
Lecture 3:
Intro to parallel machines and models

David Bindel

1 Sep 2011

Logistics

Remember:

http://www.cs.cornell.edu/~bindel/class/cs5220-f11/

http://www.piazza.com/cornell/cs5220

I Note: the entire class will not be as low-level as lecture 2!
I Crocus cluster setup is in progress.
I If you drop/add, tell me so I can update CMS.
I Lecture slides are posted (in advance) on class web page.

http://www.cs.cornell.edu/~bindel/class/cs5220-f11/
http://www.piazza.com/cornell/cs5220

A little perspective

“We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of
all evil.”

– C.A.R. Hoare (quoted by Donald Knuth)

I Best case: good algorithm, efficient design, obvious code
I Speed vs readability, debuggability, maintainability?
I A sense of balance:

I Only optimize when needed
I Measure before optimizing
I Low-hanging fruit: data layouts, libraries, compiler flags
I Concentrate on the bottleneck
I Concentrate on inner loops
I Get correctness (and a test framework) first

Matrix multiply

Consider naive square matrix multiplication:

#define A(i,j) AA[j*n+i]
#define B(i,j) BB[j*n+i]
#define C(i,j) CC[j*n+i]

for (i = 0; i < n; ++i) {
for (j = 0; j < n; ++j) {
C(i,j) = 0;
for (k = 0; k < n; ++k)
C(i,j) += A(i,k)*B(k,j);

}
}

How fast can this run?

Note on storage

Two standard matrix layouts:
I Column-major (Fortran): A(i,j) at A+j*n+i
I Row-major (C): A(i,j) at A+i*n+j

I default to column major.

Also note: C doesn’t really support matrix storage.

1000-by-1000 matrix multiply on my laptop

I Theoretical peak: 10 Gflop/s using both cores
I Naive code: 330 MFlops (3.3% peak)
I Vendor library: 7 Gflop/s (70% peak)

Tuned code is 20× faster than naive!

Can we understand naive performance in terms of membench?

1000-by-1000 matrix multiply on my laptop

I Matrix sizes: about 8 MB.
I Repeatedly scans B in memory order (column major)
I 2 flops/element read from B
I 3 ns/flop = 6 ns/element read from B
I Check membench — gives right order of magnitude!

Simple model

Consider two types of memory (fast and slow) over which we
have complete control.

I m = words read from slow memory
I tm = slow memory op time
I f = number of flops
I tf = time per flop
I q = f/m = average flops / slow memory access

Time:

ftf + mtm = ftf

(
1 +

tm/tf
q

)
Larger q means better time.

How big can q be?

1. Dot product: n data, 2n flops
2. Matrix-vector multiply: n2 data, 2n2 flops
3. Matrix-matrix multiply: 2n2 data, 2n3 flops

These are examples of level 1, 2, and 3 routines in Basic Linear
Algebra Subroutines (BLAS). We like building things on level 3
BLAS routines.

q for naive matrix multiply

q ≈ 2 (on board)

Better locality through blocking

Basic idea: rearrange for smaller working set.

for (I = 0; I < n; I += bs) {
for (J = 0; J < n; J += bs) {
block_clear(&(C(I,J)), bs, n);
for (K = 0; K < n; K += bs)
block_mul(&(C(I,J)), &(A(I,K)), &(B(K,J)),

bs, n);
}

}

Q: What do we do with “fringe” blocks?

q for naive matrix multiply

q ≈ b (on board). If Mf words of fast memory, b ≈
√

Mf/3.

Th: (Hong/Kung 1984, Irony/Tishkin/Toledo 2004): Any
reorganization of this algorithm that uses only associativity and
commutativity of addition is limited to q = O(

√
Mf)

Note: Strassen uses distributivity...

Better locality through blocking

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600 700 800 900 1000 1100

M
flo

p/
s

Dimension

Timing for matrix multiply

Naive
Blocked

DSB

Truth in advertising

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000 1100

M
flo

p/
s

Dimension

Timing for matrix multiply

Naive
Blocked

DSB
Vendor

Coming attractions

HW 1: You will optimize matrix multiply yourself!

Some predictions:
I You will make no progress without addressing memory.
I It will take you longer than you think.
I Your code will be rather complicated.
I Few will get anywhere close to the vendor.
I Some of you will be sold anew on using libraries!

Not all assignments will be this low-level.

Class cluster basics

crocus.csuglab.cornell.edu is a Linux Rocks cluster
I Six nodes (one head node, five compute nodes)
I Head node is virtual — do not overload!
I Compute nodes are dedicated — be polite!
I Batch submissions using Sun Grid Engine
I Read docs on assignments page

Class cluster basics

I Compute nodes are dual quad-core Intel Xeon E5504
I Nominal peak per core:

2 SSE instruction/cycle ×
2 flops/instruction ×
2 GHz = 8 GFlop/s per core

I Caches:
1. L1 is 32 KB, 4-way
2. L2 is 256 KB (unshared) per core, 8-way
3. L3 is 4 MB (shared), 16-way associative

L1 is relatively slow, L2 is relatively fast.
I Inter-node communication is switched gigabit Ethernet
I 16 GB memory per node

Cluster structure

Consider:
I Each core has vector parallelism
I Each chip has four cores, shares memory with others
I Each box has two chips, shares memory
I Cluster has five compute nodes, communicate via Ethernet

How did we get here? Why this type of structure? And how
does the programming model match the hardware?

Parallel computer hardware

Physical machine has processors, memory, interconnect.
I Where is memory physically?
I Is it attached to processors?
I What is the network connectivity?

Parallel programming model

Programming model through languages, libraries.
I Control

I How is parallelism created?
I What ordering is there between operations?

I Data
I What data is private or shared?
I How is data logically shared or communicated?

I Synchronization
I What operations are used to coordinate?
I What operations are atomic?

I Cost: how do we reason about each of above?

Simple example

Consider dot product of x and y .
I Where do arrays x and y live? One CPU? Partitioned?
I Who does what work?
I How do we combine to get a single final result?

Shared memory programming model

Program consists of threads of control.
I Can be created dynamically
I Each has private variables (e.g. local)
I Each has shared variables (e.g. heap)
I Communication through shared variables
I Coordinate by synchronizing on variables
I Examples: OpenMP, pthreads

Shared memory dot product

Dot product of two n vectors on p � n processors:
1. Each CPU evaluates partial sum (n/p elements, local)
2. Everyone tallies partial sums

Can we go home now?

Race condition

A race condition:
I Two threads access same variable, at least one write.
I Access are concurrent – no ordering guarantees

I Could happen simultaneously!

Need synchronization via lock or barrier.

Race to the dot

Consider S += partial_sum on 2 CPU:
I P1: Load S

I P1: Add partial_sum

I P2: Load S

I P1: Store new S

I P2: Add partial_sum

I P2: Store new S

Shared memory dot with locks

Solution: consider S += partial_sum a critical section
I Only one CPU at a time allowed in critical section
I Can violate invariants locally
I Enforce via a lock or mutex (mutual exclusion variable)

Dot product with mutex:
1. Create global mutex l
2. Compute partial_sum

3. Lock l
4. S += partial_sum
5. Unlock l

Shared memory with barriers

I Lots of scientific codes have distinct phases (e.g. time
steps)

I Communication only needed at end of phases
I Idea: synchronize on end of phase with barrier

I More restrictive (less efficient?) than small locks
I But much easier to think through! (e.g. less chance of

deadlocks)
I Sometimes called bulk synchronous programming

Shared memory machine model

I Processors and memories talk through a bus
I Symmetric Multiprocessor (SMP)
I Hard to scale to lots of processors (think ≤ 32)

I Bus becomes bottleneck
I Cache coherence is a pain

I Example: Quad-core chips on cluster

Multithreaded processor machine

I May have more threads than processors! Switch threads
on long latency ops.

I Called hyperthreading by Intel
I Cray MTA was one example

Distributed shared memory

I Non-Uniform Memory Access (NUMA)
I Can logically share memory while physically distributing
I Any processor can access any address
I Cache coherence is still a pain
I Example: SGI Origin (or multiprocessor nodes on cluster)

Message-passing programming model

I Collection of named processes
I Data is partitioned
I Communication by send/receive of explicit message
I Lingua franca: MPI (Message Passing Interface)

Message passing dot product: v1

Processor 1:
1. Partial sum s1
2. Send s1 to P2
3. Receive s2 from P2
4. s = s1 + s2

Processor 2:
1. Partial sum s2
2. Send s2 to P1
3. Receive s1 from P1
4. s = s1 + s2

What could go wrong? Think of phones vs letters...

Message passing dot product: v1

Processor 1:
1. Partial sum s1
2. Send s1 to P2
3. Receive s2 from P2
4. s = s1 + s2

Processor 2:
1. Partial sum s2
2. Receive s1 from P1
3. Send s2 to P1
4. s = s1 + s2

Better, but what if more than two processors?

MPI: the de facto standard

I Pro: Portability
I Con: least-common-denominator for mid 80s

The “assembly language” (or C?) of parallelism...
but, alas, assembly language can be high performance.

Distributed memory machines

I Each node has local memory
I ... and no direct access to memory on other nodes

I Nodes communicate via network interface
I Example: our cluster!
I Other examples: IBM SP, Cray T3E

Why clusters?

I Clusters of SMPs are everywhere
I Commodity hardware – economics! Even supercomputers

now use commodity CPUs (though specialized
interconnects).

I Relatively simple to set up and administer (?)
I But still costs room, power, ...
I Will grid/cloud computing take over next?

