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Logistics

v

Software is installed on crocus!

HW 2 should be in. Solution is on CMS.

Project 2 is posted. Due Oct 31.

Preliminary final project title and group due Oct 25.

v

v

v



The SPH idea

Q>



The SPH idea

The Navier-Stokes equations with gravity are
pa=—Vp+ uVv + pg.

The idea of smoothed particle hydrodynamics is:
» Evolve computational particles.
» Particle info: pressures, velocities, densities.
» Interpolate to get field values between particles.

» Differentiate interpolants to approximate Vp, V2v.



The SPH ODEs

SPH produces an ODE:

§ : flnteract

JGN

§ :mj —rj,h

The forces and densities depend on the smoothing kernel W, which
is supported on a ball of radius h.



Your mission

» Smarter data structure (binning) to speed up the serial code.
(On board!)
» Parallelize the code (OpenMP this time; MPI next time).

» Check out the code from the S10 MD assignment.
» pragma omp parallel for alone won't get you much
performance!

» Analyze performance and report your observations.



Project desiderata

» Write a nice report by the end of the semester...
» ... that says something about performance

» ... and isn't too boring to read or write!



Project logistics

» Groups of up to three okay.
» Can overlap other research or class projects (with permission)

» Tell me who you think you're working with and a tentative
title by next week.
» OK to change your mind — | just want to get a feel!



Project logistics

» Asynchronous parallel optimization (simulation?)
» Particles on a DB-inspired cloud programming framework?
» Scientific codes on Isis2?

» Benchmarks illustrating performance of some other parallel
language (NESL, Parallel Haskell, etc)?

» A new preconditioner in PETSc?

» Parallelization and tuning of some code you already care
about?

» An assignment for next semester?



Enough with the warm-up act.
Floating point!



Why this lecture?

Isn't this really a lecture for the start of CS 32207
» Except you might have forgotten some things
» And might care about using single precision for speed
» And might wonder when your FP code starts to crawl

v

And may want to run code on a current GPU

And may care about mysterious hangs in parallel code

v

And may wonder about reproducible results in parallel

v



Some history

» Von Neumann and Goldstine, 1947 — can't solve linear systems
accurately for n > 15 without carrying many digits (n > 8).

» Turing, 1949 — carrying d digits is equivalent to changing
input data in the dth place (backward error analysis)

» Wilkinson, 1961 — rediscovered + publicized backward error
analysis (1970 Turing Award)

» Backward error analysis of standard algorithms from 1960s on
» But varying arithmetics made portable numerical SW hard!

» |EEE 754/854 floating point standards
(published 1985; Turing award for W. Kahan in 1989)

» Revised IEEE 754 standard in 2008



IEEE floating point reminder

Normalized numbers:
(—1)5 X (1b1b2 Ce bp)2 x 2¢

Have 32-bit single, 64-bit double numbers consisting of
» Sign s
» Precision p (p = 23 or 52)
» Exponent e (—126 <e<l1260or —1022<e < 1023)

Questions:
» What if we can't represent an exact result?
» What about 26maxtl < x < 00 or 0 < x < 26min?
» What if we compute 1/07
» What if we compute v/—1?



Rounding

Basic ops (+, —, x, /, /), require correct rounding
» As if computed to infinite precision, then rounded.
» Don't actually need infinite precision for this!
» Different rounding rules possible:

» Round to nearest even (default)
» Round up, down, toward 0 — error bounds and intervals

» If rounded result # exact result, have inexact exception
» Which most people seem not to know about...
» ... and which most of us who do usually ignore
» 754-2008 recommends (does not require) correct rounding for
a few transcendentals as well (sine, cosine, etc).



Denormalization and underflow

Denormalized numbers:

(—1)5 X (Oblbg - bp)2 X 2Emin

» Evenly fill in space between +2€min
» Gradually lose bits of precision as we approach zero

» Denormalization results in an underflow exception
» Except when an exact zero is generated



Infinity and NaN

Other things can happen:
» 26max | Deémax generates oo (overflow exception)

» 1/0 generates oo (divide by zero exception)
» ... should really be called “exact infinity” exception

» /—1 generates Not-a-Number (invalid exception)
But every basic operation produces something well defined.



Basic rounding model

Model of roundoff in a basic op:

fI(a@ b) = (3 O) b)(l + 5)7 |6’ < €machine-

» This model is not complete
» Too optimistic: misses overflow, underflow, or divide by zero

» Also too pessimistic — some things are done exactly!
» Example: 2x exact, asis x + y if x/2 <y < 2x

» But useful as a basis for backward error analysis



Example: Horner's rule

Evaluate p(x) = "7 _o ckx”:

p = c(n)
for k = n-1 downto O
p = xxp + c(k)

Can show backward error result:

k=0

where |8 — ck| < (n+ 1)€machine|Ck|-

Backward error + sensitivity gives forward error. Can even compute
running error estimates!



Hooray for the modern eral

» Almost everyone implements IEEE 754 (at least 1985)
» Old Cray arithmetic is essentially extinct

» We teach backward error analysis in basic classes

» We have good libraries for linear algebra, elementary functions



Back to the future?

» Almost everyone implements IEEE 754 (at least 1985)
Old Cray arithmetic is essentially extinct

But GPUs may lack gradual underflow, do sloppy division
And it's impossible to write portable exception handlers
And even with C99, exception flags may be inaccessible
And some features might be slow

And the compiler might not do what you expected

v
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» We teach backward error analysis in basic classes

» ... which are often no longer required!
» And anyhow, backward error analysis isn't everything.

» We have good libraries for linear algebra, elementary functions
» But people will still roll their own.



Arithmetic speed

Single precision is faster than double precision
» Actual arithmetic cost may be comparable (on CPU)
» But GPUs generally prefer single
» And SSE instructions do more per cycle with single

» And memory bandwidth is lower



Mixed-precision arithmetic

Idea: use double precision only where needed
» Example: iterative refinement and relatives

» Or use double-precision arithmetic between single-precision
representations (may be a good idea regardless)



Example: Mixed-precision iterative refinement

Factor A= LU

Solve x = U~Y(L71h)

r=>b— Ax

While ||r|| too large
d=UYL"1r)
x=x+d
r=>b— Ax

O(n3) single-precision work
O(n?) single-precision work
O(n?) double-precision work

O(n?) single-precision work
O(n) single-precision work
O(n?) double-precision work



Example: Helpful extra precision

/%
* Assuming all coordinates are in [1,2), check on which
* side of the line through A and B is the point C.
*/
int check_side(float ax, float ay, float bx, float by,
float cx, float cy)

{
double abx = bx-ax, aby = by-ay;
double acx = cx-ax, acy = cy-ay;
double det = acx*aby-abx*aby;
if (det == 0) return O;
if (det < 0) return -1;
if (det > 0) return 1;

}

This is not robust if the inputs are double precision!



Single or double?

What to use for:
> Large data sets? (single for performance, if possible)
» Local calculations? (double by default, except maybe on GPU)
» Physically measured inputs? (probably single)
» Nodal coordinates? (probably single)
» Stiffness matrices? (maybe single, maybe double)
» Residual computations? (probably double)

» Checking geometric predicates? (double or more)



Simulating extra precision

What if we want higher precision than is fast?
» Double precision on a GPU?
» Quad precision on a CPU?

Can simulate extra precision. Example:
if abs(a) < abs(b), swap a and b

double s1 = atb; /* May suffer roundoff */
double s2 (a-s1) + b; /* No roundoff! */

Idea applies more broadly (Bailey, Bohlender, Dekker, Demmel,
Hida, Kahan, Li, Linnainmaa, Priest, Shewchuk, ...)

» Used in fast extra-precision packages

» And in robust geometric predicate code
» And in XBLAS



Exceptional arithmetic speed

Time to sum 1000 doubles on my laptop:
» Initialized to 1: 1.3 microseconds
» Initialized to inf/nan: 1.3 microseconds
> Initialized to 1073!2: 67 microseconds

50x performance penalty for gradual underflow!

Why worry? Some GPUs don't support gradual underflow at all!

One reason:
if (x !'=y)
z = x/(x-y);

Also limits range of simulated extra precision.



Exceptional algorithms, take 2

A general idea (works outside numerics, too):
» Try something fast but risky
» |f something breaks, retry more carefully

If risky usually works and doesn't cost too much extra, this
improves performance.

(See Demmel and Li, and also Hull, Farfrieve, and Tang.)



Parallel problems

What goes wrong with floating point in parallel (or just high
performance) environments?



Problem 1: Repeatability

Floating point addition is not associative:

fi(a+fl(b+c)) £ f(fi(a+ )+ c)

So answers depends on the inputs, but also
» How blocking is done in multiply or other kernels
» Maybe compiler optimizations
» Order in which reductions are computed

» Order in which critical sections are reached

Worst case: with nontrivial probability we get an answer too bad to
be useful, not bad enough for the program to barf — and garbage
comes out.



Problem 1: Repeatability

What can we do?
» Apply error analysis agnostic to ordering

» Write a slower version with specific ordering for debugging



Problem 2: Heterogeneity

Local arithmetic faster than communication

v

v

So be redundant about some computation
What if the redundant computations are on different HW?

» Different nodes in the cloud?
» GPU and CPU?

Problem case: different exception handling on different nodes

v

v

v

Problem case: take different branches due to different rounding



Recap

So why care about the vagaries of floating point?
» Might actually care about error analysis
» Or using single precision for speed
» Or maybe just reproducibility

» Or avoiding crashes from inconsistent decisions!

Start with “What Every Computer Scientist Should Know About
Floating Point Arithmetic” (David Goldberg, with an addendum by
Doug Priest). It's in the back of Patterson-Hennessey.



