Lecture 19:
 Graph Partitioning

David Bindel

3 Nov 2011

Logistics

- Please finish your project 2.
- Please start your project 3.

Graph partitioning

Given:

- Graph $G=(V, E)$
- Possibly weights $\left(W_{V}, W_{E}\right)$.
- Possibly coordinates for vertices (e.g. for meshes).

We want to partition G into k pieces such that

- Node weights are balanced across partitions.
- Weight of cut edges is minimized.

Important special case: $k=2$.

Types of separators

- Edge separators: remove edges to partition
- Node separators: remove nodes (and adjacent edges)

Can go from one to the other.

Why partitioning?

- Physical network design (telephone layout, VLSI layout)
- Sparse matvec
- Preconditioners for PDE solvers
- Sparse Gaussian elimination
- Data clustering
- Image segmentation

Cost

How many partitionings are there? If n is even,

$$
\binom{n}{n / 2}=\frac{n!}{((n / 2)!)^{2}} \approx 2^{n} \sqrt{2 /(\pi n)} .
$$

Finding the optimal one is NP-complete.

We need heuristics!

Partitioning with coordinates

- Lots of partitioning problems from "nice" meshes
- Planar meshes (maybe with regularity condition)
- k-ply meshes (works for $d>2$)
- Nice enough \Longrightarrow partition with $O\left(n^{1-1 / d}\right)$ edge cuts (Tarjan, Lipton; Miller, Teng, Thurston, Vavasis)
- Edges link nearby vertices
- Get useful information from vertex density
- Ignore edges (but can use them in later refinement)

Recursive coordinate bisection

Idea: Choose a cutting hyperplane parallel to a coordinate axis.

- Pro: Fast and simple
- Con: Not always great quality

Inertial bisection

Idea: Optimize cutting hyperplane based on vertex density

$$
\begin{aligned}
\overline{\mathrm{x}} & =\frac{1}{n} \sum_{i=1}^{n} \mathrm{x}_{i} \\
\overline{\mathbf{r}}_{i} & =\mathrm{x}_{i}-\overline{\mathrm{x}} \\
\mathbf{I} & =\sum_{i=1}^{n}\left[\left\|\mathbf{r}_{i}\right\|^{2} \boldsymbol{I}-\mathbf{r}_{i} \mathbf{r}_{i}^{T}\right]
\end{aligned}
$$

Let $\left(\lambda_{n}, \mathbf{n}\right)$ be the minimal eigenpair for the inertia tensor \mathbf{I}, and choose the hyperplane through $\overline{\mathrm{x}}$ with normal \mathbf{n}.

- Pro: Still simple, more flexible than coordinate planes
- Con: Still restricted to hyperplanes

Random circles (Gilbert, Miller, Teng)

- Stereographic projection
- Find centerpoint (any plane is an even partition) In practice, use an approximation.
- Conformally map sphere, moving centerpoint to origin
- Choose great circle (at random)
- Undo stereographic projection
- Convert circle to separator

May choose best of several random great circles.

Coordinate-free methods

- Don't always have natural coordinates
- Example: the web graph
- Can sometimes add coordinates (metric embedding)
- So use edge information for geometry!

Breadth-first search

- Pick a start vertex v_{0}
- Might start from several different vertices
- Use BFS to label nodes by distance from v_{0}
- We've seen this before - remember RCM?
- Could use a different order - minimize edge cuts locally (Karypis, Kumar)
- Partition by distance from v_{0}

Greedy refinement

Start with a partition $V=A \cup B$ and refine.

- Gain from swapping (a, b) is $D(a)+D(b)$, where

$$
\begin{aligned}
& D(a)=\sum_{b^{\prime} \in B} w\left(a, b^{\prime}\right)-\sum_{a^{\prime} \in A, a^{\prime} \neq a} w\left(a, a^{\prime}\right) \\
& D(b)=\sum_{a^{\prime} \in A} w\left(b, a^{\prime}\right)-\sum_{b^{\prime} \in B, b^{\prime} \neq b} w\left(b, b^{\prime}\right)
\end{aligned}
$$

- Purely greedy strategy:
- Choose swap with most gain
- Repeat until no positive gain
- Local minima are a problem.

Kernighan-Lin

In one sweep:
While no vertices marked
Choose (a, b) with greatest gain
Update $D(v)$ for all unmarked v as if (a, b) were swapped
Mark a and b (but don't swap)
Find j such that swaps $1, \ldots, j$ yield maximal gain
Apply swaps $1, \ldots, j$
Usually converges in a few (2-6) sweeps. Each sweep is $O\left(N^{3}\right)$.
Can be improved to $O(|E|)$ (Fiduccia, Mattheyses).
Further improvements (Karypis, Kumar): only consider vertices on boundary, don't complete full sweep.

Spectral partitioning

Label vertex i with $x_{i}= \pm 1$. We want to minimize

$$
\text { edges cut }=\frac{1}{4} \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}
$$

subject to the even partition requirement

$$
\sum_{i} x_{i}=0 .
$$

But this is NP hard, so we need a trick.

Spectral partitioning

Write

$$
\text { edges cut }=\frac{1}{4} \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}=\frac{1}{4}\|C x\|^{2}=\frac{1}{4} x^{T} L x
$$

where C is the incidence matrix and $L=C^{T} C$ is the graph Laplacian:

$$
C_{i j}=\left\{\begin{array}{ll}
1, & e_{j}=(i, k) \\
-1, & e_{j}=(k, i) \\
0, & \text { otherwise }
\end{array} \quad L_{i j}= \begin{cases}d(i), & i=j \\
-1, & i \neq j,(i, j) \in E \\
0, & \text { otherwise }\end{cases}\right.
$$

Note that $C e=0($ so $L e=0), e=(1,1,1, \ldots, 1)^{T}$.

Spectral partitioning

Now consider the relaxed problem with $x \in \mathbb{R}^{n}$:

$$
\text { minimize } x^{T} L x \text { s.t. } x^{\top} e=0 \text { and } x^{T} x=1 .
$$

Equivalent to finding the second-smallest eigenvalue λ_{2} and corresponding eigenvector x, also called the Fiedler vector. Partition according to sign of x_{i}.

How to approximate x ? Use a Krylov subspace method (Lanczos)! Expensive, but gives high-quality partitions.

Multilevel ideas

Basic idea (same will work in other contexts):

- Coarsen
- Solve coarse problem
- Interpolate (and possibly refine)

May apply recursively.

Maximal matching

One idea for coarsening: maximal matchings

- Matching of $G=(V, E)$ is $E_{m} \subset E$ with no common vertices.
- Maximal if no more edges can be added and remain matching.
- Constructed by an obvious greedy algorithm.
- Maximal matchings are non-unique; some may be preferable to others (e.g. choose heavy edges first).

Coarsening via maximal matching

- Collapse nodes connected in matching into coarse nodes
- Add all edge weights between connected coarse nodes

Software

All these use some flavor(s) of multilevel:

- METIS/ParMETIS (Kapyris)
- Chaco (Sandia)
- Scotch (INRIA)
- Jostle (now commercialized)
- Zoltan (Sandia)

Is this it?

Consider partitioning for sparse matvec:

- Edge cuts \neq communication volume
- Haven't looked at minimizing maximum communication volume
- Looked at communication volume - what about latencies?

Some work beyond graph partitioning (e.g. in Zoltan).

