
Lecture 5:
Parallelism and Locality in Scientific Codes

David Bindel

13 Sep 2011

Logistics

I Course assignments:
I The cluster is online. Should receive your accounts today.
I Short assignment 1 is due by Friday, 9/16 on CMS
I Project 1 is due by Friday, 9/23 on CMS – find partners!

I Course material:
I This finishes the “whirlwind tour” part of the class.
I On Thursday, we start on nuts and bolts.
I Preview of “lecture 6” is up (more than one lecture!)

Basic styles of simulation

I Discrete event systems (continuous or discrete time)
I Game of life, logic-level circuit simulation
I Network simulation

I Particle systems
I Billiards, electrons, galaxies, ...
I Ants, cars, ...?

I Lumped parameter models (ODEs)
I Circuits (SPICE), structures, chemical kinetics

I Distributed parameter models (PDEs / integral equations)
I Heat, elasticity, electrostatics, ...

Often more than one type of simulation appropriate.
Sometimes more than one at a time!

Common ideas / issues

I Load balancing
I Imbalance may be from lack of parallelism, poor distributin
I Can be static or dynamic

I Locality
I Want big blocks with low surface-to-volume ratio
I Minimizes communication / computation ratio
I Can generalize ideas to graph setting

I Tensions and tradeoffs
I Irregular spatial decompositions for load balance at the cost

of complexity, maybe extra communication
I Particle-mesh methods — can’t manage moving particles

and fixed meshes simultaneously without communicating

Lumped parameter simulations

Examples include:
I SPICE-level circuit simulation

I nodal voltages vs. voltage distributions
I Structural simulation

I beam end displacements vs. continuum field
I Chemical concentrations in stirred tank reactor

I concentrations in tank vs. spatially varying concentrations

Typically involves ordinary differential equations (ODEs),
or with constraints (differential-algebraic equations, or DAEs).

Often (not always) sparse.

Sparsity

A =

* * *

* * *

* *

* *

*

* *

1 3 4 52

Consider system of ODEs x ′ = f (x) (special case: f (x) = Ax)
I Dependency graph has edge (i , j) if fj depends on xi

I Sparsity means each fj depends on only a few xi

I Often arises from physical or logical locality
I Corresponds to A being a sparse matrix (mostly zeros)

Sparsity and partitioning

A =

* * *

* * *

* *

* *

*

* *

1 3 4 52

Want to partition sparse graphs so that
I Subgraphs are same size (load balance)
I Cut size is minimal (minimize communication)

We’ll talk more about this later.

Types of analysis

Consider x ′ = f (x) (special case: f (x) = Ax + b). Might want:
I Static analysis (f (x∗) = 0)

I Boils down to Ax = b (e.g. for Newton-like steps)
I Can solve directly or iteratively
I Sparsity matters a lot!

I Dynamic analysis (compute x(t) for many values of t)
I Involves time stepping (explicit or implicit)
I Implicit methods involve linear/nonlinear solves
I Need to understand stiffness and stability issues

I Modal analysis (compute eigenvalues of A or f ′(x∗))

Explicit time stepping

I Example: forward Euler
I Next step depends only on earlier steps
I Simple algorithms
I May have stability/stiffness issues

Implicit time stepping

I Example: backward Euler
I Next step depends on itself and on earlier steps
I Algorithms involve solves — complication, communication!
I Larger time steps, each step costs more

A common kernel

In all these analyses, spend lots of time in sparse matvec:
I Iterative linear solvers: repeated sparse matvec
I Iterative eigensolvers: repeated sparse matvec
I Explicit time marching: matvecs at each step
I Implicit time marching: iterative solves (involving matvecs)

We need to figure out how to make matvec fast!

An aside on sparse matrix storage

I Sparse matrix =⇒ mostly zero entries
I Can also have “data sparseness” — representation with

less than O(n2) storage, even if most entries nonzero
I Could be implicit (e.g. directional differencing)
I Sometimes explicit representation is useful
I Easy to get lots of indirect indexing!
I Compressed sparse storage schemes help

Example: Compressed sparse row storage

Data

1 2 3 4 5 6

1

2

3

4

5

6

1 4 2 5 3 6 4 5 1 6

1 3 5 7 8 9 11

*

Ptr

Col

This can be even more compact:
I Could organize by blocks (block CSR)
I Could compress column index data (16-bit vs 64-bit)
I Various other optimizations — see OSKI

Distributed parameter problems

Mostly PDEs:

Type Example Time? Space dependence?
Elliptic electrostatics steady global
Hyperbolic sound waves yes local
Parabolic diffusion yes global

Different types involve different communication:
I Global dependence =⇒ lots of communication

(or tiny steps)
I Local dependence from finite wave speeds;

limits communication

Example: 1D heat equation

u

x+hxx−h

Consider flow (e.g. of heat) in a uniform rod
I Heat (Q) ∝ temperature (u) × mass (ρh)
I Heat flow ∝ temperature gradient (Fourier’s law)

∂Q
∂t
∝ h

∂u
∂t
≈ C

[(
u(x − h)− u(x)

h

)
+

(
u(x)− u(x + h)

h

)]
∂u
∂t
≈ C

[
u(x − h)− 2u(x) + u(x + h)

h2

]
→ C

∂2u
∂x2

Spatial discretization
Heat equation with u(0) = u(1) = 0

∂u
∂t

= C
∂2u
∂x2

Spatial semi-discretization:

∂2u
∂x2 ≈

u(x − h)− 2u(x) + u(x + h)
h2

Yields a system of ODEs

du
dt

= Ch−2(−T)u = −Ch−2


2 −1
−1 2 −1

.
−1 2 −1

−1 2




u1
u2
...

un−2
un−1



Explicit time stepping

Approximate PDE by ODE system (“method of lines”):

du
dt

= Ch−2Tu

Now need a time-stepping scheme for the ODE:
I Simplest scheme is Euler:

u(t + δ) ≈ u(t) + u′(t)δ =
(

I − C
δ

h2 T
)

u(t)

I Taking a time step ≡ sparse matvec with
(
I − C δ

h2 T
)

I This may not end well...

Explicit time stepping data dependence

x

t

Nearest neighbor interactions per step =⇒
finite rate of numerical information propagation

Explicit time stepping in parallel

40 1 2 3 4 5 98765

for t = 1 to N
communicate boundary data ("ghost cell")
take time steps locally

end

Overlapping communication with computation

40 1 2 3 4 5 98765

for t = 1 to N
start boundary data sendrecv
compute new interior values
finish sendrecv
compute new boundary values

end

Batching time steps

40 1 2 3 4 5 98765

for t = 1 to N by B
start boundary data sendrecv (B values)
compute new interior values
finish sendrecv (B values)
compute new boundary values

end

Explicit pain

0

5

10

15

20 0

5

10

15

20

−6

−4

−2

0

2

4

6

Unstable for δ > O(h2)!

Implicit time stepping

I Backward Euler uses backward difference for d/dt

u(t + δ) ≈ u(t) + u′(t + δt)δ

I Taking a time step ≡ sparse matvec with
(
I + C δ

h2 T
)−1

I No time step restriction for stability (good!)
I But each step involves linear solve (not so good!)

I Good if you like numerical linear algebra?

Explicit and implicit

Explicit:
I Propagates information at finite rate
I Steps look like sparse matvec (in linear case)
I Stable step determined by fastest time scale
I Works fine for hyperbolic PDEs

Implicit:
I No need to resolve fastest time scales
I Steps can be long... but expensive

I Linear/nonlinear solves at each step
I Often these solves involve sparse matvecs

I Critical for parabolic PDEs

Poisson problems

Consider 2D Poisson

−∇2u =
∂2u
∂x2 +

∂2u
∂y2 = f

I Prototypical elliptic problem (steady state)
I Similar to a backward Euler step on heat equation

Poisson problem discretization
−1

i−1 i i+1

j−1

j

j+1

−1

4
−1 −1

ui,j = h−2 (4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1
)

L =



4 −1 −1
−1 4 −1 −1

−1 4 −1
−1 4 −1 −1

−1 −1 4 −1 −1
−1 −1 4 −1

−1 4 −1
−1 −1 4 −1

−1 −1 4



Poisson solvers in 2D/3D

N = nd = total unknowns
Method Time Space
Dense LU N3 N2

Band LU N2 (N7/3) N3/2 (N5/3)
Jacobi N2 N
Explicit inv N2 N2

CG N3/2 N
Red-black SOR N3/2 N
Sparse LU N3/2 N log N (N4/3)
FFT N log N N
Multigrid N N

Ref: Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

Remember: best MFlop/s 6= fastest solution!

General implicit picture

I Implicit solves or steady state =⇒ solving systems
I Nonlinear solvers generally linearize
I Linear solvers can be

I Direct (hard to scale)
I Iterative (often problem-specific)

I Iterative solves boil down to matvec!

PDE solver summary

I Can be implicit or explicit (as with ODEs)
I Explicit (sparse matvec) — fast, but short steps?

I works fine for hyperbolic PDEs
I Implicit (sparse solve)

I Direct solvers are hard!
I Sparse solvers turn into matvec again

I Differential operators turn into local mesh stencils
I Matrix connectivity looks like mesh connectivity
I Can partition into subdomains that communicate only

through boundary data
I More on graph partitioning later

I Not all nearest neighbor ops are equally efficient!
I Depends on mesh structure
I Also depends on flops/point

