Lecture 14:
 Dense Linear Algebra

David Bindel

18 Oct 2010

Where we are

- This week: dense linear algebra
- Next week: sparse linear algebra

Numerical linear algebra in a nutshell

- Basic problems
- Linear systems: $A x=b$
- Least squares: minimize $\|A x-b\|_{2}^{2}$
- Eigenvalues: $A x=\lambda x$
- Basic paradigm: matrix factorization
- $A=L U, A=L L^{T}$
- $A=Q R$
- $A=V \wedge V^{-1}, A=Q T Q^{T}$
- $A=U \Sigma V^{T}$
- Factorization \equiv switch to basis that makes problem easy

Numerical linear algebra in a nutshell

Two flavors: dense and sparse

- Dense == common structures, no complicated indexing
- General dense (all entries nonzero)
- Banded (zero below/above some diagonal)
- Symmetric/Hermitian
- Standard, robust algorithms (LAPACK)
- Sparse == stuff not stored in dense form!
- Maybe few nonzeros (e.g. compressed sparse row formats)
- May be implicit (e.g. via finite differencing)
- May be "dense", but with compact repn (e.g. via FFT)
- Most algorithms are iterative; wider variety, more subtle
- Build on dense ideas

History

BLAS 1 (1973-1977)

- Standard library of 15 ops (mostly) on vectors
- Up to four versions of each: S/D/C/Z
- Example: DAXPY
- Double precision (real)
- Computes $A x+y$
- Goals
- Raise level of programming abstraction
- Robust implementation (e.g. avoid over/underflow)
- Portable interface, efficient machine-specific implementation
- BLAS $1==O\left(n^{1}\right)$ ops on $O\left(n^{1}\right)$ data
- Used in LINPACK (and EISPACK?)

History

BLAS 2 (1984-1986)

- Standard library of 25 ops (mostly) on matrix/vector pairs
- Different data types and matrix types
- Example: DGEMV
- Double precision
- GEneral matrix
- Matrix-Vector product
- Goals
- BLAS1 insufficient
- BLAS2 for better vectorization (when vector machines roamed)
- BLAS2 $==O\left(n^{2}\right)$ ops on $O\left(n^{2}\right)$ data

History

BLAS 3 (1987-1988)

- Standard library of 9 ops (mostly) on matrix/matrix
- Different data types and matrix types
- Example: DGEMM
- Double precision
- GEneral matrix
- Matrix-Matrix product
- BLAS3 $==O\left(n^{3}\right)$ ops on $O\left(n^{2}\right)$ data
- Goals
- Efficient cache utilization!

BLAS goes on

- http://www.netlib.org/blas
- CBLAS interface standardized
- Lots of implementations (MKL, Veclib, ATLAS, Goto, ...)
- Still new developments (XBLAS, tuning for GPUs, ...)

Why BLAS?

Consider Gaussian elimination.
LU for 2×2 :

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
c / a & 1
\end{array}\right]\left[\begin{array}{cc}
a & b \\
0 & d-b c / a
\end{array}\right]
$$

Block elimination

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
C A^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
A & B \\
0 & D-C A^{-1} B
\end{array}\right]
$$

Block LU

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
L_{11} & 0 \\
L_{12} & L_{22}
\end{array}\right]\left[\begin{array}{cc}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right]=\left[\begin{array}{cc}
L_{11} U_{11} & L_{11} U_{12} \\
L_{12} U_{11} & L_{21} U_{12}+L_{22} U_{22}
\end{array}\right]
$$

Why BLAS?

Block LU

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
L_{11} & 0 \\
L_{12} & L_{22}
\end{array}\right]\left[\begin{array}{cc}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right]=\left[\begin{array}{cc}
L_{11} U_{11} & L_{11} U_{12} \\
L_{12} U_{11} & L_{21} U_{12}+L_{22} U_{22}
\end{array}\right]
$$

Think of A as $k \times k, k$ moderate:

```
[L11,U11] = small_lu(A);
% Small block LU
U12 = L11\B; % Triangular solve
L12 = C/U11;
S = D-L21*U12;
[L22,U22] = lu(S);
% "
% Rank m update
% Finish factoring
```

Three level-3 BLAS calls!

- Two triangular solves
- One rank-k update

LAPACK

LAPACK (1989-present):
http://www.netlib.org/lapack

- Supercedes earlier LINPACK and EISPACK
- High performance through BLAS
- Parallel to the extent BLAS are parallel (on SMP)
- Linear systems and least squares are nearly 100\% BLAS 3
- Eigenproblems, SVD - only about 50\% BLAS 3
- Careful error bounds on everything
- Lots of variants for different structures

ScaLAPACK

ScaLAPACK (1995-present):

http://www.netlib.org/scalapack

- MPI implementations
- Only a small subset of LAPACK functionality

Why is ScaLAPACK not all of LAPACK?

Consider what LAPACK contains...

Decoding LAPACK names

- F77 \Longrightarrow limited characters per name
- General scheme:
- Data type (double/single/double complex/single complex)
- Matrix type (general/symmetric, banded/not banded)
- Operation type
- Example: DGETRF
- Double precision
- GEneral matrix
- TRiangular Factorization
- Example: DSYEVX
- Double precision
- General SYmmetric matrix
- EigenValue computation, eXpert driver

Structures

- General: general (GE), banded (GB), pair (GG), tridiag (GT)
- Symmetric: general (SY), banded (SB), packed (SP), tridiag (ST)
- Hermitian: general (HE), banded (HB), packed (HP)
- Positive definite (PO), packed (PP), tridiagonal (PT)
- Orthogonal (OR), orthogonal packed (OP)
- Unitary (UN), unitary packed (UP)
- Hessenberg (HS), Hessenberg pair (HG)
- Triangular (TR), packed (TP), banded (TB), pair (TG)
- Bidiagonal (BD)

LAPACK routine types

- Linear systems (general, symmetric, SPD)
- Least squares (overdetermined, underdetermined, constrained, weighted)
- Symmetric eigenvalues and vectors
- Standard: $A x=\lambda x$
- Generalized: $A x=\lambda B x$
- Nonsymmetric eigenproblems
- Schur form: $A=Q T Q^{T}$
- Eigenvalues/vectors
- Invariant subspaces
- Generalized variants
- SVD (standard/generalized)
- Different interfaces
- Simple drivers
- Expert drivers with error bounds, extra precision, etc
- Low-level routines
- ... and ongoing discussions! (e.g. about C interfaces)

Matrix vector product

Simple $y=A x$ involves two indices

$$
y_{i}=\sum_{j} A_{i j} x_{j}
$$

Can organize around either one:

```
% Row-oriented
for i = 1:n
    y(i) = A(i,:)*x;
end
% Col-oriented
y = 0;
for j = 1:n
    y = y + A(:,j)*x(j);
end
```

... or deal with index space in other ways!

Parallel matvec: 1D row-blocked

Receive broadcast x_{0}, x_{1}, x_{2} into local x_{0}, x_{1}, x_{2}; then
On P0: $\quad A_{00} x_{0}+A_{01} x_{1}+A_{02} x_{2}=y_{0}$
On P1: $\quad A_{10} x_{0}+A_{11} x_{1}+A_{12} x_{2}=y_{1}$
On P2: $\quad A_{20} x_{0}+A_{21} x_{1}+A_{22} x_{2}=y_{2}$

Parallel matvec: 1D col-blocked

Independently compute

$$
z^{(0)}=\left[\begin{array}{l}
A_{00} \\
A_{10} \\
A_{20}
\end{array}\right] x_{0} \quad z^{(1)}=\left[\begin{array}{l}
A_{00} \\
A_{10} \\
A_{20}
\end{array}\right] x_{1} \quad z^{(2)}=\left[\begin{array}{l}
A_{00} \\
A_{10} \\
A_{20}
\end{array}\right] x_{2}
$$

and perform reduction: $y=z^{(0)}+z^{(1)}+z^{(2)}$.

Parallel matvec: 2D blocked

- Involves broadcast and reduction
- ... but with subsets of processors

Parallel matvec: 2D blocked

Broadcast x_{0}, x_{1} to local copies x_{0}, x_{1} at P0 and P2 Broadcast x_{2}, x_{3} to local copies x_{2}, x_{3} at P1 and P3 In parallel, compute

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
A_{00} & A_{01} \\
A_{10} & A_{11}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
z_{0}^{(0)} \\
z_{1}^{(0)}
\end{array}\right]} & {\left[\begin{array}{ll}
A_{02} & A_{03} \\
A_{12} & A_{13}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
z_{0}^{(1)} \\
z_{1}^{(1)}
\end{array}\right]} \\
{\left[\begin{array}{ll}
A_{20} & A_{21} \\
A_{30} & A_{31}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
z_{2}^{(3)} \\
z_{3}^{(3)}
\end{array}\right] \quad\left[\begin{array}{ll}
A_{20} & A_{21} \\
A_{30} & A_{31}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
z_{2}^{(3)} \\
z_{3}^{(3)}
\end{array}\right]}
\end{array}
$$

Reduce across rows:

$$
\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]=\left[\begin{array}{l}
z_{0}^{(0)} \\
z_{1}^{(0)}
\end{array}\right]+\left[\begin{array}{l}
z_{0}^{(1)} \\
z_{1}^{(1)}
\end{array}\right] \quad\left[\begin{array}{l}
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
z_{2}^{(2)} \\
z_{3}^{(2)}
\end{array}\right]+\left[\begin{array}{l}
z_{2}^{(3)} \\
z_{3}^{(3)}
\end{array}\right]
$$

Parallel matmul

- Basic operation: $C=C+A B$
- Computation: $2 n^{3}$ flops
- Goal: $2 n^{3} / p$ flops per processor, minimal communication

1D layout

- Block MATLAB notation: $A(:, j)$ means j th block column
- Processor j owns $A(:, j), B(:, j), C(:, j)$
- $C(:, j)$ depends on all of A, but only $B(:, j)$
- How do we communicate pieces of A ?

1D layout on bus (no broadcast)

- Everyone computes local contributions first
- P0 sends $A(:, 0)$ to each processor j in turn; processor j receives, computes $A(:, 0) B(0, j)$
- P1 sends $A(:, 1)$ to each processor j in turn; processor j receives, computes $A(:, 1) B(1, j)$
- P2 sends $A(:, 2)$ to each processor j in turn; processor j receives, computes $A(:, 2) B(2, j)$

1D layout on bus (no broadcast)

Self
$\mathrm{A}(:, 0) \quad \mathrm{A}(:, 1) \quad \mathrm{A}(:, 2)$

1D layout on bus (no broadcast)

```
C(:,myproc) += A(:,myproc) * B(myproc,myproc)
for i = 0:p-1
    for j = 0:p-1
        if (i == j) continue;
        if (myproc == i) i
            send A(:,i) to processor j
        if (myproc == j)
            receive A(:,i) from i
            C(:,myproc) += A(:,i)*B(i,myproc)
        end
    end
end
```

Performance model?

1D layout on bus (no broadcast)

No overlapping communications, so in a simple $\alpha-\beta$ model:

- $p(p-1)$ messages
- Each message involves n^{2} / p data
- Communication cost: $p(p-1) \alpha+(p-1) n^{2} \beta$

1D layout on ring

- Every process j can send data to $j+1$ simultaneously
- Pass slices of A around the ring until everyone sees the whole matrix ($p-1$ phases).

1D layout on ring

```
tmp = A(myproc)
C(myproc) += tmp*B(myproc,myproc)
for j = 1 to p-1
    sendrecv tmp to myproc+1 mod p,
    from myproc-1 mod p
    C(myproc) += tmp*B(myproc-j mod p, myproc)
```

Performance model?

1D layout on ring

In a simple $\alpha-\beta$ model, at each processor:

- $p-1$ message sends (and simultaneous receives)
- Each message involves n^{2} / p data
- Communication cost: $(p-1) \alpha+(1-1 / p) n^{2} \beta$

Outer product algorithm

Serial: Recall outer product organization:

$$
\begin{aligned}
& \text { for } k=0: s-1 \\
& C \quad+=A(:, k) * B(k,:) ; \\
& \text { end }
\end{aligned}
$$

Parallel: Assume $p=s^{2}$ processors, block $s \times s$ matrices.
For a 2×2 example:

$$
\left[\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right]=\left[\begin{array}{ll}
A_{00} B_{00} & A_{00} B_{01} \\
A_{10} B_{00} & A_{10} B_{01}
\end{array}\right]+\left[\begin{array}{ll}
A_{01} B_{10} & A_{01} B_{11} \\
A_{11} B_{10} & A_{11} B_{11}
\end{array}\right]
$$

- Processor for each $(i, j) \Longrightarrow$ parallel work for each k !
- Note everyone in row i uses $A(i, k)$ at once, and everyone in row j uses $B(k, j)$ at once.

Parallel outer product (SUMMA)

```
for k = 0:s-1
    for each i in parallel
        broadcast A(i,k) to row
    for each j in parallel
        broadcast A(k,j) to col
    On processor (i,j), C(i,j) += A(i,k)*B(k,j);
end
```

If we have tree along each row/column, then

- $\log (s)$ messages per broadcast
- $\alpha+\beta n^{2} / s^{2}$ per message
- $2 \log (s)\left(\alpha s+\beta n^{2} / s\right)$ total communication
- Compare to 1D ring: $(p-1) \alpha+(1-1 / p) n^{2} \beta$

Note: Same ideas work with block size $b<n / s$

Cannon's algorithm

$$
\left[\begin{array}{ll}
C_{00} & C_{01} \\
C_{10} & C_{11}
\end{array}\right]=\left[\begin{array}{ll}
A_{00} B_{00} & A_{01} B_{11} \\
A_{11} B_{10} & A_{10} B_{01}
\end{array}\right]+\left[\begin{array}{ll}
A_{01} B_{10} & A_{00} B_{01} \\
A_{10} B_{00} & A_{11} B_{11}
\end{array}\right]
$$

Idea: Reindex products in block matrix multiply

$$
\begin{aligned}
C(i, j) & =\sum_{k=0}^{p-1} A(i, k) B(k, j) \\
& =\sum_{k=0}^{p-1} A(i, k+i+j \bmod p) B(k+i+j \bmod p, j)
\end{aligned}
$$

For a fixed k, a given block of A (or B) is needed for contribution to exactly one $C(i, j)$.

Cannon's algorithm

```
% Move A(i,j) to A(i,i+j)
for i = 0 to s-1
    cycle A(i,:) left by i
% Move B(i,j) to B(i+j,j)
for j = 0 to s-1
    cycle B(:,j) up by j
for k = 0 to s-1
    in parallel;
        C(i,j) = C(i,j) + A(i,j)*B(i,j);
    cycle A(:,i) left by 1
    cycle B(:,j) up by 1
```


Cost of Cannon

- Assume 2D torus topology
- Initial cyclic shifts: $\leq s$ messages each ($\leq 2 s$ total)
- For each phase: 2 messages each ($2 s$ total)
- Each message is size n^{2} / s^{2}
- Communication cost: $4 s\left(\alpha+\beta n^{2} / s^{2}\right)=4\left(\alpha s+\beta n^{2} / s\right)$
- This communication cost is optimal!
... but SUMMA is simpler, more flexible, almost as good

Speedup and efficiency

Recall

$$
\begin{aligned}
\text { Speedup } & :=t_{\text {serial }} / t_{\text {parallel }} \\
\text { Efficiency } & :=\text { Speedup } / p
\end{aligned}
$$

Assuming no overlap of communication and computation, efficiencies are

1D layout $\left(1+O\left(\frac{p}{n}\right)\right)^{-1}$
SUMMA $\left(1+O\left(\frac{\sqrt{p} \log p}{n}\right)\right)^{-1}$
Cannon
$\left(1+O\left(\frac{\sqrt{p}}{n}\right)\right)^{-1}$

