Lecture 2: Single processor architecture and memory

David Bindel

30 Aug 2011

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Teaser

What will this plot look like?

```
for n = 100:10:1000
   tic;
   A = [];
   for i = 1:n
        A(i,i) = 1;
   end
   times(n) = toc;
end
ns = 100:10:1000;
loglog(ns, times(ns));
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Logistics

- Raised enrollment cap from 50 to 80 on Friday.
- Some new background pointers on references page.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Will set up cluster accounts in next week or so.

Just for fun

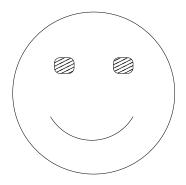
http://www.youtube.com/watch?v=fKK933KK6Gg

Is this a fair portrayal of your CPU?

(See Rich Vuduc's talk, "Should I port my code to a GPU?")

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The idealized machine



- Address space of named words
- Basic operations are register read/write, logic, arithmetic
- Everything runs in the program order
- High-level language translates into "obvious" machine code
- All operations take about the same amount of time

The real world

- Memory operations are not all the same!
 - Registers and caches lead to variable access speeds
 - Different memory layouts dramatically affect performance
- Instructions are non-obvious!
 - Pipelining allows instructions to overlap
 - Functional units run in parallel (and out of order)
 - Instructions take different amounts of time
 - Different costs for different orders and instruction mixes

Our goal: enough understanding to help the compiler out.

Today, a play in two acts:¹

- 1. Act 1: One core is not so serial
- 2. Act 2: Memory matters

¹ If you don't get the reference to This American Life, go find the podcast!

One core is not so serial.

Parallel processing at the laundromat

Three stages to laundry: wash, dry, fold.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Three loads: darks, lights, underwear
- How long will this take?

Parallel processing at the laundromat

Serial version:

	1	2	3	4		5	6	7	8	9
	wash	dry	fold		_					
				wa	sh	dry	fold			
								wash	dry	fold
Pipeline version:										
	1	2	3		4	5				
	wash	dry	fol	fold			C	Dinner?		
		wash	n dry	dry		k	0	Cat videos?		
			wa	wash		fol	d	Gym and tanning?		

Pipelining

Pipelining improves bandwidth, but not latency

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Potential speedup = number of stages
 - But what if there's a branch?

Example: My laptop

2.5 GHz MacBook Pro with Intel Core 2 Duo T9300 processor.

- 14 stage pipeline (P4 was 31; longer isn't always better)
- Wide dynamic execution: up to four full instructions at once

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Operations internally broken down into "micro-ops"
 - Cache micro-ops like a hardware JIT?!

In principle, two cores can handle 20 Giga-op/s peak?

SIMD

- Single Instruction Multiple Data
- Old idea had a resurgence in mid-late 90s (for graphics)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Now short vectors are ubiquitous...

My laptop

- SSE (Streaming SIMD Extensions)
- Operates on 128 bits of data at once
 - 1. Two 64-bit floating point or integer ops
 - 2. Four 32-bit floating point or integer ops
 - 3. Eight 16-bit integer ops
 - 4. Sixteen 8-bit ops
- Floating point handled slightly differently from "main" FPU

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Requires care with data alignment

Also have vector processing on GPU

Punchline

- Special features: SIMD instructions, maybe FMAs, ...
- Compiler understands how to utilize these in principle
 - Rearranges instructions to get a good mix
 - Tries to make use of FMAs, SIMD instructions, etc
- In practice, needs some help:
 - Set optimization flags, pragmas, etc
 - Rearrange code to make things obvious and predictable

(ロ) (同) (三) (三) (三) (三) (○) (○)

- Use special intrinsics or library routines
- Choose data layouts, algorithms that suit the machine
- Goal: You handle high-level, compiler handles low-level.

Memory matters.

My machine

- Clock cycle: 0.4 ns
- DRAM access: 60 ns (about)
- Getting data > 100× slower than computing!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

So what can we do?

Programs usually have *locality*

- Spatial locality: things close to each other tend to be accessed consecutively
- Temporal locality: use a "working set" of data repeatedly

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Cache hierarchy built to use locality.

Cache basics

- Memory latency = how long to get a requested item
- Memory bandwidth = how fast memory can provide data
- Bandwidth improving faster than latency

Caches help:

- Hide memory costs by reusing data
 - Exploit temporal locality
- Use bandwidth to fetch a cache line all at once
 - Exploit spatial locality
- Use bandwidth to support multiple outstanding reads
- Overlap computation and communication with memory

(ロ) (同) (三) (三) (三) (三) (○) (○)

Prefetching

This is mostly automatic and implicit.

Teaser

We have $N = 10^6$ two-dimensional coordinates, and want their centroid. Which of these is faster and why?

- 1. Store an array of (*x_i*, *y_i*) coordinates. Loop *i* and simultaneously sum the *x_i* and the *y_i*.
- 2. Store an array of (x_i, y_i) coordinates. Loop *i* and sum the x_i , then sum the y_i in a separate loop.
- 3. Store the *x_i* in one array, the *y_i* in a second array. Sum the *x_i*, then sum the *y_i*.

(日) (日) (日) (日) (日) (日) (日)

Let's see!

Notes if you're following along at home

- Try the experiment yourself (lec01mean.c is posted online) — I'm not giving away the punchline!
- If you use high optimization -03, the compiler may optimize away your timing loops! This is a common hazard in timing. You could get around this by puting main and the test stubs in different modules; but for the moment, just compile with -02.

Cache basics

- Store cache *lines* of several bytes
- Cache hit when copy of needed data in cache
- Cache miss otherwise. Three basic types:
 - Compulsory miss: never used this data before
 - Capacity miss: filled the cache with other things since this was last used – working set too big
 - Conflict miss: insufficient associativity for access pattern
- Associativity
 - Direct-mapped: each address can only go in one cache location (e.g. store address xxxx1101 only at cache location 1101)
 - *n*-way: each address can go into one of *n* possible cache locations (store up to 16 words with addresses xxxx1101 at cache location 1101).

Higher associativity is more expensive.

Caches on my laptop (I think)

32K L1 data and memory caches (per core)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

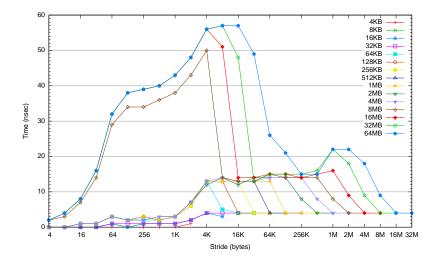
- 8-way set associative
- 64-byte cache line
- 6 MB L2 cache (shared by both cores)
 - 16-way set associative
 - 64-byte cache line

A memory benchmark (membench)

```
for array A of length L from 4 KB to 8MB by 2x
for stride s from 4 bytes to L/2 by 2x
time the following loop
for i = 0 to L by s
load A[i] from memory
```

(日)

membench on my laptop



◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Visible features

- Line length at 64 bytes (prefetching?)
- L1 latency around 4 ns, 8 way associative
- L2 latency around 14 ns
- L2 cache size between 4 MB and 8 MB (actually 6 MB)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

4K pages, 256 entries in TLB

The moral

Even for simple programs, performance is a complicated function of architecture!

Need to understand at least a little to write fast programs

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Would like simple models to help understand efficiency
- Would like common tricks to help design fast codes
 - Example: blocking (also called tiling)

Matrix multiply

Consider naive square matrix multiplication:

```
#define A(i,j) AA[j*n+i]
#define B(i,j) BB[j*n+i]
#define C(i,j) CC[j*n+i]
for (i = 0; i < n; ++i) {
  for (j = 0; j < n; ++j) {
    C(i, j) = 0;
    for (k = 0; k < n; ++k)
      C(i,j) += A(i,k) * B(k,j);
  }
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

How fast can this run?

Two standard matrix layouts:

- Column-major (Fortran): A(i,j) at A+j*n+i
- Row-major (C): A(i,j) at A+i*n+j

I default to column major.

Also note: C doesn't really support matrix storage.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1000-by-1000 matrix multiply on my laptop

- Theoretical peak: 10 Gflop/s using both cores
- Naive code: 330 MFlops (3.3% peak)
- Vendor library: 7 Gflop/s (70% peak)

Tuned code is $20 \times$ faster than naive!

Can we understand naive performance in terms of membench?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1000-by-1000 matrix multiply on my laptop

- Matrix sizes: about 8 MB.
- Repeatedly scans B in memory order (column major)
- 2 flops/element read from B
- 3 ns/flop = 6 ns/element read from B
- Check membench gives right order of magnitude!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Simple model

Consider two types of memory (fast and slow) over which we have complete control.

- m = words read from slow memory
- *t_m* = slow memory op time
- f = number of flops
- t_f = time per flop
- q = f/m = average flops / slow memory access

Time:

$$ft_f + mt_m = ft_f \left(1 + \frac{t_m/t_f}{q}\right)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Larger q means better time.

How big can q be?

- 1. Dot product: *n* data, 2*n* flops
- 2. Matrix-vector multiply: n^2 data, $2n^2$ flops
- 3. Matrix-matrix multiply: $2n^2$ data, $2n^3$ flops

These are examples of level 1, 2, and 3 routines in *Basic Linear Algebra Subroutines* (BLAS). We like building things on level 3 BLAS routines.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

q for naive matrix multiply

 $q \approx$ 2 (on board)

Better locality through blocking

Basic idea: rearrange for smaller working set.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Q: What do we do with "fringe" blocks?

q for naive matrix multiply

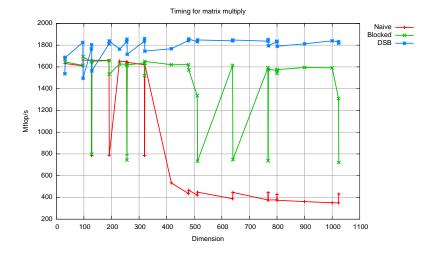
 $q \approx b$ (on board). If M_f words of fast memory, $b \approx \sqrt{M_f/3}$.

Th: (Hong/Kung 1984, Irony/Tishkin/Toledo 2004): Any reorganization of this algorithm that uses only associativity and commutativity of addition is limited to $q = O(\sqrt{M_f})$

(日) (日) (日) (日) (日) (日) (日)

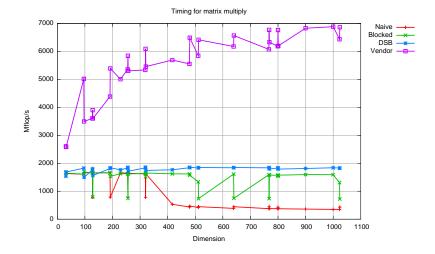
Note: Strassen uses distributivity...

Better locality through blocking



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへ⊙

Truth in advertising



◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Coming attractions

HW 1: You will optimize matrix multiply yourself!

Some predictions:

You will make no progress without addressing memory.

(日) (日) (日) (日) (日) (日) (日)

- It will take you longer than you think.
- Your code will be rather complicated.
- Few will get anywhere close to the vendor.
- Some of you will be sold anew on using libraries!

Not all assignments will be this low-level.

A little perspective

"We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of all evil."

- C.A.R. Hoare (quoted by Donald Knuth)

(ロ) (同) (三) (三) (三) (○) (○)

- Best case: good algorithm, efficient design, obvious code
- Speed vs readability, debuggability, maintainability?
- A sense of balance:
 - Only optimize when needed
 - Measure before optimizing
 - Low-hanging fruit: data layouts, libraries, compiler flags
 - Concentrate on the bottleneck
 - Concentrate on inner loops
 - Get correctness (and a test framework) first