Lecture 19: Graph Partitioning

David Bindel

3 Nov 2011

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

#### Logistics

- Please finish your project 2.
- Please start your project 3.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

# Graph partitioning

Given:

- Graph G = (V, E)
- Possibly weights  $(W_V, W_E)$ .
- Possibly coordinates for vertices (e.g. for meshes).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

We want to partition G into k pieces such that

- Node weights are balanced across partitions.
- Weight of cut edges is minimized.

Important special case: k = 2.

# Types of separators

- Edge separators: remove edges to partition
- Node separators: remove nodes (and adjacent edges)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Can go from one to the other.

# Why partitioning?

Physical network design (telephone layout, VLSI layout)

(ロ) (型) (E) (E) (E) (O)

- Sparse matvec
- Preconditioners for PDE solvers
- Sparse Gaussian elimination
- Data clustering
- Image segmentation

#### Cost

How many partitionings are there? If n is even,

$$\binom{n}{n/2} = \frac{n!}{((n/2)!)^2} \approx 2^n \sqrt{2/(\pi n)}.$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Finding the optimal one is NP-complete.

We need heuristics!

## Partitioning with coordinates

Lots of partitioning problems from "nice" meshes

- Planar meshes (maybe with regularity condition)
- k-ply meshes (works for d > 2)
- ► Nice enough ⇒ partition with O(n<sup>1-1/d</sup>) edge cuts (Tarjan, Lipton; Miller, Teng, Thurston, Vavasis)

うして ふゆう ふほう ふほう うらつ

- Edges link nearby vertices
- Get useful information from vertex density
- Ignore edges (but can use them in later refinement)

#### Recursive coordinate bisection

Idea: Choose a cutting hyperplane parallel to a coordinate axis.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Pro: Fast and simple
- Con: Not always great quality

#### Inertial bisection

Idea: Optimize cutting hyperplane based on vertex density

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$$
$$\bar{\mathbf{r}}_{i} = \mathbf{x}_{i} - \bar{\mathbf{x}}$$
$$\mathbf{I} = \sum_{i=1}^{n} \left[ \|\mathbf{r}_{i}\|^{2} I - \mathbf{r}_{i} \mathbf{r}_{i}^{T} \right]$$

Let  $(\lambda_n, \mathbf{n})$  be the minimal eigenpair for the inertia tensor I, and choose the hyperplane through  $\bar{\mathbf{x}}$  with normal  $\mathbf{n}$ .

- Pro: Still simple, more flexible than coordinate planes
- Con: Still restricted to hyperplanes

# Random circles (Gilbert, Miller, Teng)

- Stereographic projection
- Find centerpoint (any plane is an even partition)
   In practice, use an approximation.
- Conformally map sphere, moving centerpoint to origin

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Choose great circle (at random)
- Undo stereographic projection
- Convert circle to separator

May choose best of several random great circles.

## Coordinate-free methods

- Don't always have natural coordinates
  - Example: the web graph
  - Can sometimes add coordinates (metric embedding)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

So use edge information for geometry!

## Breadth-first search

- Pick a start vertex v<sub>0</sub>
  - Might start from several different vertices
- Use BFS to label nodes by distance from  $v_0$ 
  - We've seen this before remember RCM?
  - Could use a different order minimize edge cuts locally (Karypis, Kumar)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Partition by distance from v<sub>0</sub>

## Greedy refinement

Start with a partition  $V = A \cup B$  and refine.

• Gain from swapping (a, b) is D(a) + D(b), where

$$D(a) = \sum_{b' \in B} w(a, b') - \sum_{a' \in A, a' \neq a} w(a, a')$$
$$D(b) = \sum_{a' \in A} w(b, a') - \sum_{b' \in B, b' \neq b} w(b, b')$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- Purely greedy strategy:
  - Choose swap with most gain
  - Repeat until no positive gain
- Local minima are a problem.

# Kernighan-Lin

In one sweep:

```
While no vertices marked

Choose (a, b) with greatest gain

Update D(v) for all unmarked v as if (a, b) were swapped

Mark a and b (but don't swap)

Find j such that swaps 1, \ldots, j yield maximal gain

Apply swaps 1, \ldots, j
```

Usually converges in a few (2-6) sweeps. Each sweep is  $O(N^3)$ . Can be improved to O(|E|) (Fiduccia, Mattheyses).

Further improvements (Karypis, Kumar): only consider vertices on boundary, don't complete full sweep.

#### Spectral partitioning

Label vertex *i* with  $x_i = \pm 1$ . We want to minimize

edges cut 
$$= \frac{1}{4} \sum_{(i,j)\in E} (x_i - x_j)^2$$

subject to the even partition requirement

$$\sum_i x_i = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

But this is NP hard, so we need a trick.

#### Spectral partitioning

Write

edges cut = 
$$\frac{1}{4} \sum_{(i,j)\in E} (x_i - x_j)^2 = \frac{1}{4} \|Cx\|^2 = \frac{1}{4} x^T Lx$$

where C is the incidence matrix and  $L = C^T C$  is the graph Laplacian:

$$C_{ij} = \begin{cases} 1, & e_j = (i,k) \\ -1, & e_j = (k,i) \\ 0, & \text{otherwise,} \end{cases} \quad L_{ij} = \begin{cases} d(i), & i = j \\ -1, & i \neq j, (i,j) \in E, \\ 0, & \text{otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Note that Ce = 0 (so Le = 0),  $e = (1, 1, 1, ..., 1)^T$ .

Now consider the *relaxed* problem with  $x \in \mathbb{R}^n$ :

minimize 
$$x^T L x$$
 s.t.  $x^T e = 0$  and  $x^T x = 1$ .

Equivalent to finding the second-smallest eigenvalue  $\lambda_2$  and corresponding eigenvector x, also called the *Fiedler vector*. Partition according to sign of  $x_i$ .

How to approximate x? Use a Krylov subspace method (Lanczos)! Expensive, but gives high-quality partitions.

うして ふゆう ふほう ふほう うらつ

Basic idea (same will work in other contexts):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Coarsen
- Solve coarse problem
- Interpolate (and possibly refine)

May apply recursively.

One idea for coarsening: maximal matchings

- *Matching* of G = (V, E) is  $E_m \subset E$  with no common vertices.
- Maximal if no more edges can be added and remain matching.
- Constructed by an obvious greedy algorithm.
- Maximal matchings are non-unique; some may be preferable to others (e.g. choose heavy edges first).

(ロ) (型) (E) (E) (E) (O)

## Coarsening via maximal matching



Collapse nodes connected in matching into coarse nodes

ヘロト 人間 とうほどう ほどう

Э

Add all edge weights between connected coarse nodes

## Software

All these use some flavor(s) of multilevel:

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- METIS/ParMETIS (Kapyris)
- Chaco (Sandia)
- Scotch (INRIA)
- Jostle (now commercialized)
- Zoltan (Sandia)

## Is this it?

Consider partitioning for sparse matvec:

- Edge cuts  $\neq$  communication volume
- Haven't looked at minimizing *maximum* communication volume
- ► Looked at communication volume what about latencies? Some work beyond graph partitioning (e.g. in Zoltan).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●