Lecture 22: Load balancing

David Bindel

15 Nov 2011

Logistics

- ▶ Proj 3 in!
 - ▶ Get it in by Monday with penalty.

Inefficiencies in parallel code

- Poor single processor performance
 - Typically in the memory system
 - ▶ Saw this in HW 1
- Overhead for parallelism
 - ▶ Thread creation, synchronization, communication
 - ▶ Saw this in HW 2-3
- Load imbalance
 - Different amounts of work across processors
 - Different speeds / available resources
 - Insufficient parallel work
 - All this can change over phases

Where does the time go?

- ▶ Load balance looks like high, uneven time at synchronization
- but so does ordinary overhead if synchronization expensive!
- ► And spin-locks may make synchronization look like useful work
- ► And ordinary time sharing can confuse things more
- Can get some help from tools like TAU (Timing Analysis Utilities)

Reminder: Graph partitioning

- ▶ Graph G = (V, E) with vertex and edge weights
- Try to evenly partition while minimizing edge cut (comm volume)
- Optimal partitioning is NP complete use heuristics
 - Spectral
 - ► Kernighan-Lin
 - Multilevel
- Tradeoff quality vs speed
- Good software exists (e.g. METIS)

The limits of graph partitioning

What if

- We don't know task costs?
- ▶ We don't know the communication pattern?
- ► These things change over time?

May want dynamic load balancing.

Basic parameters

- Task costs
 - Do all tasks have equal costs?
 - ▶ When are costs known (statically, at creation, at completion)?
- Task dependencies
 - Can tasks be run in any order?
 - ▶ If not, when are dependencies known?
- Locality
 - Should tasks be on the same processor to reduce communication?
 - When is this information known?

Task costs

- Easy: equal unit cost tasks
 - ► Branch-free loops
 - ▶ Much of HW 3 falls here!
- Harder: different, known times
 - Example: general sparse matrix-vector multiply
- Hardest: task cost unknown until after execution
 - Example: search

Q: Where does HW 2 fall in this spectrum?

Dependencies

- Easy: dependency-free loop (Jacobi sweep)
- ► Harder: tasks have predictable structure (some DAG)
- ► Hardest: structure changes dynamically (search, sparse LU)

Locality/communication

- ► Easy: tasks don't communicate except at start/end (embarrassingly parallel)
- ► Harder: communication is in a predictable pattern (elliptic PDE solver)
- ► Communication is unpredictable (discrete event simulation)

A spectrum of solutions

How much we can do depends on cost, dependency, locality

- Static scheduling
 - Everything known in advance
 - Can schedule offline (e.g. graph partitioning)
 - See this in HW 3
- Semi-static scheduling
 - Everything known at start of step (or other determined point)
 - Can use offline ideas (e.g. Kernighan-Lin refinement)
 - Saw this in HW 2
- Dynamic scheduling
 - Don't know what we're doing until we've started
 - Have to use online algorithms
 - Example: most search problems

Search problems

- Different set of strategies from physics sims!
- Usually require dynamic load balance
- Example:
 - Optimal VLSI layout
 - ► Robot motion planning
 - Game playing
 - Speech processing
 - Reconstructing phylogeny
 - **.**..

Example: Tree search

- ► Tree unfolds dynamically during search
- May be common subproblems along different paths (graph)
- Graph may or may not be explicit in advance

Search algorithms

Generic search:

Put root in stack/queue
while stack/queue has work
remove node n from queue
if n satisfies goal, return
mark n as searched
add viable unsearched children of n to stack/queue
(Can branch-and-bound)

Variants: DFS (stack), BFS (queue), A* (priority queue), ...

Simple parallel search

- Static load balancing: each new task on an idle processor until all have a subree
 - ▶ Not very effective without work estimates for subtrees!
 - ▶ How can we do better?

Centralized scheduling

Idea: obvious parallelization of standard search

- Shared data structure (stack, queue, etc) protected by locks
- Or might be a manager task

Teaser: What could go wrong with this parallel BFS?

```
Put root in queue
fork
  obtain queue lock
  while queue has work
    remove node n from queue
    release queue lock
    process n, mark as searched
    obtain queue lock
    add viable unsearched children of n to queue
  release queue lock
```

Centralized task queue

- Called self-scheduling when applied to loops
 - Tasks might be range of loop indices
 - Assume independent iterations
 - Loop body has unpredictable time (or do it statically)
- Pro: dynamic, online scheduling
- ► Con: centralized, so doesn't scale
- ► Con: high overhead if tasks are small

Variations on a theme

How to avoid overhead? Chunks! (Think OpenMP loops)

- ► Small chunks: good balance, large overhead
- Large chunks: poor balance, low overhead
- Variants:
 - Fixed chunk size (requires good cost estimates)
 - Guided self-scheduling (take $\lceil R/p \rceil$ work, R =tasks remaining)
 - ► Tapering (estimate variance; smaller chunks for high variance)
 - Weighted factoring (like GSS, but take heterogeneity into account)

Beyond centralized task queue

Basic distributed task queue idea:

- Each processor works on part of a tree
- When done, get work from a peer
- Or if busy, push work to a peer
- Requires asynch communication

Also goes by work stealing, work crews...

Implemented in Cilk, X10, CUDA, ...

Picking a donor

Could use:

- Asynchronous round-robin
- ► Global round-robin (keep current donor pointer at proc 0)
- Randomized optimal with high probability!

Diffusion-based balancing

- Problem with random polling: communication cost!
 - ▶ But not all connections are equal
 - ▶ Idea: prefer to poll more local neighbors
- Average out load with neighbors ⇒ diffusion!

Mixed parallelism

- ► Today: mostly coarse-grain *task* parallelism
- Other times: fine-grain data parallelism
- Why not do both?
- Switched parallelism: at some level switch from data to task