduces optimizations not applicable to the Meridian

context, such as mechanisms to proactively maintain ob-

ject replication for improved resiliency in a highly dy-

namic peer-to-peer environment, and to encapsulate and

offload keyword regions to nearby neighbors.

Several peer-to-peer systems, e.g. [41, 28, 27], use

overlay routing based on the small world networks [26].

These systems use a specific virtual space (e.g. a ring) in

which long links are introduced such that a simple greedy

routing protocol can find short routes. These systems are

inherently limited to precise lookups. A related line of

work considers small-world networks on arbitrary under-

lying spaces, see [26] for a survey. However, this line of

work does not tackle the issue of constructing a suitable

overlay in a distributed peer-to-peer environment.

Approximate matching. An alternative design (pro-

posed in [45]) involves representing keywords as points

in a low-dimensional Euclidean space. Once nodes and

keywords are embedded, techniques such as CAN [36]

and Meridian [44] can be used for navigation in that

space. While this approach gives a clean and intuitively

appealing representation of the keyword space, the lit-

erature on metric embeddings does not provide embed-

dings of edit distances into Euclidean space – even with

high dimension – that are known to have a sufficiently

high precision for the approximate matching of short

keywords. The embedding is prohibitively inaccurate in

practice, distorting the navigation.

Past work has proposed to use the Soundex algorithm

to encode keywords by their phonemes before indexing

them in a DHT [46]. Unlike edit distance, Soundex is

appropriate only for English keywords and is not effec-

tive against typing errors. Our evaluation compares the

performance of Cubit versus Soundex; while a Soundex

lookup is simpler, Cubit is more accurate.

DPMS [10] provides a less general form of approx-

imate matching suitable only for rearranged substrings.

Each document is associated with a set of keywords.

Keywords and queries are broken up into fixed size sub-

strings. A query match is found if its substrings are a

subset of the document’s substrings. The system checks

for subset inclusion probabilistically using Bloom fil-

ters [15]. The matching primitive in DPMS only accom-

modates substring matches, does not make a distinction

on substring ordering, and it does not find near-matches

for queries that are misspelled.

Squid [40] creates a multi-dimensional space using a

fixed number of keywords as axes. Each object is rep-

resented by a set of keywords, and its position in the

multi-dimensional space is based on the prefixmatch dis-

tance between the keywords and the axes. The multi-

dimensional space is flattened using space filling curves,

allowing storage and search to be performed on a DHT.

This scheme is primarily targeted at range queries on

search terms that are small variations of the axes key-

words, rather than for arbitrary search terms.

A number of systems make use of coding techniques

to provide approximate search. In P2P-AS [31], an error

correcting code is introduced that maps small variations

of a keyword into the same hash bin. However, the cost

of scaling the number of correctable errors is prohibitive.

Another coding based system is LSH Forest [13], which

uses locality-sensitive hashing to cluster similar terms.

The system is primarily focused on finding similar docu-

ments rather than keywords.

pSearch [42] uses latent semantic indexing on docu-

ments to generate vectors that represent its relative sim-

ilarity to other documents in the system. CAN [36] is

used to traverse this vector space. The focus of pSearch

is on finding documents with high semantic relevance

to the search keys. It is however unable to match mis-

spelled search keys to documents with correctly spelled

keywords, as the search keys and keywords may be typo-

graphically similar but are semantically unrelated.

13



8 CONCLUSION
This paper describes Cubit, a novel approach to effi-

ciently perform approximate matching in peer-to-peer

overlays. The key insight behind Cubit is to create a

keyword metric space that captures the relative similar-

ity of keywords, to assign portions of this space to nodes

in a light-weight overlay and to resolve queries by effi-

ciently routing them through this space, allowing Cubit

to quickly identify approximately matching objects to a

set of search terms.

Cubit has been implemented as a BitTorrent client plu-

gin with more than 6, 000 active users, and evaluated

through a PlanetLab deployment as well as through ex-

tensive simulations using large, real-world datasets. The

evaluation indicates that Cubit is scalable, accurate, and

efficient – it uses an order of magnitude less communi-

cation than naive extensions to DHT systems and is sig-

nificantly more accurate than systems based on Soundex

hashing. The technique is immediately applicable to

domains, such as peer-to-peer filesharing, where query

terms are provided by users and require a decentralized

approximate match against objects in the system. This

overall approach may be applicable to other distributed

domains where a similarity-based clustering of objects is

desired.

References
[1] Britney Spears Spelling Correction. http://www.google.com/

jobs/britney.html.

[2] Gnutella. http://www.gnutella.com/.

[3] The Pirate Bay. http://thepiratebay.org/blog/68.

[4] Secrets of the Pirate Bay. http://www.wired.com/science/disc-
overies/news/2006/08/71543.

[5] The Pirate Bay Trial: The Official Verdict - Guilty.
http://torrentfreak.com/the-pirate-bay-trial-the-verdict-090417.

[6] Netflix Prize. http://www.netflixprize.com.

[7] CiteSeer Publication ResearchIndex. http://citeseer.ist.psu.edu/.

[8] Searchspell. http://www.searchspell.com/typo/.

[9] Advanced Bittorent. http://www.bittorrent.com/btusers/guides/-
bittorrent-user-manual/appendix-bittorrent-mainline-
interface/preferences/advanced#dht.rate.

[10] R. Ahmed and R. Boutaba. Distributed Pattern Matching: A Key
to Flexible and Efficient P2P Search. In IEEE Journal on Selected
Areas in Communications, 25(1), 2007.

[11] F. Banaei-Kashani and C. Shahabi. SWAM: A Family of Access
Methods for Similarity-Search in Peer-to-Peer Data Networks. In
CIKM, 2004.

[12] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L.
Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating
System Support for Planetary-Scale Network Services. In NSDI,
2004.

[13] M. Bawa, T. Condie, and P. Ganesan. LSH Forest: Self-Tuning
Indexes for Similarity Search. In WWW, 2005.

[14] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
Scalable Multi-Attribute Range Queries. In SIGCOMM, 2004.

[15] B. H. Bloom. Space/time Trade-Offs in Hash Coding with Al-
lowable Errors. In Communications of the ACM, 13(7), 1970.

[16] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wal-
lach. Secure Routing for Structured Peer-to-Peer Overlay Net-
works. In OSDI, 2002.

[17] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram.
Querying Peer-to-Peer Networks Using P-Trees. In WebDB,
2004.

[18] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A De-
centralized Network Coordinate System. In SIGCOMM, 2004.

[19] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-Area Cooperative Storage with CFS. In SOSP, 2001.

[20] E. Damiani, S. D. C. d. Vimercati, S. Paraboschi, P. Samarati, and
F. Violante. A Reputation-Based Approach for Choosing Reliable
Resources in Peer-to-Peer Networks. In CCS, 2002.

[21] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic Algorithms for
Replicated Database Maintenance. In PODC, 1987.

[22] J. R. Douceur. The Sybil Attack. In IPTPS Workshop, 2002.

[23] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Prac-
tical Accountability for Distributed Systems. In SOSP, 2007.

[24] F. Kaashoek and D. Karger. Koorde: A Simple Degree-Optimal
Distributed Hash Table. In IPTPS Workshop, 2003.

[25] D. Karger and M. Ruhl. Finding Nearest Neighbors in Growth-
Restricted Metrics. In STOC, pages 63-66, 2002.

[26] J. Kleinberg. Complex Networks and Decentralized Search Al-
gorithms. In Intl. Congress of Mathematicians, 2006.

[27] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A Scalable and
Dynamic Emulation of the Butterfly. In PODC, 2002.

[28] G. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed
Hashing in a Small World. In USITS, 2003.

[29] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-Peer In-
formation System Based on the XOR Metric. In IPTPS Work-
shop, 2002.

[30] R. C. Merkle. Secure Communications Over Insecure Channels.
In Communications of the ACM, 1978.

[31] A. Mowat, R. Schmidt, M. Schumacher, and I. Constantinescu.
Extending Peer-to-Peer Networks for Approximate Search. In
SAC, 2008.

[32] H. Neemuchwala and A. Hero. Image Registration in High-
Dimensional Feature Space. In Computational Imaging, 2005.

[33] T. Ng and H. Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In INFOCOM, 2002.

[34] A. Parker. P2P in 2005. 2006.

[35] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) Lookup
Performance for Power-Law Query Distributions in Peer-to-Peer
Overlays. In NSDI, 2004.

[36] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A Scalable Content-Addressable Network. In SIGCOMM, 2001.

[37] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy, S.
Shenker, I. Stoica, and H. Yu. OpenDHT: A Public DHT Service
and Its Uses. In SIGCOMM, 2005.

[38] A. Rowstron and P. Druschel. Storage Management and Caching
in PAST, a Large-Scale, Persistent Peer-to-Peer Storage Utility.
In SOSP, 2001.

[39] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Ob-
ject Location and Routing for Large-Scale Peer-to-Peer Systems.
In Middleware, 2001.

[40] C. Schmidt and M. Parashar. Flexible Information Discovery in
Decentralized Distributed Systems. In HPDC, 2003.

[41] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrish-
nan. Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications. In SIGCOMM, 2001.

[42] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-Peer Information Re-
trieval Using Self-Organizing Semantic Overlay Networks. In
SIGCOMM, 2003.

[43] K. Walsh and E. G. Sirer. Experience with a Distributed Object
Reputation System for Peer-to-Peer Filesharing. In NSDI, 2006.

[44] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A Lightweight
Network Location Service Without Virtual Coordinates. In SIG-
COMM, 2005.

[45] B. Wong, Y. Vigfússon, and E. G. Sirer. Hyperspaces for Object
Clustering and Approximate Matching in Peer-to-Peer Overlays.
In HotOS Workshop, 2007.

[46] M. Zaharia, A. Chandel, S. Saroiu, and S. Keshav. Finding Con-
tent in File-Sharing Networks When You Can’t Even Spell. In
Intl. Workshop on P2P Systems, 2007.

[47] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An Infras-
tructure for Fault-Tolerant Wide-Area Location and Routing. UC
Berkeley, Technical Report UCB/CSD-01-1141, 2001.

14


