Lecture 16:
lterative Methods and Sparse Linear Algebra

David Bindel

25 Oct 2011

Logistics

» Send me a project title and group (today, please!)
» Project 2 due next Monday, Oct 31

<aside topic="proj2">

Bins of particles

&

E

// % bin and interaction range (y similar)
int ix = (int) (x /(2%h));
int ixlo = (int) ((x-h)/(2xh));
int ixhi = (int) ((x+h)/(2xh));

Spatial binning and hashing

» Simplest version
» One linked list per bin
» Can include the link in a particle st ruct
» Fine for this project!

» More sophisticated version

» Hash table keyed by bin index
» Scales even if occupied volume < computational domain

Partitioning strategies

Can make each processor responsible for
» A region of space
» A set of particles
» A set of interactions

Different tradeoffs between load balance and communication.

To use symmetry, or not to use symmetry?

v

Simplest version is prone to race conditions!

Can not use symmetry (and do twice the work)

Or update bins in two groups (even/odd columns?)
Or save contributions separately, sum later

v

v

v

Logistical odds and ends

» Parallel performance starts with serial performance

» Use flags — let the compiler help you!
» Can refactor memory layouts for better locality

» You will need more particles to see good speedups

» Overheads: open/close parallel sections, barriers.
» Try -s 1e-2 (or maybe even smaller)

» Careful notes and a version control system really help
» | like Git’s lightweight branches here!

</aside>

Reminder: World of Linear Algebra

» Dense methods

» Direct representation of matrices with simple data
structures (no need for indexing data structure)
» Mostly O(n®) factorization algorithms
» Sparse direct methods
» Direct representation, keep only the nonzeros
» Factorization costs depend on problem structure (1D
cheap; 2D reasonable; 3D gets expensive; not easy to give
a general rule, and NP hard to order for optimal sparsity)
» Robust, but hard to scale to large 3D problems
» lterative methods
Only need y = Ax (maybe y = ATx)
Produce successively better (?) approximations
Good convergence depends on preconditioning
Best preconditioners are often hard to parallelize

v

vV vy

Linear Algebra Software: MATLAB

% Dense (LAPACK)
[L,U] = 1u(hp);
x = U\ (L\b);

% Sparse direct (UMFPACK + COLAMD)
[LIUIPIQ] = 1lu (A);
x = Q% (U\N(L\ (Pxb)));

% Sparse iterative (PCG + incomplete Cholesky)
tol = le—-6;

maxit = 500;

R = cholinc(a,’0");

x = pcg(A,b,tol, maxit,R’,R);

Linear Algebra Software: the Wider World

v

Dense: LAPACK, ScaLAPACK, PLAPACK

Sparse direct: UMFPACK, TAUCS, SuperLU, MUMPS,
Pardiso, SPOOLES, ...
Sparse iterative: too many!
Sparse mega-libraries
» PETSc (Argonne, object-oriented C)
» Trilinos (Sandia, C++)
Good references:

» Templates for the Solution of Linear Systems (on Netlib)
» Survey on “Parallel Linear Algebra Software”

(Eijkhout, Langou, Dongarra — look on Netlib)
» ACTS collection at NERSC

v

v

v

v

Software Strategies: Dense Case

Assuming you want to use (vs develop) dense LA code:

» Learn enough to identify right algorithm
(e.g. is it symmetric? definite? banded? etc)

Learn high-level organizational ideas
Make sure you have a good BLAS
Call LAPACK/ScaLAPACK!

For nlarge: wait a while

v

v

v

v

Software Strategies: Sparse Direct Case

Assuming you want to use (vs develop) sparse LA code

» Identify right algorithm (mainly Cholesky vs LU)
» Get a good solver (often from list)

» You don’t want to roll your own!
» Order your unknowns for sparsity

» Again, good to use someone else’s software!

» For nlarge, 3D: get lots of memory and wait

Software Strategies: Sparse lterative Case

Assuming you want to use (vs develop) sparse LA software...

Identify a good algorithm (GMRES? CG?)
Pick a good preconditioner

» Often helps to know the application
» ... andto know how the solvers work!

Play with parameters, preconditioner variants, etc...
Swear until you get acceptable convergence?
Repeat for the next variation on the problem

v

v

v

v

v

Frameworks (e.g. PETSc or Trilinos) speed experimentation.

Software Strategies: Stacking Solvers

(Typical) example from a bone modeling package:

Outer load stepping loop

Newton method corrector for each load step
Preconditioned CG for linear system

Multigrid preconditioner

Sparse direct solver for coarse-grid solve (UMFPACK)
LAPACK/BLAS under that

v

v

v

v

v

v

First three are high level — | used a scripting language (Lua).

lterative Idea

.Xo

o X2

X X

v

f is a contraction if ||[f(x) — f(y)| < |Ix — yI.
f has a unique fixed point x, = f(x.).

v

v

For Xx11 = f(Xk), Xk — Xu.
If || f(x) — f(y)|| < a||x —yl||, « < 1, for all x, y, then

v

Ixe = x| < @¥llx = x|

v

Looks good if « not too near 1...

Stationary lterations

Write Ax = bas A= M — K; get fixed point of
MXk+1 =Kxx+b

or
Xk1 = (M7 K)x + M~ b.

v

Convergence if p(M~'K) < 1

Best case for convergence: M = A

Cheapest case: M =1

Realistic: choose something between
Jacobi M = diag(A)
Gauss-Seidel M = tril(A)

v

v

v

Reminder: Discretized 2D Poisson Problem

_1 .
\ J+1
i .
— = s _1 J
\J .
] -1
i—1 i i+1

(Lu)ij = h~2 (40ij = Ui j = Uigrj = Uij1 = Uiji1)

Jacobi on 2D Poisson
Assuming homogeneous Dirichlet boundary conditions

for step = l:nsteps

n-1
for j 2:n-1
u_next (i, Jj)
(u(i, j+1) + u((i,j-1) +
u(i-1,73) + u((i+l,J))
h~2*£ (i, J) /4;

for 1 = 2:

/4 -

end
end
u = u_next;

end

Basically do some averaging at each step.

Parallel version (5 point stencil)

|
“r-aTTr T

-0 @- @

L - J - L - J|-L - J_- L

L L L L R I

white

Boundary values:
Data on PO:

green
blue

Ghost cell data:

R R

- q--F -

R R

- q--F -

-o-o-0ole

Parallel version (9 point stencil)

-0--0-0|e

o 9-¢le

—Jd_ L J|-L_-J__L_-

A i Y A R

-o-o-6|0

|

white

Boundary values:
Data on PO:

green
blue

Ghost cell data:

Parallel version (5 point stencil)

Communicate ghost cells before each step.

Parallel version (9 point stencil)

Communicate in two phases (EW, NS) to get corners.

Gauss-Seidel on 2D Poisson

for step = l:nsteps

(u(i, 3+1) + u(i, j-1) + ...
u(i-1,3) + u(i+l, 3))
h"2x£(1,3)/4;
end
end

end

Bottom values depend on top; how to parallelize?

/4 - ...

Red-Black Gauss-Seidel

eoeoeceo0

®0 0000
eoeoe0

®0 0000
eoeoe0

o000 00

Red depends only on black, and vice-versa.
Generalization: multi-color orderings

Red black Gauss-Seidel step

Parallel red-black Gauss-Seidel sketch

At each step

Send black ghost cells
Update red cells

Send red ghost cells
Update black ghost cells

v

v

v

v

More Sophistication

v

Successive over-relaxation (SOR): extrapolate

Gauss-Seidel direction

Block Jacobi: let M be a block diagonal matrix from A
» Other block variants similar

v

v

Alternating Direction Implicit (ADI): alternately solve on
vertical lines and horizontal lines

Multigrid

These are mostly just the opening act for...

v

Krylov Subspace Methods

What if we only know how to multiply by A?
About all you can do is keep multiplying!

K«(A, b) = span {b, Ab, A2D, ... ,Ak*1b} .

Gives surprisingly useful information!

Example: Conjugate Gradients

If Ais symmetric and positive definite, Ax = b solves a
minimization:
P(x) = %XTAX —xTb
Vo(x) = Ax — b.

Idea: Minimize ¢(x) over Kx (A, b).
Basis for the method of conjugate gradients

Example: GMRES

Idea: Minimize ||Ax — b||? over Kx(A, b).
Yields Generalized Minimum RESidual (GMRES) method.

Convergence of Krylov Subspace Methods

v

KSPs are not stationary (no constant fixed-point iteration)

Convergence is surprisingly subtle!
CG convergence upper bound via condition number
» Large condition number iff form ¢(x) has long narrow bowl
» Usually happens for Poisson and related problems
Preconditioned problem M~1Ax = M~'b converges faster?
Whence M?

» From a stationary method?
» From a simpler/coarser discretization?
» From approximate factorization?

v

v

v

v

PCG

Compute r(® = p — Ax
fori=1,2,...
solve Mz(i=1) = ((i=1)
piy = (ri=1)Tz0=1)

if i == Parallel work:
p =z > Solve with M
else » Product with A

Bi—t = pi-1/pi-2
p) = Z0=1) 4 g; 4 pli=1)
endif > AXpys
q) = Ap() Overlap comm/comp.
a; = pi—1/(p")7q)
x() = x(=1) 4 o;p(0)
P = (li=1) _ g0
end

\4

Dot products

PCG bottlenecks

Key: fast solve with M, product with A
» Some preconditioners parallelize better!
(Jacobi vs Gauss-Seidel)
» Balance speed with performance.

» Speed for set up of M?
» Speed to apply M after setup?
» Cheaper to do two multiplies/solves at once...
» Can't exploit in obvious way — lose stability
» Variants allow multiple products — Hoemmen'’s thesis

» Lots of fiddling possible with M; what about matvec with A?

