Lecture 5:
Parallelism and Locality in Scientific Codes

David Bindel

13 Sep 2011

Logistics

» Course assignments:
» The cluster is online. Should receive your accounts today.
» Short assignment 1 is due by Friday, 9/16 on CMS
» Project 1 is due by Friday, 9/23 on CMS — find partners!
» Course material:
» This finishes the “whirlwind tour” part of the class.
» On Thursday, we start on nuts and bolts.
» Preview of “lecture 6” is up (more than one lecture!)

Basic styles of simulation

v

Discrete event systems (continuous or discrete time)

» Game of life, logic-level circuit simulation
» Network simulation

Particle systems

» Billiards, electrons, galaxies, ...
» Ants, cars, ...?

Lumped parameter models (ODEs)
» Circuits (SPICE), structures, chemical kinetics
Distributed parameter models (PDEs / integral equations)
» Heat, elasticity, electrostatics, ...

v

v

v

Often more than one type of simulation appropriate.
Sometimes more than one at a time!

Common ideas / issues

» Load balancing
» Imbalance may be from lack of parallelism, poor distributin
» Can be static or dynamic
» Locality
» Want big blocks with low surface-to-volume ratio
» Minimizes communication / computation ratio
» Can generalize ideas to graph setting
» Tensions and tradeoffs
» Irregular spatial decompositions for load balance at the cost
of complexity, maybe extra communication
» Particle-mesh methods — can’t manage moving particles
and fixed meshes simultaneously without communicating

Lumped parameter simulations

Examples include:
» SPICE-level circuit simulation
» nodal voltages vs. voltage distributions
» Structural simulation
» beam end displacements vs. continuum field
» Chemical concentrations in stirred tank reactor
» concentrations in tank vs. spatially varying concentrations

Typically involves ordinary differential equations (ODEs),
or with constraints (differential-algebraic equations, or DAEsS).

Often (not always) sparse.

Sparsity

% %
c % % |==2== 3= 4==5
A= % % %
% % *
L * *_

Consider system of ODEs x’ = f(x) (special case: f(x) = Ax)
» Dependency graph has edge (/,) if f; depends on x;

Sparsity means each f; depends on only a few Xx;

Often arises from physical or logical locality

Corresponds to A being a sparse matrix (mostly zeros)

v

v

v

Sparsity and partitioning

k% |
T L102%3+>4+>5J
A: k E_* k
:* k *

Want to partition sparse graphs so that

» Subgraphs are same size (load balance)

» Cut size is minimal (minimize communication)
We'll talk more about this later.

Types of analysis

Consider x" = f(x) (special case: f(x) = Ax + b). Might want:
» Static analysis (f(x.) = 0)
» Boils down to Ax = b (e.g. for Newton-like steps)
» Can solve directly or iteratively
» Sparsity matters a lot!
» Dynamic analysis (compute x(t) for many values of t)
» Involves time stepping (explicit or implicit)
» Implicit methods involve linear/nonlinear solves
» Need to understand stiffness and stability issues

» Modal analysis (compute eigenvalues of A or f'(x.))

Explicit time stepping

v

Example: forward Euler

Next step depends only on earlier steps
Simple algorithms

May have stability/stiffness issues

v

v

v

Implicit time stepping

v

Example: backward Euler

Next step depends on itself and on earlier steps
Algorithms involve solves — complication, communication!
Larger time steps, each step costs more

v

v

v

A common kernel

In all these analyses, spend lots of time in sparse matvec:

» lterative linear solvers: repeated sparse matvec

» lterative eigensolvers: repeated sparse matvec

» Explicit time marching: matvecs at each step

» Implicit time marching: iterative solves (involving matvecs)
We need to figure out how to make matvec fast!

An aside on sparse matrix storage

v

Sparse matrix = mostly zero entries

» Can also have “data sparseness” — representation with
less than O(n?) storage, even if most entries nonzero

Could be implicit (e.g. directional differencing)
Sometimes explicit representation is useful
Easy to get lots of indirect indexing!
Compressed sparse storage schemes help

v

v

v

v

Example: Compressed sparse row storage

Data

BN [BN
Col |1 4|2 5|3 6|4|5]|1 6]|*
%/%

Pr [1 357 8 9 1l

A N AW N =

1 23 45 6

This can be even more compact:
» Could organize by blocks (block CSR)
» Could compress column index data (16-bit vs 64-bit)
» Various other optimizations — see OSKI

Distributed parameter problems

Mostly PDEs:
Type Example Time? Space dependence?
Elliptic electrostatics steady global
Hyperbolic sound waves yes local
Parabolic diffusion yes global

Different types involve different communication:
» Global dependence — lots of communication
(or tiny steps)
» Local dependence from finite wave speeds;
limits communication

Example: 1D heat equation

u

x—h X x+h

Consider flow (e.g. of heat) in a uniform rod
» Heat (Q) « temperature (u) x mass (ph)
» Heat flow « temperature gradient (Fourier’s law)

%(tD 8u [(ux h) — u()>+(U(X)—Z(X+h))]

A~ fu(x—h) —2u(x) + u(x + h) o%u
NC[= }—>08X2

ot

Spatial discretization
Heat equation with u(0) = u(1) =0

ot~ T ox?

Spatial semi-discretization:

2
ou Cau

d?u _ u(x —h) —2u(x) + u(x + h)
ox2 "~ h2

Yields a system of ODEs

o[V 2
E_Ch (—T)u=-Ch

ty
U

Up—2

Un—1]

Explicit time stepping

Approximate PDE by ODE system (“method of lines”):

o[V
EfCh Tu

Now need a time-stepping scheme for the ODE:
» Simplest scheme is Euler:

u(t+90) ~ u(t) + ()(5_</—C T> u(t)

» Taking a time step = sparse matvec with (/— C5T)
» This may not end well...

Explicit time stepping data dependence

o000 0O OO0

X

Nearest neighbor interactions per step —
finite rate of numerical information propagation

Explicit time stepping in parallel

/XXXWXXX\.

2 3 45 4 5 6 7 8 9

for £t = 1 to N
communicate boundary data ("ghost cell")
take time steps locally

end

Overlapping communication with computation

/XXXWXXX\.

2 3 45 4 5 6 7 8 9

for t =1 to N
start boundary data sendrecv
compute new interior values
finish sendrecv
compute new boundary values
end

Batching time steps

for t =1 to N by B
start boundary data sendrecv (B values)
compute new interior wvalues
finish sendrecv (B wvalues)
compute new boundary values
end

Explicit pain

20

Unstable for 6 > O(h?)!

Implicit time stepping

v

Backward Euler uses backward difference for d/dt

u(t+96) ~ u(t) + u'(t+6t)6

—1

v

Taking a time step = sparse matvec with (I + C% T)
No time step restriction for stability (good!)

But each step involves linear solve (not so good!)
» Good if you like numerical linear algebra?

v

v

Explicit and implicit

Explicit:
» Propagates information at finite rate
» Steps look like sparse matvec (in linear case)
» Stable step determined by fastest time scale
» Works fine for hyperbolic PDEs

Implicit:
» No need to resolve fastest time scales

» Steps can be long... but expensive

» Linear/nonlinear solves at each step
» Often these solves involve sparse matvecs

» Critical for parabolic PDEs

Poisson problems

Consider 2D Poisson

P2u d%u

e tar !

—Veu =

» Prototypical elliptic problem (steady state)
» Similar to a backward Euler step on heat equation

Poisson problem discretization

-1

n

-1 j_l

i-1 i i+l

_ 2
Uij=h=2(4Uij — Ui 1j = Uig1j — Uij1 — Ujji1)

F 4 1 1
1 4 1 —1
1 4 —1
—1 4 1 1
L= —1 -1 4 —1
1 1 4 1
1 4
—1 1 4 1
i 1 1 4

Poisson solvers in 2D/3D

N = n9 = total unknowns

Method Time Space

Dense LU N3 N?

Band LU N2 (N7/3) N3/2 (N5/3)
Jacobi N? N

Explicit inv N? N?

CG N3/2 N

Red-black SOR | N3/2 N

Sparse LU N3/2 Nlog N (N*/3)
FFT Nlog N N

Multigrid N N

Ref: Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

Remember: best MFlop/s # fastest solution!

General implicit picture

v

Implicit solves or steady state = solving systems

v

Nonlinear solvers generally linearize
Linear solvers can be

» Direct (hard to scale)
» lterative (often problem-specific)

lterative solves boil down to matvec!

v

v

PDE solver summary

» Can be implicit or explicit (as with ODESs)
» Explicit (sparse matvec) — fast, but short steps?
» works fine for hyperbolic PDEs
» Implicit (sparse solve)
» Direct solvers are hard!
» Sparse solvers turn into matvec again
» Differential operators turn into local mesh stencils

» Matrix connectivity looks like mesh connectivity

» Can partition into subdomains that communicate only
through boundary data

» More on graph partitioning later

» Not all nearest neighbor ops are equally efficient!

» Depends on mesh structure
» Also depends on flops/point

