
Lecture 14:
Dense Linear Algebra

David Bindel

18 Oct 2010



Where we are

I This week: dense linear algebra
I Next week: sparse linear algebra



Numerical linear algebra in a nutshell

I Basic problems
I Linear systems: Ax = b
I Least squares: minimize ‖Ax − b‖2

2
I Eigenvalues: Ax = λx

I Basic paradigm: matrix factorization
I A = LU, A = LLT

I A = QR
I A = V ΛV−1, A = QTQT

I A = UΣV T

I Factorization ≡ switch to basis that makes problem easy



Numerical linear algebra in a nutshell

Two flavors: dense and sparse
I Dense == common structures, no complicated indexing

I General dense (all entries nonzero)
I Banded (zero below/above some diagonal)
I Symmetric/Hermitian
I Standard, robust algorithms (LAPACK)

I Sparse == stuff not stored in dense form!
I Maybe few nonzeros (e.g. compressed sparse row formats)
I May be implicit (e.g. via finite differencing)
I May be “dense”, but with compact repn (e.g. via FFT)
I Most algorithms are iterative; wider variety, more subtle
I Build on dense ideas



History

BLAS 1 (1973–1977)
I Standard library of 15 ops (mostly) on vectors

I Up to four versions of each: S/D/C/Z
I Example: DAXPY

I Double precision (real)
I Computes Ax + y

I Goals
I Raise level of programming abstraction
I Robust implementation (e.g. avoid over/underflow)
I Portable interface, efficient machine-specific implementation

I BLAS 1 == O(n1) ops on O(n1) data
I Used in LINPACK (and EISPACK?)



History

BLAS 2 (1984–1986)
I Standard library of 25 ops (mostly) on matrix/vector pairs

I Different data types and matrix types
I Example: DGEMV

I Double precision
I GEneral matrix
I Matrix-Vector product

I Goals
I BLAS1 insufficient
I BLAS2 for better vectorization (when vector machines

roamed)
I BLAS2 == O(n2) ops on O(n2) data



History

BLAS 3 (1987–1988)
I Standard library of 9 ops (mostly) on matrix/matrix

I Different data types and matrix types
I Example: DGEMM

I Double precision
I GEneral matrix
I Matrix-Matrix product

I BLAS3 == O(n3) ops on O(n2) data
I Goals

I Efficient cache utilization!



BLAS goes on

I http://www.netlib.org/blas

I CBLAS interface standardized
I Lots of implementations (MKL, Veclib, ATLAS, Goto, ...)
I Still new developments (XBLAS, tuning for GPUs, ...)

http://www.netlib.org/blas


Why BLAS?

Consider Gaussian elimination.

LU for 2× 2: [
a b
c d

]
=

[
1 0

c/a 1

] [
a b
0 d − bc/a

]
Block elimination[

A B
C D

]
=

[
I 0

CA−1 I

] [
A B
0 D − CA−1B

]

Block LU[
A B
C D

]
=

[
L11 0
L12 L22

] [
U11 U12
0 U22

]
=

[
L11U11 L11U12
L12U11 L21U12 + L22U22

]



Why BLAS?

Block LU[
A B
C D

]
=

[
L11 0
L12 L22

] [
U11 U12
0 U22

]
=

[
L11U11 L11U12
L12U11 L21U12 + L22U22

]
Think of A as k × k , k moderate:

[L11,U11] = small_lu(A); % Small block LU
U12 = L11\B; % Triangular solve
L12 = C/U11; % "
S = D-L21*U12; % Rank m update
[L22,U22] = lu(S); % Finish factoring

Three level-3 BLAS calls!
I Two triangular solves
I One rank-k update



LAPACK

LAPACK (1989–present):
http://www.netlib.org/lapack

I Supercedes earlier LINPACK and EISPACK
I High performance through BLAS

I Parallel to the extent BLAS are parallel (on SMP)
I Linear systems and least squares are nearly 100% BLAS 3
I Eigenproblems, SVD — only about 50% BLAS 3

I Careful error bounds on everything
I Lots of variants for different structures

http://www.netlib.org/lapack


ScaLAPACK

ScaLAPACK (1995–present):
http://www.netlib.org/scalapack

I MPI implementations
I Only a small subset of LAPACK functionality

http://www.netlib.org/scalapack


Why is ScaLAPACK not all of LAPACK?

Consider what LAPACK contains...



Decoding LAPACK names

I F77 =⇒ limited characters per name
I General scheme:

I Data type (double/single/double complex/single complex)
I Matrix type (general/symmetric, banded/not banded)
I Operation type

I Example: DGETRF
I Double precision
I GEneral matrix
I TRiangular Factorization

I Example: DSYEVX
I Double precision
I General SYmmetric matrix
I EigenValue computation, eXpert driver



Structures

I General: general (GE), banded (GB), pair (GG), tridiag
(GT)

I Symmetric: general (SY), banded (SB), packed (SP),
tridiag (ST)

I Hermitian: general (HE), banded (HB), packed (HP)
I Positive definite (PO), packed (PP), tridiagonal (PT)
I Orthogonal (OR), orthogonal packed (OP)
I Unitary (UN), unitary packed (UP)
I Hessenberg (HS), Hessenberg pair (HG)
I Triangular (TR), packed (TP), banded (TB), pair (TG)
I Bidiagonal (BD)



LAPACK routine types
I Linear systems (general, symmetric, SPD)
I Least squares (overdetermined, underdetermined,

constrained, weighted)
I Symmetric eigenvalues and vectors

I Standard: Ax = λx
I Generalized: Ax = λBx

I Nonsymmetric eigenproblems
I Schur form: A = QTQT

I Eigenvalues/vectors
I Invariant subspaces
I Generalized variants

I SVD (standard/generalized)
I Different interfaces

I Simple drivers
I Expert drivers with error bounds, extra precision, etc
I Low-level routines
I ... and ongoing discussions! (e.g. about C interfaces)



Matrix vector product
Simple y = Ax involves two indices

yi =
∑

j

Aijxj

Can organize around either one:

% Row-oriented
for i = 1:n
y(i) = A(i,:)*x;

end

% Col-oriented
y = 0;
for j = 1:n
y = y + A(:,j)*x(j);

end

... or deal with index space in other ways!



Parallel matvec: 1D row-blocked

yA x

Receive broadcast x0, x1, x2 into local x0, x1, x2; then

On P0: A00x0 + A01x1 + A02x2 = y0

On P1: A10x0 + A11x1 + A12x2 = y1

On P2: A20x0 + A21x1 + A22x2 = y2



Parallel matvec: 1D col-blocked

yA x

Independently compute

z(0) =

A00
A10
A20

 x0 z(1) =

A00
A10
A20

 x1 z(2) =

A00
A10
A20

 x2

and perform reduction: y = z(0) + z(1) + z(2).



Parallel matvec: 2D blocked

yA x

I Involves broadcast and reduction
I ... but with subsets of processors



Parallel matvec: 2D blocked

Broadcast x0, x1 to local copies x0, x1 at P0 and P2
Broadcast x2, x3 to local copies x2, x3 at P1 and P3
In parallel, compute[

A00 A01
A10 A11

] [
x0
x1

]
=

[
z(0)

0
z(0)

1

] [
A02 A03
A12 A13

] [
x2
x3

]
=

[
z(1)

0
z(1)

1

]
[
A20 A21
A30 A31

] [
x0
x1

]
=

[
z(3)

2
z(3)

3

] [
A20 A21
A30 A31

] [
x0
x1

]
=

[
z(3)

2
z(3)

3

]

Reduce across rows:[
y0
y1

]
=

[
z(0)

0
z(0)

1

]
+

[
z(1)

0
z(1)

1

] [
y2
y3

]
=

[
z(2)

2
z(2)

3

]
+

[
z(3)

2
z(3)

3

]



Parallel matmul

I Basic operation: C = C + AB
I Computation: 2n3 flops
I Goal: 2n3/p flops per processor, minimal communication



1D layout

BC A

I Block MATLAB notation: A(:, j) means j th block column
I Processor j owns A(:, j), B(:, j), C(:, j)
I C(:, j) depends on all of A, but only B(:, j)
I How do we communicate pieces of A?



1D layout on bus (no broadcast)

BC A

I Everyone computes local contributions first
I P0 sends A(:,0) to each processor j in turn;

processor j receives, computes A(:,0)B(0, j)
I P1 sends A(:,1) to each processor j in turn;

processor j receives, computes A(:,1)B(1, j)
I P2 sends A(:,2) to each processor j in turn;

processor j receives, computes A(:,2)B(2, j)



1D layout on bus (no broadcast)

Self A(:,1) A(:,2)A(:,0)

C A B



1D layout on bus (no broadcast)

C(:,myproc) += A(:,myproc)*B(myproc,myproc)
for i = 0:p-1
for j = 0:p-1
if (i == j) continue;
if (myproc == i) i
send A(:,i) to processor j

if (myproc == j)
receive A(:,i) from i
C(:,myproc) += A(:,i)*B(i,myproc)

end
end

end

Performance model?



1D layout on bus (no broadcast)

No overlapping communications, so in a simple α− β model:
I p(p − 1) messages
I Each message involves n2/p data
I Communication cost: p(p − 1)α + (p − 1)n2β



1D layout on ring

I Every process j can send data to j + 1 simultaneously
I Pass slices of A around the ring until everyone sees the

whole matrix (p − 1 phases).



1D layout on ring

tmp = A(myproc)
C(myproc) += tmp*B(myproc,myproc)
for j = 1 to p-1
sendrecv tmp to myproc+1 mod p,

from myproc-1 mod p
C(myproc) += tmp*B(myproc-j mod p, myproc)

Performance model?



1D layout on ring

In a simple α− β model, at each processor:
I p − 1 message sends (and simultaneous receives)
I Each message involves n2/p data
I Communication cost: (p − 1)α + (1− 1/p)n2β



Outer product algorithm

Serial: Recall outer product organization:

for k = 0:s-1
C += A(:,k)*B(k,:);

end

Parallel: Assume p = s2 processors, block s × s matrices.
For a 2× 2 example:[

C00 C01
C10 C11

]
=

[
A00B00 A00B01
A10B00 A10B01

]
+

[
A01B10 A01B11
A11B10 A11B11

]

I Processor for each (i , j) =⇒ parallel work for each k !
I Note everyone in row i uses A(i , k) at once,

and everyone in row j uses B(k , j) at once.



Parallel outer product (SUMMA)

for k = 0:s-1
for each i in parallel
broadcast A(i,k) to row

for each j in parallel
broadcast A(k,j) to col

On processor (i,j), C(i,j) += A(i,k)*B(k,j);
end

If we have tree along each row/column, then
I log(s) messages per broadcast
I α + βn2/s2 per message
I 2 log(s)(αs + βn2/s) total communication
I Compare to 1D ring: (p − 1)α + (1− 1/p)n2β

Note: Same ideas work with block size b < n/s



Cannon’s algorithm

[
C00 C01
C10 C11

]
=

[
A00B00 A01B11
A11B10 A10B01

]
+

[
A01B10 A00B01
A10B00 A11B11

]

Idea: Reindex products in block matrix multiply

C(i , j) =

p−1∑
k=0

A(i , k)B(k , j)

=

p−1∑
k=0

A(i , k + i + j mod p) B(k + i + j mod p, j)

For a fixed k , a given block of A (or B) is needed for
contribution to exactly one C(i , j).



Cannon’s algorithm

% Move A(i,j) to A(i,i+j)
for i = 0 to s-1
cycle A(i,:) left by i

% Move B(i,j) to B(i+j,j)
for j = 0 to s-1
cycle B(:,j) up by j

for k = 0 to s-1
in parallel;
C(i,j) = C(i,j) + A(i,j)*B(i,j);

cycle A(:,i) left by 1
cycle B(:,j) up by 1



Cost of Cannon

I Assume 2D torus topology
I Initial cyclic shifts: ≤ s messages each (≤ 2s total)
I For each phase: 2 messages each (2s total)
I Each message is size n2/s2

I Communication cost: 4s(α + βn2/s2) = 4(αs + βn2/s)

I This communication cost is optimal!
... but SUMMA is simpler, more flexible, almost as good



Speedup and efficiency

Recall

Speedup := tserial/tparallel

Efficiency := Speedup/p

Assuming no overlap of communication and computation,
efficiencies are

1D layout
(
1 + O

(p
n

))−1

SUMMA
(

1 + O
(√

p log p
n

))−1

Cannon
(

1 + O
(√

p
n

))−1


