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Logistics

I Matrix multiply is done! Still have to run.
I Small HW 2 will be up before lecture on Thursday, due next

Tuesday.
I Project 2 will be posted next Tuesday.
I Email me if interested in Sandia recruiting
I Also email me if interested in MEng projects.

http://www.cs.cornell.edu/~bindel/meng.html


Previously on Parallel Programming

Can write a lot of MPI code with 6 operations we’ve seen:
I MPI_Init

I MPI_Finalize

I MPI_Comm_size

I MPI_Comm_rank

I MPI_Send

I MPI_Recv

... but there are sometimes better ways. Decide on
communication style using simple performance models.



Communication performance

I Basic info: latency and bandwidth
I Simplest model: tcomm = α+ βM
I More realistic: distinguish CPU overhead from “gap”

(∼ inverse bw)
I Different networks have different parameters
I Can tell a lot via a simple ping-pong experiment



OpenMPI on crocus

I Two quad-core chips per nodes, five nodes
I Heterogeneous network:

I Crossbar switch between cores (?)
I Bus between chips
I Gigabit ehternet between nodes

I Default process layout (16 process example)
I Processes 0-3 on first chip, first node
I Processes 4-7 on second chip, first node
I Processes 8-11 on first chip, second node
I Processes 12-15 on second chip, second node

I Test ping-pong from 0 to 1, 7, and 8.



Approximate α-β parameters (on node)
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α1 ≈ 1.0× 10−6, β1 ≈ 5.7× 10−10

α2 ≈ 8.4× 10−7, β2 ≈ 6.8× 10−10



Approximate α-β parameters (cross-node)
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α3 ≈ 7.1× 10−5, β3 ≈ 9.7× 10−9



Moral

Not all links are created equal!
I Might handle with mixed paradigm

I OpenMP on node, MPI across
I Have to worry about thread-safety of MPI calls

I Can handle purely within MPI
I Can ignore the issue completely?

For today, we’ll take the last approach.



Reminder: basic send and recv

MPI_Send(buf, count, datatype,
dest, tag, comm);

MPI_Recv(buf, count, datatype,
source, tag, comm, status);

MPI_Send and MPI_Recv are blocking
I Send does not return until data is in system
I Recv does not return until data is ready



Blocking and buffering
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Block until data “in system” — maybe in a buffer?



Blocking and buffering
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Alternative: don’t copy, block until done.



Problem 1: Potential deadlock

... blocked ...

Send Send

Both processors wait to finish send before they can receive!
May not happen if lots of buffering on both sides.



Solution 1: Alternating order

Recv

SendRecv

Send

Could alternate who sends and who receives.



Solution 2: Combined send/recv

SendrecvSendrecv

Common operations deserve explicit support!



Combined sendrecv

MPI_Sendrecv(sendbuf, sendcount, sendtype,
dest, sendtag,
recvbuf, recvcount, recvtype,
source, recvtag,
comm, status);

Blocking operation, combines send and recv to avoid deadlock.



Problem 2: Communication overhead

..waiting...

Sendrecv Sendrecv

Sendrecv Sendrecv

..waiting...

Partial solution: nonblocking communication



Blocking vs non-blocking communication

I MPI_Send and MPI_Recv are blocking
I Send does not return until data is in system
I Recv does not return until data is ready
I Cons: possible deadlock, time wasted waiting

I Why blocking?
I Overwrite buffer during send =⇒ evil!
I Read buffer before data ready =⇒ evil!

I Alternative: nonblocking communication
I Split into distinct initiation/completion phases
I Initiate send/recv and promise not to touch buffer
I Check later for operation completion



Overlap communication and computation

}

Start recv

Start send

Start recv

End send

End recv

End send

End recv

Compute, but don’t touch buffers!

Start send



Nonblocking operations

Initiate message:

MPI_Isend(start, count, datatype, dest
tag, comm, request);

MPI_Irecv(start, count, datatype, dest
tag, comm, request);

Wait for message completion:

MPI_Wait(request, status);

Test for message completion:

MPI_Wait(request, status);



Multiple outstanding requests

Sometimes useful to have multiple outstanding messages:

MPI_Waitall(count, requests, statuses);
MPI_Waitany(count, requests, index, status);
MPI_Waitsome(count, requests, indices, statuses);

Multiple versions of test as well.



Other send/recv variants

Other variants of MPI_Send
I MPI_Ssend (synchronous) – do not complete until receive

has begun
I MPI_Bsend (buffered) – user provides buffer (via
MPI_Buffer_attach)

I MPI_Rsend (ready) – user guarantees receive has already
been posted

I Can combine modes (e.g. MPI_Issend)
MPI_Recv receives anything.



Another approach

I Send/recv is one-to-one communication
I An alternative is one-to-many (and vice-versa):

I Broadcast to distribute data from one process
I Reduce to combine data from all processors
I Operations are called by all processes in communicator



Broadcast and reduce

MPI_Bcast(buffer, count, datatype,
root, comm);

MPI_Reduce(sendbuf, recvbuf, count, datatype,
op, root, comm);

I buffer is copied from root to others
I recvbuf receives result only at root
I op ∈ { MPI_MAX, MPI_SUM, . . . }



Example: basic Monte Carlo
#include <stdio.h>
#include <mpi.h>
int main(int argc, char** argv) {

int nproc, myid, ntrials;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nproc);
MPI_Comm_rank(MPI_COMM_WORLD, &my_id);
if (myid == 0) {

printf("Trials per CPU:\n");
scanf("%d", &ntrials);

}
MPI_Bcast(&ntrials, 1, MPI_INT,

0, MPI_COMM_WORLD);
run_trials(myid, nproc, ntrials);
MPI_Finalize();
return 0;

}



Example: basic Monte Carlo

Let sum[0] =
∑

i Xi and sum[1] =
∑

i X 2
i .

void run_mc(int myid, int nproc, int ntrials) {
double sums[2] = {0,0};
double my_sums[2] = {0,0};
/* ... run ntrials local experiments ... */
MPI_Reduce(my_sums, sums, 2, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD);
if (myid == 0) {

int N = nproc*ntrials;
double EX = sums[0]/N;
double EX2 = sums[1]/N;
printf("Mean: %g; err: %g\n",

EX, sqrt((EX*EX-EX2)/N));
}

}



Collective operations

I Involve all processes in communicator
I Basic classes:

I Synchronization (e.g. barrier)
I Data movement (e.g. broadcast)
I Computation (e.g. reduce)



Barrier

MPI_Barrier(comm);

Not much more to say. Not needed that often.



Broadcast
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Scatter/gather
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Allgather
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Alltoall
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Reduce
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Scan
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The kitchen sink

I In addition to above, have vector variants (v suffix), more
All variants (Allreduce), Reduce_scatter, ...

I MPI3 adds one-sided communication (put/get)
I MPI is not a small library!
I But a small number of calls goes a long way

I Init/Finalize
I Get_comm_rank, Get_comm_size
I Send/Recv variants and Wait
I Allreduce, Allgather, Bcast


