
Lecture 2:
Single processor architecture and memory

David Bindel

30 Aug 2011

Teaser

What will this plot look like?

for n = 100:10:1000
tic;
A = [];
for i = 1:n
A(i,i) = 1;

end
times(n) = toc;

end
ns = 100:10:1000;
loglog(ns, times(ns));

Logistics

I Raised enrollment cap from 50 to 80 on Friday.
I Some new background pointers on references page.
I Will set up cluster accounts in next week or so.

Just for fun

http://www.youtube.com/watch?v=fKK933KK6Gg

Is this a fair portrayal of your CPU?

(See Rich Vuduc’s talk, “Should I port my code to a GPU?”)

http://www.youtube.com/watch?v=fKK933KK6Gg
http://web.eecs.utk.edu/~dongarra/ccgsc2010/slides/talk27-vuduc.pdf

The idealized machine

I Address space of named words
I Basic operations are register read/write, logic, arithmetic
I Everything runs in the program order
I High-level language translates into “obvious” machine code
I All operations take about the same amount of time

The real world

I Memory operations are not all the same!
I Registers and caches lead to variable access speeds
I Different memory layouts dramatically affect performance

I Instructions are non-obvious!
I Pipelining allows instructions to overlap
I Functional units run in parallel (and out of order)
I Instructions take different amounts of time
I Different costs for different orders and instruction mixes

Our goal: enough understanding to help the compiler out.

A sketch of reality

Today, a play in two acts:1

1. Act 1: One core is not so serial
2. Act 2: Memory matters

1If you don’t get the reference to This American Life, go find the podcast!

Act 1

One core is not so serial.

Parallel processing at the laundromat

I Three stages to laundry: wash, dry, fold.
I Three loads: darks, lights, underwear
I How long will this take?

Parallel processing at the laundromat

I Serial version:
1 2 3 4 5 6 7 8 9
wash dry fold

wash dry fold
wash dry fold

I Pipeline version:

1 2 3 4 5
wash dry fold Dinner?

wash dry fold Cat videos?
wash dry fold Gym and tanning?

Pipelining

I Pipelining improves bandwidth, but not latency
I Potential speedup = number of stages

I But what if there’s a branch?

Example: My laptop

2.5 GHz MacBook Pro with Intel Core 2 Duo T9300 processor.
I 14 stage pipeline (P4 was 31; longer isn’t always better)
I Wide dynamic execution: up to four full instructions at once
I Operations internally broken down into “micro-ops”

I Cache micro-ops – like a hardware JIT?!

In principle, two cores can handle 20 Giga-op/s peak?

SIMD

I Single Instruction Multiple Data
I Old idea had a resurgence in mid-late 90s (for graphics)
I Now short vectors are ubiquitous...

My laptop

I SSE (Streaming SIMD Extensions)
I Operates on 128 bits of data at once

1. Two 64-bit floating point or integer ops
2. Four 32-bit floating point or integer ops
3. Eight 16-bit integer ops
4. Sixteen 8-bit ops

I Floating point handled slightly differently from “main” FPU
I Requires care with data alignment

Also have vector processing on GPU

Punchline

I Special features: SIMD instructions, maybe FMAs, ...
I Compiler understands how to utilize these in principle

I Rearranges instructions to get a good mix
I Tries to make use of FMAs, SIMD instructions, etc

I In practice, needs some help:
I Set optimization flags, pragmas, etc
I Rearrange code to make things obvious and predictable
I Use special intrinsics or library routines
I Choose data layouts, algorithms that suit the machine

I Goal: You handle high-level, compiler handles low-level.

Act 2

Memory matters.

My machine

I Clock cycle: 0.4 ns
I DRAM access: 60 ns (about)
I Getting data > 100× slower than computing!
I So what can we do?

Cache basics

Programs usually have locality
I Spatial locality: things close to each other tend to be

accessed consecutively
I Temporal locality: use a “working set” of data repeatedly

Cache hierarchy built to use locality.

Cache basics

I Memory latency = how long to get a requested item
I Memory bandwidth = how fast memory can provide data
I Bandwidth improving faster than latency

Caches help:
I Hide memory costs by reusing data

I Exploit temporal locality
I Use bandwidth to fetch a cache line all at once

I Exploit spatial locality
I Use bandwidth to support multiple outstanding reads
I Overlap computation and communication with memory

I Prefetching

This is mostly automatic and implicit.

Teaser

We have N = 106 two-dimensional coordinates, and want their
centroid. Which of these is faster and why?

1. Store an array of (xi , yi) coordinates. Loop i and
simultaneously sum the xi and the yi .

2. Store an array of (xi , yi) coordinates. Loop i and sum the
xi , then sum the yi in a separate loop.

3. Store the xi in one array, the yi in a second array. Sum the
xi , then sum the yi .

Let’s see!

Notes if you’re following along at home

I Try the experiment yourself (lec01mean.c is posted
online) — I’m not giving away the punchline!

I If you use high optimization -O3, the compiler may
optimize away your timing loops! This is a common hazard
in timing. You could get around this by puting main and the
test stubs in different modules; but for the moment, just
compile with -O2.

Cache basics

I Store cache lines of several bytes
I Cache hit when copy of needed data in cache
I Cache miss otherwise. Three basic types:

I Compulsory miss: never used this data before
I Capacity miss: filled the cache with other things since this

was last used – working set too big
I Conflict miss: insufficient associativity for access pattern

I Associativity
I Direct-mapped: each address can only go in one cache

location (e.g. store address xxxx1101 only at cache
location 1101)

I n-way: each address can go into one of n possible cache
locations (store up to 16 words with addresses xxxx1101 at
cache location 1101).

Higher associativity is more expensive.

Caches on my laptop (I think)

I 32K L1 data and memory caches (per core)
I 8-way set associative
I 64-byte cache line

I 6 MB L2 cache (shared by both cores)
I 16-way set associative
I 64-byte cache line

A memory benchmark (membench)

for array A of length L from 4 KB to 8MB by 2x
for stride s from 4 bytes to L/2 by 2x
time the following loop
for i = 0 to L by s
load A[i] from memory

membench on my laptop

 0

 10

 20

 30

 40

 50

 60

 4 16 64 256 1K 4K 16K 64K 256K 1M 2M 4M 8M 16M 32M

Ti
m

e
(n

se
c)

Stride (bytes)

4KB
8KB

16KB
32KB
64KB

128KB
256KB
512KB

1MB
2MB
4MB
8MB

16MB
32MB
64MB

Visible features

I Line length at 64 bytes (prefetching?)
I L1 latency around 4 ns, 8 way associative
I L2 latency around 14 ns
I L2 cache size between 4 MB and 8 MB (actually 6 MB)
I 4K pages, 256 entries in TLB

The moral

Even for simple programs, performance is a complicated
function of architecture!

I Need to understand at least a little to write fast programs
I Would like simple models to help understand efficiency
I Would like common tricks to help design fast codes

I Example: blocking (also called tiling)

Matrix multiply

Consider naive square matrix multiplication:

#define A(i,j) AA[j*n+i]
#define B(i,j) BB[j*n+i]
#define C(i,j) CC[j*n+i]

for (i = 0; i < n; ++i) {
for (j = 0; j < n; ++j) {
C(i,j) = 0;
for (k = 0; k < n; ++k)
C(i,j) += A(i,k)*B(k,j);

}
}

How fast can this run?

Note on storage

Two standard matrix layouts:
I Column-major (Fortran): A(i,j) at A+j*n+i
I Row-major (C): A(i,j) at A+i*n+j

I default to column major.

Also note: C doesn’t really support matrix storage.

1000-by-1000 matrix multiply on my laptop

I Theoretical peak: 10 Gflop/s using both cores
I Naive code: 330 MFlops (3.3% peak)
I Vendor library: 7 Gflop/s (70% peak)

Tuned code is 20× faster than naive!

Can we understand naive performance in terms of membench?

1000-by-1000 matrix multiply on my laptop

I Matrix sizes: about 8 MB.
I Repeatedly scans B in memory order (column major)
I 2 flops/element read from B
I 3 ns/flop = 6 ns/element read from B
I Check membench — gives right order of magnitude!

Simple model

Consider two types of memory (fast and slow) over which we
have complete control.

I m = words read from slow memory
I tm = slow memory op time
I f = number of flops
I tf = time per flop
I q = f/m = average flops / slow memory access

Time:

ftf + mtm = ftf

(
1 +

tm/tf
q

)
Larger q means better time.

How big can q be?

1. Dot product: n data, 2n flops
2. Matrix-vector multiply: n2 data, 2n2 flops
3. Matrix-matrix multiply: 2n2 data, 2n3 flops

These are examples of level 1, 2, and 3 routines in Basic Linear
Algebra Subroutines (BLAS). We like building things on level 3
BLAS routines.

q for naive matrix multiply

q ≈ 2 (on board)

Better locality through blocking

Basic idea: rearrange for smaller working set.

for (I = 0; I < n; I += bs) {
for (J = 0; J < n; J += bs) {
block_clear(&(C(I,J)), bs, n);
for (K = 0; K < n; K += bs)
block_mul(&(C(I,J)), &(A(I,K)), &(B(K,J)),

bs, n);
}

}

Q: What do we do with “fringe” blocks?

q for naive matrix multiply

q ≈ b (on board). If Mf words of fast memory, b ≈
√

Mf/3.

Th: (Hong/Kung 1984, Irony/Tishkin/Toledo 2004): Any
reorganization of this algorithm that uses only associativity and
commutativity of addition is limited to q = O(

√
Mf)

Note: Strassen uses distributivity...

Better locality through blocking

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600 700 800 900 1000 1100

M
flo

p/
s

Dimension

Timing for matrix multiply

Naive
Blocked

DSB

Truth in advertising

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700 800 900 1000 1100

M
flo

p/
s

Dimension

Timing for matrix multiply

Naive
Blocked

DSB
Vendor

Coming attractions

HW 1: You will optimize matrix multiply yourself!

Some predictions:
I You will make no progress without addressing memory.
I It will take you longer than you think.
I Your code will be rather complicated.
I Few will get anywhere close to the vendor.
I Some of you will be sold anew on using libraries!

Not all assignments will be this low-level.

A little perspective

“We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of
all evil.”

– C.A.R. Hoare (quoted by Donald Knuth)

I Best case: good algorithm, efficient design, obvious code
I Speed vs readability, debuggability, maintainability?
I A sense of balance:

I Only optimize when needed
I Measure before optimizing
I Low-hanging fruit: data layouts, libraries, compiler flags
I Concentrate on the bottleneck
I Concentrate on inner loops
I Get correctness (and a test framework) first

