Lecture 9: MPI continued

David Bindel

27 Sep 2011

Logistics

v

Matrix multiply is done! Still have to run.

Small HW 2 will be up before lecture on Thursday, due next
Tuesday.

Project 2 will be posted next Tuesday.
Email me if interested in Sandia recruiting
Also email me if interested in MEng projects.

v

v

v

v

http://www.cs.cornell.edu/~bindel/meng.html

Previously on Parallel Programming

Can write a lot of MPI code with 6 operations we’ve seen:
» MPT_Init
» MPI Finalize
» MPI Comm_size
» MPI Comm_rank
» MPI_Send
» MPI_Recv

... but there are sometimes better ways. Decide on
communication style using simple performance models.

Communication performance

» Basic info: latency and bandwidth
» Simplest model: t.omm = o + M

» More realistic: distinguish CPU overhead from “gap
(~ inverse bw)

» Different networks have different parameters
» Can tell a lot via a simple ping-pong experiment

”

OpenMPI on crocus

v

Two quad-core chips per nodes, five nodes
Heterogeneous network:

» Crossbar switch between cores (?)
» Bus between chips
» Gigabit ehternet between nodes

Default process layout (16 process example)

Processes 0-3 on first chip, first node

» Processes 4-7 on second chip, first node

» Processes 8-11 on first chip, second node

» Processes 12-15 on second chip, second node

Test ping-pong from 0 to 1, 7, and 8.

v

v

v

v

Approximate a-f parameters (on node)

12

~ Measured (7) —»—
Model (7) —a—

Mea:‘sured (i) —o—‘
10 Model (1) —»—

Time/msg (microsec)
o

0 2 4 6 8 10 12 14 16
Message size (kilobytes)

a1 ~1.0x1078, 3y =57 x 10710
as~84x1077, B~ 6.8 x 1010

Approximate a-(parameters (cross-node)

250 ‘ ‘ ‘
Measured (1) —+—

Model (1) —»—

| Measured (7) —»—
200
. Model (7) —a—
b Measured (8) —m—
3 Model (8) —e—
5 150
E
[o))
(2]
£ 100
()
=
|_

50

0 2 4 6 8 10 12 14 16 18

Message size (kilobytes)

ag~7.1x107% B3~ 9.7 x 107°

Moral

Not all links are created equal!
» Might handle with mixed paradigm

» OpenMP on node, MPI across
» Have to worry about thread-safety of MPI calls

» Can handle purely within MPI
» Can ignore the issue completely?
For today, we'll take the last approach.

Reminder: basic send and recv

MPI_Send(buf, count, datatype,
dest, tag, comm);

MPI_Recv (buf, count, datatype,
source, tag, comm, status);

MPI_Send and MPI_Recv are blocking
» Send does not return until data is in system
» Recv does not return until data is ready

Blocking and buffering

data

buffer

buffer

data

PO oS Net oS P1

Block until data “in system” — maybe in a buffer?

Blocking and buffering

P1

OS

Net

oS

PO

Alternative: don’t copy, block until done.

Problem 1: Potential deadlock

Send Send

... blocked ...

- _ — — = -

\

Both processors wait to finish send before they can receive!
May not happen if lots of buffering on both sides.

Solution 1: Alternating order

Send

Recv

Could alternate who sends and who receives.

Solution 2: Combined send/recv

Sendrecv Sendrecv
I
I

Common operations deserve explicit support!

Combined sendrecv

MPI_Sendrecv (sendbuf, sendcount, sendtype,
dest, sendtag,
recvbuf, recvcount, recvtype,
source, recvtag,
comm, status);

Blocking operation, combines send and recv to avoid deadlock.

Problem 2: Communication overhead

Sendrecv Sendrecv
| I ..
|><| ..waiting...
Sendrecv Sendrecv
| I ..
|><| ..waiting...

Partial solution: nonblocking communication

Blocking vs non-blocking communication

» MPI_Send and MPI_Recv are blocking

» Send does not return until data is in system
» Recv does not return until data is ready
» Cons: possible deadlock, time wasted waiting

» Why blocking?
» Overwrite buffer during send = euvill
» Read buffer before data ready —- euvill
» Alternative: nonblocking communication

» Split into distinct initiation/completion phases
» Initiate send/recv and promise not to touch buffer
» Check later for operation completion

Overlap communication and computation

Start send
Start recv

End send
End recv

Start send
Start recv

}Compute, but don’t touch buffers!

End send
End recv

Nonblocking operations

Initiate message:

MPI_TIsend(start, count, datatype, dest
tag, comm, request);

MPI_TIrecv(start, count, datatype, dest
tag, comm, request);

Wait for message completion:

MPI_Wait (request, status);

Test for message completion:

MPI_Wait (request, status);

Multiple outstanding requests

Sometimes useful to have multiple outstanding messages:

MPI_Waitall (count, requests, statuses);
MPI_Waitany (count, requests, index, status);
MPI_Waitsome (count, requests, indices, statuses);

Multiple versions of test as well.

Other send/recv variants

Other variants of MPI_Send

» MPT_Ssend (synchronous) — do not complete until receive
has begun

» MPI_Bsend (buffered) — user provides buffer (via
MPI_Buffer_attach)

» MPI_Rsend (ready) — user guarantees receive has already
been posted

» Can combine modes (e.g. MPI_Issend)
MPI_Recv receives anything.

Another approach

» Send/recv is one-to-one communication
» An alternative is one-to-many (and vice-versa):

» Broadcast to distribute data from one process
» Reduce to combine data from all processors
» Operations are called by all processes in communicator

Broadcast and reduce

MPI_Bcast (buffer, count, datatype,
root, comm);

MPI_Reduce (sendbuf, recvbuf, count,
op, root, comm);

» buffer is copied from root to others
» recvbuf receives result only at root
» op € { MPI_MAX, MPI_SUM, ...}

datatype,

Example: basic Monte Carlo

#include <stdio.h>
#include <mpi.h>
int main (int argc, charxx argv) {
int nproc, myid, ntrials;
MPI_Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, é&nproc);
MPI_Comm_rank (MPI_COMM_WORLD, é&my_id);
if (myid == 0) {
printf ("Trials per CPU:\n");
scanf ("%d", &ntrials);
}
MPI_Bcast (&ntrials, 1, MPI_INT,

0, MPI_COMM WORLD) ;
run_trials (myid, nproc, ntrials);
MPI_Finalize();
return 0;

Example: basic Monte Carlo
Let sum[0] =), X;and sum[1] = Z,-Xiz.

void run_mc (int myid, int nproc, int ntrials) {
double sums[2] = {0,0};
double my_sums[2] = {0,0};
/* ... run ntrials local experiments ... */
MPI_Reduce (my_sums, sums, 2, MPI_DOUBLE,
MPI_SUM, 0, MPI_COMM_WORLD) ;
if (myid == 0) {
int N = nprocxntrials;
double EX = sums[0]/N;
double EX2 = sums[1]/N;
printf ("Mean: %g; err: %g\n",
EX, sqgrt ((EX+*EX-EX2)/N));

Collective operations

» Involve all processes in communicator
» Basic classes:

» Synchronization (e.g. barrier)
» Data movement (e.g. broadcast)
» Computation (e.g. reduce)

Barrier

MPI_Barrier (comm) ;

Not much more to say. Not needed that often.

Broadcast

PO A PO
Broadcast

P1 Pl

P2 P2

P3 P3

Scatter/gather

A B
PO Scatter PO
P1 P1
Gather
P2 ~——)
P3 P3

Allgather

PO

Allgather
& Pl

PO A
P B
P2 C
P3 D

P2

P3

Alltoall

PO
P1
P2

P3

A0 |Al A2 |A3 po | A0 |BO |co |Do
BO |Bl |B2 |B3 Alltoall Al |Bl |Cl |DI
co |c1 |c2 |c3 ;| A2 |B2 |2 |D2
D0 |DI [D2 |D3 p3 | A3 |B3 |C3 |D3

Reduce

PO
P1
P2

P3

Reduce
—

PO

P1

P2

P3

ABCD

Scan

PO
P1
P2

P3

Scan

PO

P1

P2

P3

AB

ABC

ABCD

The kitchen sink

v

In addition to above, have vector variants (v suffix), more
All variants (Allreduce), Reduce_scatter, ...

MPI3 adds one-sided communication (put/get)

MPI is not a small library!

But a small number of calls goes a long way
» Init/Finalize

Get_comm_rank, Get_comm_size

Send/Recv variants and Wait

Allreduce, Allgather, Bcast

v

v

v

vV vy

