
Lecture 9: MPI continued

David Bindel

27 Sep 2011

Logistics

I Matrix multiply is done! Still have to run.
I Small HW 2 will be up before lecture on Thursday, due next

Tuesday.
I Project 2 will be posted next Tuesday.
I Email me if interested in Sandia recruiting
I Also email me if interested in MEng projects.

http://www.cs.cornell.edu/~bindel/meng.html

Previously on Parallel Programming

Can write a lot of MPI code with 6 operations we’ve seen:
I MPI_Init

I MPI_Finalize

I MPI_Comm_size

I MPI_Comm_rank

I MPI_Send

I MPI_Recv

... but there are sometimes better ways. Decide on
communication style using simple performance models.

Communication performance

I Basic info: latency and bandwidth
I Simplest model: tcomm = α+ βM
I More realistic: distinguish CPU overhead from “gap”

(∼ inverse bw)
I Different networks have different parameters
I Can tell a lot via a simple ping-pong experiment

OpenMPI on crocus

I Two quad-core chips per nodes, five nodes
I Heterogeneous network:

I Crossbar switch between cores (?)
I Bus between chips
I Gigabit ehternet between nodes

I Default process layout (16 process example)
I Processes 0-3 on first chip, first node
I Processes 4-7 on second chip, first node
I Processes 8-11 on first chip, second node
I Processes 12-15 on second chip, second node

I Test ping-pong from 0 to 1, 7, and 8.

Approximate α-β parameters (on node)

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18

Ti
m

e/
m

sg
 (m

ic
ro

se
c)

Message size (kilobytes)

Measured (1)
Model (1)

Measured (7)
Model (7)

α1 ≈ 1.0× 10−6, β1 ≈ 5.7× 10−10

α2 ≈ 8.4× 10−7, β2 ≈ 6.8× 10−10

Approximate α-β parameters (cross-node)

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18

Ti
m

e/
m

sg
 (m

ic
ro

se
c)

Message size (kilobytes)

Measured (1)
Model (1)

Measured (7)
Model (7)

Measured (8)
Model (8)

α3 ≈ 7.1× 10−5, β3 ≈ 9.7× 10−9

Moral

Not all links are created equal!
I Might handle with mixed paradigm

I OpenMP on node, MPI across
I Have to worry about thread-safety of MPI calls

I Can handle purely within MPI
I Can ignore the issue completely?

For today, we’ll take the last approach.

Reminder: basic send and recv

MPI_Send(buf, count, datatype,
dest, tag, comm);

MPI_Recv(buf, count, datatype,
source, tag, comm, status);

MPI_Send and MPI_Recv are blocking
I Send does not return until data is in system
I Recv does not return until data is ready

Blocking and buffering

data

buffer

buffer

P0 OS Net OS P1

data

Block until data “in system” — maybe in a buffer?

Blocking and buffering

data

P0 OS Net OS P1

data

Alternative: don’t copy, block until done.

Problem 1: Potential deadlock

... blocked ...

Send Send

Both processors wait to finish send before they can receive!
May not happen if lots of buffering on both sides.

Solution 1: Alternating order

Recv

SendRecv

Send

Could alternate who sends and who receives.

Solution 2: Combined send/recv

SendrecvSendrecv

Common operations deserve explicit support!

Combined sendrecv

MPI_Sendrecv(sendbuf, sendcount, sendtype,
dest, sendtag,
recvbuf, recvcount, recvtype,
source, recvtag,
comm, status);

Blocking operation, combines send and recv to avoid deadlock.

Problem 2: Communication overhead

..waiting...

Sendrecv Sendrecv

Sendrecv Sendrecv

..waiting...

Partial solution: nonblocking communication

Blocking vs non-blocking communication

I MPI_Send and MPI_Recv are blocking
I Send does not return until data is in system
I Recv does not return until data is ready
I Cons: possible deadlock, time wasted waiting

I Why blocking?
I Overwrite buffer during send =⇒ evil!
I Read buffer before data ready =⇒ evil!

I Alternative: nonblocking communication
I Split into distinct initiation/completion phases
I Initiate send/recv and promise not to touch buffer
I Check later for operation completion

Overlap communication and computation

}

Start recv

Start send

Start recv

End send

End recv

End send

End recv

Compute, but don’t touch buffers!

Start send

Nonblocking operations

Initiate message:

MPI_Isend(start, count, datatype, dest
tag, comm, request);

MPI_Irecv(start, count, datatype, dest
tag, comm, request);

Wait for message completion:

MPI_Wait(request, status);

Test for message completion:

MPI_Wait(request, status);

Multiple outstanding requests

Sometimes useful to have multiple outstanding messages:

MPI_Waitall(count, requests, statuses);
MPI_Waitany(count, requests, index, status);
MPI_Waitsome(count, requests, indices, statuses);

Multiple versions of test as well.

Other send/recv variants

Other variants of MPI_Send
I MPI_Ssend (synchronous) – do not complete until receive

has begun
I MPI_Bsend (buffered) – user provides buffer (via
MPI_Buffer_attach)

I MPI_Rsend (ready) – user guarantees receive has already
been posted

I Can combine modes (e.g. MPI_Issend)
MPI_Recv receives anything.

Another approach

I Send/recv is one-to-one communication
I An alternative is one-to-many (and vice-versa):

I Broadcast to distribute data from one process
I Reduce to combine data from all processors
I Operations are called by all processes in communicator

Broadcast and reduce

MPI_Bcast(buffer, count, datatype,
root, comm);

MPI_Reduce(sendbuf, recvbuf, count, datatype,
op, root, comm);

I buffer is copied from root to others
I recvbuf receives result only at root
I op ∈ { MPI_MAX, MPI_SUM, . . . }

Example: basic Monte Carlo
#include <stdio.h>
#include <mpi.h>
int main(int argc, char** argv) {

int nproc, myid, ntrials;
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &nproc);
MPI_Comm_rank(MPI_COMM_WORLD, &my_id);
if (myid == 0) {

printf("Trials per CPU:\n");
scanf("%d", &ntrials);

}
MPI_Bcast(&ntrials, 1, MPI_INT,

0, MPI_COMM_WORLD);
run_trials(myid, nproc, ntrials);
MPI_Finalize();
return 0;

}

Example: basic Monte Carlo

Let sum[0] =
∑

i Xi and sum[1] =
∑

i X 2
i .

void run_mc(int myid, int nproc, int ntrials) {
double sums[2] = {0,0};
double my_sums[2] = {0,0};
/* ... run ntrials local experiments ... */
MPI_Reduce(my_sums, sums, 2, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD);
if (myid == 0) {

int N = nproc*ntrials;
double EX = sums[0]/N;
double EX2 = sums[1]/N;
printf("Mean: %g; err: %g\n",

EX, sqrt((EX*EX-EX2)/N));
}

}

Collective operations

I Involve all processes in communicator
I Basic classes:

I Synchronization (e.g. barrier)
I Data movement (e.g. broadcast)
I Computation (e.g. reduce)

Barrier

MPI_Barrier(comm);

Not much more to say. Not needed that often.

Broadcast

Broadcast

P0

P1

P2

P3

P0

P1

P2

P3

A

A

A

A

A

Scatter/gather

Gather

P0

P1

P2

P3

P0

P1

P2

P3

A

B

C

D

A
Scatter

B C D

Allgather

Allgather

P0

P1

P2

P3

P0

P1

P2

P3

A

A

A

A

B C D

B

B

B

C

C

C

D

D

D

A

B

C

D

Alltoall

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

D0

D1

D2

D3

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

Reduce

ABCD
P0

P1

P2

P3

P0

P1

P2

P3

Reduce

A

B

C

D

Scan

Scan

P0

P1

P2

P3

P0

P1

P2

P3

A

B

C

D ABCD

A

AB

ABC

The kitchen sink

I In addition to above, have vector variants (v suffix), more
All variants (Allreduce), Reduce_scatter, ...

I MPI3 adds one-sided communication (put/get)
I MPI is not a small library!
I But a small number of calls goes a long way

I Init/Finalize
I Get_comm_rank, Get_comm_size
I Send/Recv variants and Wait
I Allreduce, Allgather, Bcast

