Lecture 17:
 More Fun With Sparse Matrices

David Bindel

26 Oct 2011

Logistics

- Thanks for info on final project ideas.
- HW 2 due Monday!

Life lessons from HW 2?

- Where an error occurs may not be where you observe it!
- Check against a slow, naive, obvious calculation.
- assert is your friend.
- Use version control (git, cvs, svn, ...).

Reminder: Conjugate Gradients

What if we only know how to multiply by A ?
About all you can do is keep multiplying!

$$
\mathcal{K}_{k}(A, b)=\operatorname{span}\left\{b, A b, A^{2} b, \ldots, A^{k-1} b\right\} .
$$

Gives surprisingly useful information!
If A is symmetric and positive definite, $x=A^{-1} b$ minimizes

$$
\begin{aligned}
\phi(x) & =\frac{1}{2} x^{\top} A x-x^{\top} b \\
\nabla \phi(x) & =A x-b .
\end{aligned}
$$

Idea: Minimize $\phi(x)$ over $\mathcal{K}_{k}(A, b)$.
Basis for the method of conjugate gradients

Convergence of CG

- KSPs are not stationary (no constant fixed-point iteration)
- Convergence is surprisingly subtle!
- CG convergence upper bound via condition number
- Large condition number iff form $\phi(x)$ has long narrow bowl
- Usually happens for Poisson and related problems
- Preconditioned problem $M^{-1} A x=M^{-1} b$ converges faster?
- Whence M ?
- From a stationary method?
- From a simpler/coarser discretization?
- From approximate factorization?

PCG

```
Compute \(r^{(0)}=b-A x\)
for \(i=1,2, \ldots\)
    solve \(M z^{(i-1)}=r^{(i-1)}\)
    \(\rho_{i-1}=\left(r^{(i-1)}\right)^{T} z^{(i-1)}\)
    if \(i==1\)
        \(p^{(1)}=z^{(0)}\)
    else
        \(\beta_{i-1}=\rho_{i-1} / \rho_{i-2}\)
        \(p^{(i)}=z^{(i-1)}+\beta_{i-1} p^{(i-1)}\)
    endif
    \(q^{(i)}=A p^{(i)}\)
    \(\alpha_{i}=\rho_{i-1} /\left(p^{(i)}\right)^{T} q^{(i)}\)
    \(x^{(i)}=x^{(i-1)}+\alpha_{i} p^{(i)}\)
    \(r^{(i)}=r^{(i-1)}-\alpha_{i} q^{(i)}\)
end
```


Parallel work:

- Solve with M
- Product with A
- Dot products
- Axpys

Overlap comm/comp.

PCG bottlenecks

Key: fast solve with M, product with A

- Some preconditioners parallelize better! (Jacobi vs Gauss-Seidel)
- Balance speed with performance.
- Speed for set up of M ?
- Speed to apply M after setup?
- Cheaper to do two multiplies/solves at once...
- Can't exploit in obvious way - lose stability
- Variants allow multiple products - Hoemmen's thesis
- Lots of fiddling possible with M; what about matvec with A ?

Thinking on (basic) CG convergence

Consider 2D Poisson with 5-point stencil on an $n \times n$ mesh.

- Information moves one grid cell per matvec.
- Cost per matvec is $O\left(n^{2}\right)$.
- At least $O\left(n^{3}\right)$ work to get information across mesh!

CG convergence: a counting approach

- Time to converge \geq time to propagate info across mesh
- For a 2D mesh: $O(n)$ matvecs, $O\left(n^{3}\right)=O\left(N^{3 / 2}\right)$ cost
- For a 3D mesh: $O(n)$ matvecs, $O\left(n^{4}\right)=O\left(N^{4 / 3}\right)$ cost
- "Long" meshes yield slow convergence
- 3D beats 2D because everything is closer!
- Advice: sparse direct for 2D, CG for 3D.
- Better advice: use a preconditioner!

CG convergence: an eigenvalue approach

Define the condition number for $\kappa(L)$ s.p.d:

$$
\kappa(L)=\frac{\lambda_{\max }(L)}{\lambda_{\min }(L)}
$$

Describes how elongated the level surfaces of ϕ are.

- For Poisson, $\kappa(L)=O\left(h^{-2}\right)$
- CG steps to reduce error by $1 / 2=O(\sqrt{\kappa})=O\left(h^{-1}\right)$.

Similar back-of-the-envelope estimates for some other PDEs. But these are not always that useful... can be pessimistic if there are only a few extreme eigenvalues.

CG convergence: a frequency-domain approach

Error e_{k} after k steps of CG gets smoother!

Choosing preconditioners for 2D Poisson

- CG already handles high-frequency error
- Want something to deal with lower frequency!
- Jacobi useless
- Doesn't even change Krylov subspace!
- Better idea: block Jacobi?
- Q: How should things split up?
- A: Minimize blocks across domain.
- Compatible with minimizing communication!

Restrictive Additive Schwartz (RAS)

Restrictive Additive Schwartz (RAS)

- Get ghost cell data
- Solve everything local (including neighbor data)
- Update local values for next step
- Default strategy in PETSc

Multilevel Ideas

- RAS propogates information by one processor per step
- For scalability, still need to get around this!
- Basic idea: use multiple grids
- Fine grid gives lots of work, kills high-freq error
- Coarse grid cheaply gets info across mesh, kills low freq

More on this another time.

CG performance

Two ways to get better performance from CG:

1. Better preconditioner

- Improves asymptotic complexity?
- ... but application dependent

2. Tuned implementation

- Improves constant in big-O
- ... but application independent?

Benchmark idea (?): no preconditioner, just tune.

Tuning PCG

```
Compute \(r^{(0)}=b-A x\)
for \(i=1,2, \ldots\)
    solve \(M z^{(i-1)}=r^{(i-1)}\)
    \(\rho_{i-1}=\left(r^{(i-1)}\right)^{T} Z^{(i-1)}\)
    if \(i==1\)
        \(p^{(1)}=z^{(0)}\)
    else
        \(\beta_{i-1}=\rho_{i-1} / \rho_{i-2}\)
        \(p^{(i)}=z^{(i-1)}+\beta_{i-1} p^{(i-1)}\)
    endif
    \(q^{(i)}=A p^{(i)}\)
    \(\alpha_{i}=\rho_{i-1} /\left(p^{(i)}\right)^{T} q^{(i)}\)
    \(x^{(i)}=x^{(i-1)}+\alpha_{i} p^{(i)}\)
    \(r^{(i)}=r^{(i-1)}-\alpha_{i} q^{(i)}\)
end
```

- Most work in A, M
- Vector ops synchronize
- Overlap comm, comp?

Tuning PCG

Compute $r^{(0)}=b-A x$

$$
p_{-1}=0 ; \beta_{-1}=0 ; \alpha_{-1}=0
$$

$$
s=L^{-1} r^{(0)}
$$

$$
\rho_{0}=s^{T} s
$$

$$
\text { for } i=0,1,2, \ldots
$$

Check convergence ($\left\|r_{i+1}\right\|$)
$\beta_{i}=\rho_{i+1} / \rho_{i}$
end
Split $z=M^{-1} r$ into s, w_{i}
Overlap

$$
w_{i}=L^{-T} s
$$

- $p_{i}^{T} q_{i}$ with x update

$$
p_{i}=w_{i}+\beta_{i-1} p_{i-1}
$$

$$
q_{i}=A p_{i}
$$

- $s^{T} s$ with w_{i} eval

$$
\gamma=p_{i}^{\top} q_{i}
$$

- Computing p_{i}, q_{i}, γ

$$
x_{i}=x_{i-1}+\alpha_{i-1} p_{i-1}
$$

- Pipeline r_{i+1}, s ?

$$
\alpha_{i}=\rho_{i} / \gamma_{i}
$$

- Pipeline p_{i}, w_{i} ?

$$
r_{i+1}=r_{i}-\alpha q_{i}
$$

$$
s=L^{-1} r_{i+1}
$$

$$
\rho_{i+1}=s^{T} s
$$

Parallel Numerical LA,
Demmel, Heath, van der Vorst

Tuning PCG

Can also tune

- Preconditioner solve (hooray!)
- Matrix multiply
- Represented implicitly (regular grids)
- Or explicitly (e.g. compressed sparse column)

Or further rearrange algorithm (Hoemmen, Demmel).

Tuning sparse matvec

- Sparse matrix blocking and reordering (Im, Vuduc, Yelick)
- Packages: Sparsity (Im), OSKI (Vuduc)
- Available as PETSc extension
- Optimizing stencil operations (Datta)

Reminder: Compressed sparse row storage

for $i=1: n$

$$
y[i]=0 ;
$$

$$
\text { for } j j=\operatorname{ptr}[i] \text { to ptr[i+1]-1 }
$$

$$
y[i]+=A[j j] * x[\operatorname{col}[j]] ;
$$

end
end
Problem: y[i] += A[jj]*x[col[j]];

Memory traffic in CSR multiply

Memory access patterns:

- Elements of y accessed sequentially
- Elements of A accessed sequentially
- Access to x are all over!

Can help by switching to block CSR.
Switching to single precision, short indices can help memory traffic, too!

Parallelizing matvec

- Each processor gets a piece
- Many partitioning strategies
- Idea: re-order so one of these strategies is "good"

Reordering for matvec

SpMV performance goals:

- Balance load?
- Balance storage?
- Minimize communication?
- Good cache re-use?

Also reorder for

- Stability of Gauss elimination,
- Fill reduction in Gaussian elimination,
- Improved performance of preconditioners...

Reminder: Sparsity and partitioning

Want to partition sparse graphs so that

- Subgraphs are same size (load balance)
- Cut size is minimal (minimize communication)

Matrices that are "almost" diagonal are good?

Reordering for bandedness

Natural order

RCM reordering

Reverse Cuthill-McKee

- Select "peripheral" vertex v
- Order according to breadth first search from v
- Reverse ordering

From iterative to direct

- RCM ordering is great for SpMV
- But isn't narrow banding good for solvers, too?
- LU takes $O\left(n b^{2}\right)$ where b is bandwidth.
- Great if there's an ordering where b is small!

Skylines and profiles

- Profile solvers generalize band solvers
- Use skyline storage; if storing lower triangle, for each row i :
- Start and end of storage for nonzeros in row.
- Contiguous nonzero list up to main diagonal.
- In each column, first nonzero defines a profile.
- All fill-in confined to profile.
- RCM is again a good ordering.

Beyond bandedness

- Bandedness only takes us so far
- Minimum bandwidth for 2D model problem? 3D?
- Skyline only gets us so much farther
- But more general solvers have similar structure
- Ordering (minimize fill)
- Symbolic factorization (where will fill be?)
- Numerical factorization (pivoting?)
- ... and triangular solves

Reminder: Matrices to graphs

- $A_{i j} \neq 0$ means there is an edge between i and j
- Ignore self-loops and weights for the moment
- Symmetric matrices correspond to undirected graphs

Troublesome Trees

One step of Gaussian elimination completely fills this matrix!

Terrific Trees

Full Gaussian elimination generates no fill in this matrix!

Graphic Elimination

Eliminate a variable, connect all neighbors.

Graphic Elimination

Consider first steps of GE

$$
\begin{aligned}
\mathrm{A}(2: \text { end, } 1)= & A(2: \text { end }, 1) / A(1,1) ; \\
A(2: \text { end, } 2: \text { end })= & A(2: \text { end }, 2: \text { end })-\ldots \\
& \text { A }(2: \text { end, } 1) \star A(1,2: \text { end }) ;
\end{aligned}
$$

Nonzero in the outer product at (i, j) if $A(i, 1)$ and $A(j, 1)$ both nonzero - that is, if i and j are both connected to 1 .

General: Eliminate variable, connect remaining neighbors.

Terrific Trees Redux

Order leaves to root \Longrightarrow on eliminating i, parent of i is only remaining neighbor.

Nested Dissection

- Idea: Think of block tree structures.
- Eliminate block trees from bottom up.
- Can recursively partition at leaves.
- Rough cost estimate: how much just to factor dense Schur complements associated with separators?
- Notice graph partitioning appears again!
- And again we want small separators!

Nested Dissection

Model problem: Laplacian with 5 point stencil (for 2D)

- ND gives optimal complexity in exact arithmetic (George 73, Hoffman/Martin/Rose)
- 2D: $O(N \log N)$ memory, $O\left(N^{3 / 2}\right)$ flops
- 3D: $O\left(N^{4 / 3}\right)$ memory, $O\left(N^{2}\right)$ flops

Minimum Degree

- Locally greedy strategy
- Want to minimize upper bound on fill-in
- Fill \leq (degree in remaining graph $)^{2}$
- At each step
- Eliminate vertex with smallest degree
- Update degrees of neighbors
- Problem: Expensive to implement!
- But better varients via quotient graphs
- Variants often used in practice

Elimination Tree

- Variables (columns) are nodes in trees
- j a descendant of k if eliminating j updates k
- Can eliminate disjoint subtrees in parallel!

Cache locality

Basic idea: exploit "supernodal" (dense) structures in factor

- e.g. arising from elimination of separator Schur complements in ND
- Other alternatives exist (multifrontal solvers)

Pivoting

Pivoting is a tremendous pain, particularly in distributed memory!

- Cholesky - no need to pivot!
- Threshold pivoting - pivot when things look dangerous
- Static pivoting - try to decide up front

What if things go wrong with threshold/static pivoting?
Common theme: Clean up sloppy solves with good residuals

Direct to iterative

Can improve solution by iterative refinement:

$$
\begin{aligned}
P A Q & \approx L U \\
x_{0} & \approx Q U^{-1} L^{-1} P b \\
r_{0} & =b-A x_{0} \\
x_{1} & \approx x_{0}+Q U^{-1} L^{-1} P r_{0}
\end{aligned}
$$

Looks like approximate Newton on $F(x)=A x-b=0$. This is just a stationary iterative method!
Nonstationary methods work, too.

Variations on a theme

If we're willing to sacrifice some on factorization,

- Single precision + refinement on double precision residual?
- Sloppy factorizations (marginal stability) + refinement?
- Modify m small pivots as they're encountered (low rank updates), fix with m steps of a Krylov solver?

