Lecture 14:
Dense Linear Algebra

David Bindel

18 Oct 2010

Where we are

» This week: dense linear algebra
» Next week: sparse linear algebra

Numerical linear algebra in a nutshell

» Basic problems
» Linear systems: Ax = b
» Least squares: minimize ||Ax — b||2
» Eigenvalues: Ax = \x

» Basic paradigm: matrix factorization
» A=LU,A=LLT

» A= QR
» A= VAV, A= QTQT
» A= Uz VT

» Factorization = switch to basis that makes problem easy

Numerical linear algebra in a nutshell

Two flavors: dense and sparse
» Dense == common structures, no complicated indexing
» General dense (all entries nonzero)
» Banded (zero below/above some diagonal)

» Symmetric/Hermitian
» Standard, robust algorithms (LAPACK)

» Sparse == stuff not stored in dense form!

Maybe few nonzeros (e.g. compressed sparse row formats)
May be implicit (e.g. via finite differencing)

May be “dense”, but with compact repn (e.g. via FFT)

Most algorithms are iterative; wider variety, more subtle
Build on dense ideas

vV VY VY VvYy

History

BLAS 1 (1973-1977)
» Standard library of 15 ops (mostly) on vectors
» Up to four versions of each: S/D/C/Z
» Example: DAXPY
» Double precision (real)
» Computes Ax + y
Goals
» Raise level of programming abstraction
» Robust implementation (e.g. avoid over/underflow)
» Portable interface, efficient machine-specific implementation
BLAS 1 == O(n") ops on O(n') data
Used in LINPACK (and EISPACK?)

v

v

v

History

BLAS 2 (1984-1986)
» Standard library of 25 ops (mostly) on matrix/vector pairs

» Different data types and matrix types
» Example: DGEMV

» Double precision
» GEneral matrix
» Matrix-Vector product
» Goals
» BLAS1 insufficient
» BLAS2 for better vectorization (when vector machines
roamed)

» BLAS2 == O(n?) ops on O(n?) data

History

BLAS 3 (1987-1988)
» Standard library of 9 ops (mostly) on matrix/matrix

» Different data types and matrix types
» Example: DGEMM

» Double precision
» GEneral matrix
» Matrix-Matrix product

» BLAS3 == O(n®) ops on O(n?) data
» Goals
» Efficient cache utilization!

BLAS goes on

v

http://www.netlib.org/blas

CBLAS interface standardized

Lots of implementations (MKL, Veclib, ATLAS, Goto, ...)
Still new developments (XBLAS, tuning for GPUs, ...)

v

v

v

http://www.netlib.org/blas

Why BLAS?

Consider Gaussian elimination.

LU for 2 x 2:
a bl |1 0ffa b
c d| |c/a 1| |0 d—bc/a

Block elimination
A B| / 0| [A B
C D| |CA"'" I||0 D-CA'B

Block LU

[A B]:[Lﬁ 0}[U11 U12]:[L11U11 Li1 U2]
cC D Lig Lop| | 0 Ux LipUpr Lo1Usp + Lo Usp

Why BLAS?

Block LU
[A B] _ [/—11 0} [Uﬂ U12] _ [L11U11 Li1Us2
Cc D Lig Lop| | 0 Ux LipUyr Lo1Usp + Lo U

Think of A as k x k, k moderate:

o\

Small block LU

Triangular solve
"

[L11,U11] = small_lu(A);
Ul2 = L11\B;

L12 = C/Ul1l;

S D-L21+U12;
[L22,U22] = 1lu(S);

o° o

o\

Rank m update
Finish factoring

o\

Three level-3 BLAS calls!
» Two triangular solves
» One rank-k update

LAPACK

LAPACK (1989—present):
http://www.netlib.org/lapack

» Supercedes earlier LINPACK and EISPACK
» High performance through BLAS

» Parallel to the extent BLAS are parallel (on SMP)
» Linear systems and least squares are nearly 100% BLAS 3
» Eigenproblems, SVD — only about 50% BLAS 3

» Careful error bounds on everything
» Lots of variants for different structures

http://www.netlib.org/lapack

ScaLAPACK

ScalLAPACK (1995—present):
http://www.netlib.org/scalapack

» MPI implementations
» Only a small subset of LAPACK functionality

http://www.netlib.org/scalapack

Why is ScaLAPACK not all of LAPACK?

Consider what LAPACK contains...

Decoding LAPACK names

v

F77 — limited characters per name
General scheme:
» Data type (double/single/double complex/single complex)
» Matrix type (general/symmetric, banded/not banded)
» Operation type
Example: DGETRF
» Double precision
» GEneral matrix
» TRiangular Factorization
Example: DSYEVX
» Double precision
» General SYmmetric matrix
» EigenValue computation, eXpert driver

v

v

v

Structures

» General: general (GE), banded (GB), pair (GG), tridiag
(GT)

» Symmetric: general (SY), banded (SB), packed (SP),
tridiag (ST)

» Hermitian: general (HE), banded (HB), packed (HP)

» Positive definite (PO), packed (PP), tridiagonal (PT)

» Orthogonal (OR), orthogonal packed (OP)

» Unitary (UN), unitary packed (UP)

» Hessenberg (HS), Hessenberg pair (HG)

» Triangular (TR), packed (TP), banded (TB), pair (TG)

» Bidiagonal (BD)

LAPACK routine types

» Linear systems (general, symmetric, SPD)

» Least squares (overdetermined, underdetermined,
constrained, weighted)
Symmetric eigenvalues and vectors
» Standard: Ax = Ax
» Generalized: Ax = ABx
Nonsymmetric eigenproblems

» Schur form: A= QTQT
» Eigenvalues/vectors
» Invariant subspaces
» Generalized variants

SVD (standard/generalized)

Different interfaces

Simple drivers

Expert drivers with error bounds, extra precision, etc
Low-level routines

... and ongoing discussions! (e.g. about C interfaces)

v

v

v Vv

v

vV vVvYyyw

Matrix vector product
Simple y = Ax involves two indices

yi=>Y_ A
i

Can organize around either one:

% Row-oriented
for i = 1:n

y(i) = A(i,:)*x;
end

% Col-oriented

14

o
©]

5o
. o

=1
+

:n
y A(:,3)*x(3);

]
[OHLS

n

... or deal with index space in other ways!

Parallel matvec: 1D row-blocked

A X y
.XII

Receive broadcast xg, x1, x> into local xg, X1, Xo; then

On PO: AgoXo + Aot X1 + Ao2Xe = Yo
OnP1: Ajoxo + A11X1 + AraXxe = 4
On P20 Asoxo + Azi X1 + AzoXa = Vo

Parallel matvec: 1D col-blocked

A X
.XI

Independently compute

Aoo Aoo {Aoo-|
Z0=Ap|xo 20 =|Ap|x1 29 =|Ap| %

Ao Azo

and perform reduction: y = z(0) 4 z(1) 4 (2],

Parallel matvec: 2D blocked

» Involves broadcast and reduction
» ... but with subsets of processors

Parallel matvec: 2D blocked

Broadcast xp, = to local copies xg, x; at PO and P2
Broadcast x», ~ to local copies x», x3 at ~ and P3

In parallel, compute
{Aoo Aoq [Xo] _ Z(()O) [Xz]
Ao At X 21(0) X3
Xo B Zég)
X1 zés)

[Azo A21] [Xo] _ 253) {Azo Aoy
Azo Asq] X1 zés) Azp A3y
W [[
+ sl T @ T L
3 z z

Reduce across rows:

[}/o] _ Z((>O)
20

Parallel matmul

» Basic operation: C = C + AB
» Computation: 2n° flops
» Goal: 2n®/p flops per processor, minimal communication

1D layout

C

v

Block MATLAB notation: A(:,j) means jth block column
Processor j owns A(.,j), B(:,), C(:,))

C(:,j) depends on all of A, but only B(:,)

How do we communicate pieces of A?

v

v

v

1D layout on bus (no broadcast)

C

v

Everyone computes local contributions first

PO sends A(:,0) to each processor j in turn;
processor j receives, computes A(:,0)B(0, j)
P1 sends A(:, 1) to each processor j in turn;
processor j receives, computes A(:,1)B(1,)

P2 sends A(:. 2) to each processor j in turn;
processor j receives, computes A(:,2)B(2,)

v

v

v

1D layout on bus (no broadcast)
C

Self A(:,O)% AG,D) A(.2)

1D layout on bus (no broadcast)

C(:,myproc) += A(:,myproc) *B(myproc,myproc)
for i = 0:p-1
for j = 0:p-1
if (1 == j) continue;
if (myproc == i) 1
send A(:,1) to processor j
if (myproc == 7)
receive A(:,1i) from i
C(:,myproc) += A(:,1i)*B(i,myproc)
end
end
end

Performance model?

1D layout on bus (no broadcast)

No overlapping communications, so in a simple o — 8 model:
» p(p — 1) messages
» Each message involves n?/p data
» Communication cost: p(p — 1)a + (p — 1)n?8

1D layout on ring

» Every process j can send data to j + 1 simultaneously

» Pass slices of A around the ring until everyone sees the
whole matrix (p — 1 phases).

1D layout on ring

tmp = A (myproc)
C(myproc) += tmp*B (myproc,myproc)
for 3 = 1 to p-1
sendrecv tmp to myproc+l mod p,
from myproc-1 mod p
C (myproc) += tmp+*B (myproc—3j mod p, myproc)

Performance model?

1D layout on ring

In a simple oo — 8 model, at each processor:
» p— 1 message sends (and simultaneous receives)
» Each message involves n?/p data
» Communication cost: (p — 1)a + (1 — 1/p)n?3

Outer product algorithm

Serial: Recall outer product organization:

for k = 0:s-1
C += A(:,k)*B(k,:);
end

Parallel: Assume p = s? processors, block s x s matrices.
Fora 2 x 2 example:

[Coo C01} _ {AooBoo A00301] n [/%1310 Ao1B11]
Cio Ci4 A10Boo A10Bo1 A11Bio A11Bi1

» Processor for each (i,j) = parallel work for each k!

» Note everyone in row i uses A(/, k) at once,
and everyone in row j uses B(k, j) at once.

Parallel outer product (SUMMA)

for k = 0:s-1
for each 1 in parallel
broadcast A(i,k) to row
for each j in parallel
broadcast A(k,j) to col

On processor (i,3), C(i,3j) += A(i,k)*B(k,J);

end

If we have tree along each row/column, then
log(s) messages per broadcast

o + Bn?/s? per message

2log(s)(as + Bn?/s) total communication
Compare to 1D ring: (p — 1)a + (1 — 1/p)?p

v

v

v

v

Note: Same ideas work with block size b < n/s

Cannon’s algorithm

[Coo C01} _ {AooBoo A01B11] . [/%1310 AooBo1]
Cio Ci4 A11Bio A10Bo1 A10Boo A11Bi1

Idea: Reindex products in block matrix multiply

p—1
C(i,j) =Y A(i,K)B(k,))
k=0
p—1
=> A(i,k+i+j mod p) B(k+i+j mod p,))
k=0

For a fixed k, a given block of A (or B) is needed for
contribution to exactly one C(i, j).

Cannon’s algorithm

% Move A(i,Jj) to A(i,i+3)
for 1 = 0 to s-1

cycle A(i,:) left by i
% Move B(i, j) to B(i+t+3j, J)
for 3 = 0 to s-1

cycle B(:,7J) up by J

for k = 0 to s-1
in parallel;
C(i,3) = C(i,3) + A(i,3)*B(i,9);
cycle A(:,1) left by 1
cycle B(:,3) up by 1

Cost of Cannon

v

Assume 2D torus topology

Initial cyclic shifts: < s messages each (< 2s total)

For each phase: 2 messages each (2s total)

Each message is size n?/s?

Communication cost: 4s(a + fn?/s?) = 4(as + Bn?/s)
This communication cost is optimal!

... but SUMMA is simpler, more flexible, almost as good

v

v

v

v

v

Speedup and efficiency

Recall

Speedup := tseria]/ tparal]e]
Efficiency := Speedup/p

Assuming no overlap of communication and computation,
efficiencies are

1Dlayout (1+ 0 ()"
SUMMA (1 +o(f,§’gp))_1
Cannon (+O(£>)_1

