Lecture 5:
 Parallelism and Locality in Scientific Codes

David Bindel

13 Sep 2011

Logistics

- Course assignments:
- The cluster is online. Should receive your accounts today.
- Short assignment 1 is due by Friday, 9/16 on CMS
- Project 1 is due by Friday, 9/23 on CMS - find partners!
- Course material:
- This finishes the "whirlwind tour" part of the class.
- On Thursday, we start on nuts and bolts.
- Preview of "lecture 6" is up (more than one lecture!)

Basic styles of simulation

- Discrete event systems (continuous or discrete time)
- Game of life, logic-level circuit simulation
- Network simulation
- Particle systems
- Billiards, electrons, galaxies, ...
- Ants, cars, ...?
- Lumped parameter models (ODEs)
- Circuits (SPICE), structures, chemical kinetics
- Distributed parameter models (PDEs / integral equations)
- Heat, elasticity, electrostatics, ...

Often more than one type of simulation appropriate.
Sometimes more than one at a time!

Common ideas / issues

- Load balancing
- Imbalance may be from lack of parallelism, poor distributin
- Can be static or dynamic
- Locality
- Want big blocks with low surface-to-volume ratio
- Minimizes communication / computation ratio
- Can generalize ideas to graph setting
- Tensions and tradeoffs
- Irregular spatial decompositions for load balance at the cost of complexity, maybe extra communication
- Particle-mesh methods - can't manage moving particles and fixed meshes simultaneously without communicating

Lumped parameter simulations

Examples include:

- SPICE-level circuit simulation
- nodal voltages vs. voltage distributions
- Structural simulation
- beam end displacements vs. continuum field
- Chemical concentrations in stirred tank reactor
- concentrations in tank vs. spatially varying concentrations

Typically involves ordinary differential equations (ODEs), or with constraints (differential-algebraic equations, or DAEs).

Often (not always) sparse.

Sparsity

Consider system of ODEs $x^{\prime}=f(x)$ (special case: $f(x)=A x$)

- Dependency graph has edge (i, j) if f_{j} depends on x_{i}
- Sparsity means each f_{j} depends on only a few x_{i}
- Often arises from physical or logical locality
- Corresponds to A being a sparse matrix (mostly zeros)

Sparsity and partitioning

Want to partition sparse graphs so that

- Subgraphs are same size (load balance)
- Cut size is minimal (minimize communication)

We'll talk more about this later.

Types of analysis

Consider $x^{\prime}=f(x)$ (special case: $f(x)=A x+b$). Might want:

- Static analysis ($\left.f\left(x_{*}\right)=0\right)$
- Boils down to $A x=b$ (e.g. for Newton-like steps)
- Can solve directly or iteratively
- Sparsity matters a lot!
- Dynamic analysis (compute $x(t)$ for many values of t)
- Involves time stepping (explicit or implicit)
- Implicit methods involve linear/nonlinear solves
- Need to understand stiffness and stability issues
- Modal analysis (compute eigenvalues of A or $f^{\prime}\left(x_{*}\right)$)

Explicit time stepping

- Example: forward Euler
- Next step depends only on earlier steps
- Simple algorithms
- May have stability/stiffness issues

Implicit time stepping

- Example: backward Euler
- Next step depends on itself and on earlier steps
- Algorithms involve solves - complication, communication!
- Larger time steps, each step costs more

A common kernel

In all these analyses, spend lots of time in sparse matvec:

- Iterative linear solvers: repeated sparse matvec
- Iterative eigensolvers: repeated sparse matvec
- Explicit time marching: matvecs at each step
- Implicit time marching: iterative solves (involving matvecs)

We need to figure out how to make matvec fast!

An aside on sparse matrix storage

- Sparse matrix \Longrightarrow mostly zero entries
- Can also have "data sparseness" - representation with less than $O\left(n^{2}\right)$ storage, even if most entries nonzero
- Could be implicit (e.g. directional differencing)
- Sometimes explicit representation is useful
- Easy to get lots of indirect indexing!
- Compressed sparse storage schemes help

Example: Compressed sparse row storage

This can be even more compact:

- Could organize by blocks (block CSR)
- Could compress column index data (16-bit vs 64-bit)
- Various other optimizations - see OSKI

Distributed parameter problems

Mostly PDEs:

Type	Example	Time?	Space dependence?
Elliptic	electrostatics	steady	global
Hyperbolic	sound waves	yes	local
Parabolic	diffusion	yes	global

Different types involve different communication:

- Global dependence \Longrightarrow lots of communication (or tiny steps)
- Local dependence from finite wave speeds; limits communication

Example: 1D heat equation

Consider flow (e.g. of heat) in a uniform rod

- Heat $(Q) \propto$ temperature $(u) \times$ mass (ρh)
- Heat flow \propto temperature gradient (Fourier's law)

$$
\begin{aligned}
\frac{\partial Q}{\partial t} \propto h \frac{\partial u}{\partial t} & \approx C\left[\left(\frac{u(x-h)-u(x)}{h}\right)+\left(\frac{u(x)-u(x+h)}{h}\right)\right] \\
\frac{\partial u}{\partial t} & \approx C\left[\frac{u(x-h)-2 u(x)+u(x+h)}{h^{2}}\right] \rightarrow C \frac{\partial^{2} u}{\partial x^{2}}
\end{aligned}
$$

Spatial discretization

Heat equation with $u(0)=u(1)=0$

$$
\frac{\partial u}{\partial t}=C \frac{\partial^{2} u}{\partial x^{2}}
$$

Spatial semi-discretization:

$$
\frac{\partial^{2} u}{\partial x^{2}} \approx \frac{u(x-h)-2 u(x)+u(x+h)}{h^{2}}
$$

Yields a system of ODEs

$$
\frac{d u}{d t}=C h^{-2}(-T) u=-C h^{-2}\left[\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{array}\right]
$$

Explicit time stepping

Approximate PDE by ODE system ("method of lines"):

$$
\frac{d u}{d t}=C h^{-2} T u
$$

Now need a time-stepping scheme for the ODE:

- Simplest scheme is Euler:

$$
u(t+\delta) \approx u(t)+u^{\prime}(t) \delta=\left(1-C \frac{\delta}{h^{2}} T\right) u(t)
$$

- Taking a time step \equiv sparse matvec with $\left(I-C \frac{\delta}{h^{2}} T\right)$
- This may not end well...

Explicit time stepping data dependence

Nearest neighbor interactions per step \Longrightarrow finite rate of numerical information propagation

Explicit time stepping in parallel


```
for t = 1 to N
    communicate boundary data ("ghost cell")
    take time steps locally
end
```


Overlapping communication with computation


```
for t = 1 to N
    start boundary data sendrecv
    compute new interior values
    finish sendrecv
    compute new boundary values
end
```


Batching time steps

for $t=1$ to N by B
start boundary data sendrecv (B values)
compute new interior values
finish sendrecv (B values)
compute new boundary values
end

Explicit pain

Unstable for $\delta>O\left(h^{2}\right)$!

Implicit time stepping

- Backward Euler uses backward difference for $d / d t$

$$
u(t+\delta) \approx u(t)+u^{\prime}(t+\delta t) \delta
$$

- Taking a time step \equiv sparse matvec with $\left(I+C \frac{\delta}{h^{2}} T\right)^{-1}$
- No time step restriction for stability (good!)
- But each step involves linear solve (not so good!)
- Good if you like numerical linear algebra?

Explicit and implicit

Explicit:

- Propagates information at finite rate
- Steps look like sparse matvec (in linear case)
- Stable step determined by fastest time scale
- Works fine for hyperbolic PDEs

Implicit:

- No need to resolve fastest time scales
- Steps can be long... but expensive
- Linear/nonlinear solves at each step
- Often these solves involve sparse matvecs
- Critical for parabolic PDEs

Poisson problems

Consider 2D Poisson

$$
-\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f
$$

- Prototypical elliptic problem (steady state)
- Similar to a backward Euler step on heat equation

Poisson problem discretization

Poisson solvers in 2D/3D

$N=n^{d}=$ total unknowns

Method	Time	Space
Dense LU	N^{3}	N^{2}
Band LU	$N^{2}\left(N^{7 / 3}\right)$	$N^{3 / 2}\left(N^{5 / 3}\right)$
Jacobi	N^{2}	N
Explicit inv	N^{2}	N^{2}
CG	$N^{3 / 2}$	N
Red-black SOR	$N^{3 / 2}$	N
Sparse LU	$N^{3 / 2}$	$N \log N\left(N^{4 / 3}\right)$
FFT	$N \log N$	N
Multigrid	N	N

Ref: Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
Remember: best MFIop/s \neq fastest solution!

General implicit picture

- Implicit solves or steady state \Longrightarrow solving systems
- Nonlinear solvers generally linearize
- Linear solvers can be
- Direct (hard to scale)
- Iterative (often problem-specific)
- Iterative solves boil down to matvec!

PDE solver summary

- Can be implicit or explicit (as with ODEs)
- Explicit (sparse matvec) - fast, but short steps?
- works fine for hyperbolic PDEs
- Implicit (sparse solve)
- Direct solvers are hard!
- Sparse solvers turn into matvec again
- Differential operators turn into local mesh stencils
- Matrix connectivity looks like mesh connectivity
- Can partition into subdomains that communicate only through boundary data
- More on graph partitioning later
- Not all nearest neighbor ops are equally efficient!
- Depends on mesh structure
- Also depends on flops/point

