
Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 14: Wednesday, May 2

Summary

Error analysis and floating point

You should know about relative vs absolute error, forward error, backward
error, residual, and condition numbers. You should remember the 1+δ model
for rounding, and be able to apply it in simple situations. You should know
what underflow, overflow, and cancellation are.

Example questions:

1. What are the forward error and residual error for approximating the
larger root of f(x) = x2− 2 by x̂ = 1.5? What is the condition number
for this problem?

2. Which is more suitable for computation near x = 0: cos(x) − 1, or
sin(x)/(1 + cos(x))? Why?

3. Suppose I wanted to sum up numbers z1, . . . , zn. A standard approach
would be to write a loop to compute successive partial sums.

s = 0;
for j = 1:N

s = s + z(j);
end

This loop really runs the recurrence sj = sj−1 + zj starting at s0 = 0.
If I do this in floating point, how could I keep a running error estimate
on the partial sums?

Linear algebra, linear systems, and least squares

You should know how to manipulate matrices and vectors in Matlab, and
have some notion of the relative costs of equivalent matrix expressions. You
should know about the 1-norm, 2-norm, and infinity norm; about induced
operator norms; and about the Frobenius norm. You should remember that
the 2-norm (and the operator 2-norm and Frobenius norm) are invariant
under orthogonal transformations, and that this can be used to simplify least
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squares problems. You should know the condition number for solving linear
systems, and you should remember the factors that go into the sensitivity
analysis for solving least squares problems (it’s fine if you don’t remember
the exact formulas for the condition number in the latter case). You should
know how to solve linear systems and least squares problems using Matlab’s
backslash operator. You should know something about the normal equations,
and about the relation between the solution, right hand side, and residual
in a least squares problem. You should know the factorizations PA = LU ,
A = QR, and A = UΣV T . You should know what sparsity means.

Example questions:

1. Use norm bounds to show that the iteration xj+1 = Axj + f converges
if ‖A‖ < 1, and bound the magnitude of the limiting value.

2. Given PA = LU , write an O(n2) code fragment to compute A−T b.

3. Describe a method to approximately minimize the sum of squared com-
ponentwise relative errors dj = (Ax− b)j/bj.

Iterations, equation solving, and optimization

You should know about bisection, the Newton idea and its variants, and
the concept of fixed point iteration. You should understand what is meant
by rates of convergence (linear, superlinear, quadratic, etc). You should
be able to reason about the error in iterations by subtracting a fixed point
equation from the iteration equation; you should also be able to do Taylor
series manipulations needed to understand these methods. For optimization,
you should know what a descent direction is, and what it means to do a line
search. You should know how to reason about stationary iterations for linear
systems in terms of splittings. You should know that CG corresponds to
minimization over a Krylov subspace, though you do not need to know any
further details of the algorithm.

Example questions:

1. Suppose f(x∗) = 0 and we know f ′(x∗). Argue that the fixed point
iteration

xk+1 = xk −
f(xk)

f ′(x∗)

converges quadratically to x∗ when started close enough.
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2. Suppose |f ′(x)| ≤ α < 1 for any x. Show that if x∗ = f(x∗) is a fixed
point, then the iteration xk+1 = f(xk) converges at least linearly to x∗.

3. If we know f is continuously differentiable and f ′(a)f ′(b) < 1, and
we have a routine to compute f ′, describe how to find a minimum or
maximum on (a, b).

4. Show that if ‖I − A‖ < 1, the iteration

xk+1 = xk + (b− Axk)

converges to A−1b.

Interpolation, differentiation, and integration

You should know three different approaches to polynomial interpolation: the
Vandermonde approach (writing the polynomial in a power basis); the La-
grange approach; and the Newton approach. You should know how Newton
divided differences relate to derivatives, and how this relation can be used
to provide error bounds on how well a polynomial interpolant approximates
a function (assuming bounds on derivatives of various orders). You should
know the basic ideas of piecewise polynomial interpolation, though I did not
emphasize this in class and will not emphasize it on the final.

You should know how to derive rules for numerical differentiation and
integration by either artfully canceling out terms in Taylor expansions (the
method of undetermined coefficients) or by differentiating and integrating an
interpolating function. You should understand what is meant by the order
of a quadrature rule. You should understand the basic ideas of Gaussian
quadrature, and why their order of accuracy (2n− 1) is the greatest possible
for any quadrature rule that involves function evaluations at n given points.
You should also understand the ideas of Richardson extrapolation and of
error estimates based on comparing different rules for differentiation and
quadrature.

Example questions:

1. Write the interpolant through f(0) = 1, f(1) = 2, and f(2) = 1 in
terms of the power basis, the Lagrange basis, and the Newton basis.

2. Suppose an and a2n are two approximations to
∫ 1

−1 f(x) dx computed
by the composite midpoint rule with n intervals and 2n intervals, re-
spectively. Write an estimate of the error in a2n based on comparing
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the two methods. Your estimate should be asymptotically exact as
n→∞.

3. Given a quadrature rule

Ih[f ] =
n∑

j=1

wjf(xj) ≈
∫ b

a

f(x) dx,

give an example of a polynomial for which the quadrature rule cannot
compute the true integral.

ODE solvers

You should know how to convert ODEs to standard first-order form for use
with Matlab’s ODE solvers. You should be able to write something that
makes use of Matlab’s ODE solvers (given a reminder of the basic calling
sequence). You should know the formulas for forward and backward Euler,
and the implicit trapezoidal rule. You should know the basic ideas of consis-
tency and zero stability of ODE solvers, if not many details; and you should
understand the basic idea of using pairs of methods for local error control
(and how such local error control can still fail to yield good solutions in some
cases). You should be able to reason about whether methods applied to the
test problem y′ = λy converge to zero for different values of hλ, and you
should understand what is meant by the region of absolute stability for a
method.

Example questions:

1. Describe how to solve the IVP mu′′ + bu′ + ku = g(t), u(0) = u0,
u′(0) = v0 using the Matlab solver ode45. Remember that ode45 has
the calling sequence

[tout,yout] = ode45(f,tspan,y0);

where f is a function that takes arguments t, y.

2. Consider the ODE [
x
y

]′
=

[
y
−x

]
with initial conditions x(0) = 1 and y(0) = 0. The true solution to this
problem is x(t) = cos(t), y(t) = sin(t), and so r(t)2 ≡ x(t)2 + y(t)2 is
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equal to 1. Show that if we discretize the problem using forward Euler
with fixed step size h, then r2n ≡ x2n + y2n = (1 + h2)n.


