
Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 14: Monday, Apr 30

Introduction

So far, our discussion of ODE solvers has been rather abstract. We’ve talked
some about how to evaluate ODE solvers, how ODE solvers choose time steps
in order to control error, and the different classes of ODE solvers that are
available in Matlab. We have not, however, tackled any concrete example
problems other than trivial linear test problems. In part, this is because I
have a hard time writing solutions and drawing believable pictures at the
board for anything but trivial test problems. So today, let’s try a Matlab-
oriented lecture.

1 A ballistics problem

The next problem is a classic of both scientific computing and certain classes
of computer games: ballistics calculations. We will solve this problem via a
shooting method: that is, we will base our solution method on initial value
problem solvers, and we try to choose initial conditions in order to satisfy
the problem constraints.

1.1 Model without air drag

Let’s start with a simple model, one that many of you have probably seen
in an introductory physics class. A projectile is fired from a launcher with
fixed speed; as a function of the launch angle, where will it hit the ground?
In the simplest version of this model, the only force acting on the ball after
launch is gravity, so Newton’s law tells us

ma = −mgey

where ey is a unit vector in the vertical direction, m is the particle mass, and
a = x′′ = (x′′, y′′) is the acceleration vector. If our launcher is positioned at
the origin, then the initial conditions for a launch with speed s at angle θ are

x(0) = 0, x′(0) = s cos(θ) = v0,x,

y(0) = 0, y′(0) = s sin(θ) = v0,y.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Subject to these initial conditions, we can compute the solution analytically:

x(t) = v0,xt

y(t) = v0,yt− gt2/2.

The trajectory returns to the ground at time tfinal = 2v0,y/g and at position

xfinal = x(tfinal) =
2

g
v0,yv0,x =

s2

g
sin(2θ).

Therefore, we can reach a target at distances d ≤ s2/g with launch angles θ
that satisfy sin(2θ) = gd/s2. In general, if we can hit the target at all there
will be two trajectories that work. One will have angle between 0 and π/4,
while the other has an angle between π/4 and π/2.

1.2 Model with air drag

In practice, projectiles are affected not only by gravity, but also by air resis-
tance. For a reasonable range of projectiles, and assuming that the projectile
does not go so high that changes in atmospheric pressure are an issue, the
drag force due to air resistance acts in the direction opposite the velocity,
with a magnitude proportional to the square of the velocity. That is,

ma = −mgey −mc‖v‖v.

If we also consider a constant horizontal wind velocity wex, we arrive at

ma = −mgey −mc‖v − wex‖(v − wex).

The coefficient c is a complicated function of the size, shape, and mass of
the projectile, along with the temperature and pressure of the air. For the
moment, we will suppose it is simply given.

The differential equation without air drag was simple enough for us to
analyze by hand. This model is harder, so we turn to numerical methods. To
use Matlab’s ODE solvers, we need to put the model into first-order form:[

x
v

]′
=

[
v

−gey − c‖v − wex‖(v − wex)

]
= fballistics(x,v, g, c, w).

We code this model in a Matlab script fball (Figure 1).

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

When setting up an ODE model, there are usually ample opportunities
to make nonphysical assumptions or errors in mathematics or programming.
For this reason, it is good practice to sanity-check our computations. In our
case, there are two natural checks:

1. If the coefficient c is zero, this problem simplifies to the model we dis-
cussed in the last section. Our numerical ODE solver should therefore
recover the same solution we found in our hand analysis.

2. If the coefficient c is positive, then air drag slows down the projectile,
so it should not go as far as it would go in the case of c = 0.

We check both of these behaviors with the script testball1 (Figure 3).
A visual comparison of trajectories computed with and without air drag is
showin in Figure 2.

1.3 Computing points of impact

Now that we have a code that we believe gives plausible trajectories, we
need to figure out where those trajectories hit the ground as a function of
the launch angle. In order to do this, we want not to stop the simulation at
a specific time, but when a specific event occurs: namely, when the vertical
component of the projectile position tries to go from positive to negative.
Matlab provides event detection as part of the ODE suite: we define an
interesting event in terms of a zero crossing of some test function of the state
vector (position and velocity), and we do something special when at points
when the test function goes from positive to negative or vice versa. In our
case, we are interested in when the y position component of the solution
goes from positive to negative values, and we would like to terminate the
computation when that occurs. Then we want to extract the final x position.
This computation is done in ftarget using a test function hitground to
detect the impact event (Figure 4).

1.4 Computing targeting solutions

At this point, we are interested in the function ftarget(θ) that computes the
impact distance as a function of the launch angle. For the case when c = 0,
we know that this function is proportional to sin(2θ). The case c > 0 is a
little more complicated, but even in this case, ftarget(θ) is very smooth. We

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

% yp = fball(t ,y,opt)
% Compute the right hand side of an ODE for projectile motion
% in the presence of wind and air drag. The opt structure should
% describe a scaled air drag coefficient (c), the gravitational field (g),
% and the horizontal wind speed (w).
%
function yp = fball(t,y,opt)

g = opt.g; % Gravitational field
c = opt.c; % Scaled drag coefficient
w = opt.w; % Horizontal wind speed

% Unpack position and velocity
x = y(1:2);
v = y(3:4);

% Velocity relative to wind
vv = v;
vv(1) = vv(1)−w;

% Compute acceleration
a = −c∗norm(vv)∗vv;
a(2) = a(2)−g;

% Return
yp = [v; a];

Figure 1: Right-hand side for ballistics model.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

0 5 10 15 20 25 30 35 40
−2

0

2

4

6

8

10

12

14

16

No drag

Drag

Figure 2: Trajectories with and without drag.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

% −− Sanity check trajectories computed with and without drag −−

theta = pi/3;
v0 = s∗[cos(theta); sin(theta)];

% Compute the reference trajectory (absent air resistance)
% x(y) = s∗cos(theta)∗t
% y(t) = −g∗tˆ2/2 + s∗sin(theta)∗t
% up to time tfinal = 2∗s∗sin(theta)/g
%
tfinal = 2∗v0(2)/g;
tref = linspace(0,tfinal)’;
xref = v0(1)∗tref;
yref = (v0(2)−g/2∗tref).∗tref;

% Compute the same reference trajectory with ode45
y0 = [0; 0; v0];
refopt = opt;
refopt .c = 0;
[tout,yout] = ode45(@(t,y) fball(t,y,refopt), tref , y0);

% Compute a similar trajectory with air drag on (no wind)
dopt = opt;
dopt.w = 0;
[toutd,youtd] = ode45(@(t,y) fball(t,y,dopt), tref , y0);

% Do a comparison between analytical and numerical solutions (no drag)
fprintf(’Max x error: %g\n’, norm(xref−yout(:,1), inf));
fprintf(’Max y error: %g\n’, norm(yref−yout(:,2), inf));

% Visually compare solutions for drag and no drag
plot(xref, yref , ’ r : ’ , youtd (:,1), youtd (:,2), ’b−’);
legend(’No drag’, ’Drag’);

Figure 3: Test script to check ballistics ODE.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

% xfinal = ftarget(thetas , opt)
% Compute impact points as a function of angles for the ballistics
% ODE with parameters given in opt. In addition to the basic ODE
% parameters, opt.s should be set to the launch speed.
%
function xfinal = ftarget(thetas, opt)

xfinal = 0∗thetas;
for j = 1:length(thetas)

theta = thetas(j);
v0 = (opt.s)∗[cos(theta); sin(theta)];
y0 = [0; 0; v0];
tfinal = 2∗v0(2)/opt.g;
odeopt = odeset(’Events’, @hitground);
[tout,yout] = ode45(@(t,y) fball(t,y,opt), [0 tfinal], y0, odeopt);
xfinal (j) = yout(end,1);

end

function [value,isterminal , direction] = hitground(t,y)

value = y(2); % Check for zero crossings of y position
isterminal = 1; % Terminate on a zero crossing
direction = −1; % We only care about crossing y > 0 to y < 0

Figure 4: Compute point of impact as a function of θ.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

could compute ftarget and derivatives at arbitrary points based on the ODE 1,
but the evaluation costs a little bit; if we included a few more complicating
factors in our evaluations, we might reasonably be reluctant to do too many
trajectory computations with ftarget. So let’s use the tools that we build
previously, and fit a polynomial approximation ftarget at a Chebyshev grid
on [0, π/2].

The function ftarget(θ) in general is a unimodal function: it increases on
[0, θmax] and then decreases on [θmax, π/2]. If we want to hit a target at
distance d, then, there are two things that can happen:

1. If d > ftarget(θmax) then we cannot hit the target at any angle.

2. If d < ftarget(θmax), then there are generally two solutions to the equa-
tion ftarget(θ) − d = 0: one on the interval [0, θmax] and the other on
the interval [θmax, π/2].

We can find the two solutions, if they exist, using Matlab’s fzero function
(Figure 5). In each step, we work with a polynomial approximation to ftarget

rather than working with ftarget directly.

1.5 An example trajectory

As an example, let’s consider a concrete example with a high drag coefficient
(c = 0.05 m−1) and some wind (w = −2.5 m/s). We want to hit a target at
distance d = 10 m. The trajectories computed for the two solution angles are
shown in Figure 6; the residual error ftarget(θ) is on the order of 10−7 for this
problem, which is almost certainly smaller than errors due to uncertainty in
the model parameters.

2 Particle in a box

In the previous example, we solved a two-point boundary value problem by
shooting (the two points being the point of launch and of impact). In this

1The derivative of the trajectory with respect to the launch angle θ can be computed in
terms of an extended ODE system, a so-called variational equation. Using this variational
equation, we could compute derivatives of the impact location as a function of θ. But
using a polynomial interpolant will turn out to be a simpler way of approximating the
function and its derivatives.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

% thetas = find angle(d, opt)
% Find angles to hit a target at distance d in the ballistics problem.
% If the target is unreachable, give an error message.

function [thetas] = find angle(d, opt)

% Fit a Chebyshev polynomial to the targeting behavior
[D,z] = cheb(20);
thetac = (z+1)∗pi/4;
impactsc = 0∗thetac;
for k = 1:length(thetac)−1

impactsc(k) = ftarget(thetac(k), opt);
end

% Find the farthest−traveling trajectory
zcrit = chebopt(impactsc);
topt = chebeval(thetac, zcrit);
xopt = chebeval(impactsc, zcrit);

% If we fall below that point , quit
if d > xopt, error(’Target out of range’); end
g = @(z) chebeval(impactsc, z)−d;
zs = [fzero(g, [−1, zcrit]); fzero(g, [zcrit ,1])];
thetas = chebeval(thetac, zs);

Figure 5: Find targeting angles for a given distance.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

0 2 4 6 8 10 12
−1

0

1

2

3

4

5

6

7

8

9

Figure 6: Sample targeting solutions with wind and a high drag coefficient.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

example, we will use a finite difference method. The problem we want to
solve is a classic example model in quantum mechanics: the particle in a
box.

The basic equation of quantum mechanics is Schrödinger’s equation; for
problems with one space variable, this is

Hψ =

(
− ~

2m

d2

dx2
+ V (x)

)
ψ = Eψ.

This is an eigenvalue problem: we want to find E such that the equation
has a nontrivial solution, and there are only a discrete set of such E. For
the duration of this discussion, let us assume ~/2m = 1. Now, suppose we
have a potential energy V (x) which is zero on [0, 1] and ∞ elsewhere. The
squared wave function ψ represents the probability that a particle at energy
E is at any given position, and particles can’t make it past the infinite energy
barriers at 0 and 1, so we actually have a two-point boundary value problem:

d2ψ

dx2
= Eψ, x ∈ (0, 1)

ψ(0) = 0

ψ(1) = 0.

A little thought shows the appropriate solutions are ψk = sin(kπx) and
Ek = (kπ)2. Let’s suppose we did not know that and look at a way to
compute the solution numerically.

The standard second-order accurate approximation of a second derivative
at a point x is

ψ′′(x) ≈ ψ(x− h)− ψ(x) + ψ(x+ h)

h2
.

Now suppose we have a regular mesh of points x0 = 0 to xN+1 = 1, with
xj = jh, h = 1/(N + 1). Then we can compute

−ψ′′(xi) ≈
−ψ(xi−1) + 2ψ(xi)− ψ(xi+1)

h2

Therefore, we can compute an approximation ui ≈ ψ(xi) by approximating
the differential equation at the interior points x1, . . . , xN :

h−2 [−ui−1 + 2ui − ui+1]− Eui = 0.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

At the end points, we use the boundary conditions u0 = uN+1 = 0, which
gives us the end conditions

h−2 [2u1 − u2]− Eu1 = 0.

h−2 [−uN−1 + 2uN]− EuN = 0.

Putting everything together, we can write the discrete problem concisely as

(h−2T − E)u = 0.

where T is the standard tridiagonal stencil

T =



2 −1
−1 2 −1

−1 2 −1
.

−1 2 −1
−1 2


Therefore, the eigenvalues and eigenvectors for the continuous problem can
be approximated by eigenvalues and eigenvectors for a discrete problem. The
function particlebox (Figure 7) computes the first four eigenvalues / energy
levels using this approximation using a finite difference mesh with N interior
points. Because we know the exact solutions in this problem, it is easy for
us to assess the convergence of our code as a function of h; we do this with
the script particleboxcvg (Figure 8). Using particleboxcvg, we can see
that the smallest eigenvalue of the discrete problem estimates the continuous
eigenvalue to accuracy O(h2).

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

% E = particlebox(N)
% Compute the first four energy levels for the ” particle in a box”
% model using a finite−difference discretization for dˆ2/dxˆ2
% with N interior mesh points.

function E = particlebox(N)

% Points go 0 to N+1; 0 and N+1 satisfy BCs
h = 1/(N+1);
T = −diag(ones(N−1,1),−1) + 2∗eye(N) − diag(ones(N−1,1),1);

% Estimate eigenvalues and eigenvectors
[V,D] = eig(T/hˆ2);
E = diag(D);

% Compute the first four energy levels
E = E(1:4);

Figure 7: Finite difference computation of the first four energy levels for a
particle in a box.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

% Do a simple convergence study
N = 10;
h = []; E = [];
for j = 1:5

h(j) = 1/(N+1);
E(:, j) = particlebox(N);
N = N∗2;

end
loglog(h, piˆ2−E(1,:));

% Rate of convergence
est order = log((piˆ2−E(1,end−1))/(piˆ2−E(1,end)))/log(2);
fprintf(’Estimated order of convergence: %f\n’, est order);

Figure 8: Convergence analysis of a finite difference computation of the first
four energy levels for a particle in a box.

	A ballistics problem
	Model without air drag
	Model with air drag
	Computing points of impact
	Computing targeting solutions
	An example trajectory

	Particle in a box

