Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 13: Wednesday, Apr 25

The Runge-Kutta concept

Runge-Kutta methods evaluate f(t,y) multiple times in order to get higher
order accuracy. For example, the classical Runge-Kutta scheme is

KO = f(tmyn)

h h

h h
K2 - f (tn+ §7yn+ EKI)

KS - f(tn + hayn + hKZ)

h
Yn+1 :yn"i_g(KO‘{'QKl +2K2+K5)

Note that if f is a function of time alone, this is simply Simpson’s rule. This
is no accident.

Runge-Kutta methods are frequently used in pairs where a high-order
method and a lower-order method can be computed with the same evalua-
tions. Perhaps the most popular such methods are the Fehlberg 4(5) and
Dormand-Prince 4(5) pairs — the MATLAB code ode45 uses the Dormand-
Prince pair. The difference between the two methods is then used as an
estimate of the local error in the lower-order method. If a local error esti-
mate seems too large, it is natural to try again with a shorter step based on
an asymptotic expansion of the error. This method of step control works well
on many problems in practice, but it is not foolproof (as we will see in HW
7). For example, in some settings the adaptive error control may suggest a
time step which is fine for local error, but terrible for stability.

Adaptive time stepping routines generally use tolerances for both absolute
and relative errors. A time step is accepted if

le;] < max (rtol;|y;], atol;)

where rtol; and atol; are the tolerances for the ith component of the solution
vector. The error tolerances have default values (1073 relative and 107°
absolute), but in practice it may be a good idea to set the tolerances yourself.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

In principle, comparing two methods gives us an error estimate only for
the lower-order method. However, one often takes a step with the higher-
order method (at least for non-stiff problems). This cheat works well in
practice, but we use the dignified-sound name of local extrapolation to dodge
awkward questions about its mathematical legitimacy.

There are a bewildering variety of Runge-Kutta methods. Some are ex-
plicit, others are implicit. Some preserve interesting structural properties.
Some are based on equally-spaced interpolation points, others evaluate on
Gauss-Legendre points. In some, the stages can be computed one at a time;
in others, the stages all depend on each other. But these methods are beyond
the scope of the current discussion.

Matlab’s ode45

For most non-stiff problems, ode45 is a good first choice of integrators. The
basic calling sequence is

[tout, yout] = oded5(f, tspan, y0);

The function f (t,y) returns a column vector. On output, tout is a column
vector of evaluation times and yout is a matrix of solution values (one per
row). Usually, tspan has two entries: tspan = [t0 tmax]. However, we can
also specify points where we want solution values. In general, the underlying
ODE solver does not put time steps at each of these points; instead it fills in
the values using polynomial interpolation (this is called dense output).

The ode45 function takes an optional output called opt that contains a
structure produced by odeset. Using odeset, we can set error tolerances,
put bounds on the step size, indicate to the solver that certain components
must be non-negative, look for special events, or request diagnostic output.

The multistep concept

The Runge-Kutta methods proceed from time ¢, to time ¢,,;, then stop
looking at t,,. An alternative is to use not only the behavior at ¢,, but also
the behavior at previous times t,,_q, t,_s, etc. Methods that do this are
multistep methods. Most such methods are based on linear interpolation.
For non-stiff problems, the Adams family are the most popular multi-step
methods. The k-step explicit Adams methods (or Adams-Bashforth meth-

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

ods) interpolate f(t;,y;) at points t,_y,...,t, with a degree k polynomial
p(t). Then in order to estimate

Y(trn) = y(ta) + / " f(s,y(s)) ds,

one computes
tn+1
Yn+1 = Yn +/ p(s) ds.
in

The implicit Adams methods (or Adams-Moulton methods) also interpo-
late through the unknown point. Though they are not A-stable, Adams-
Moulton methods have larger stability regions and smaller error constants
than Adams-Bashforth methods. Often, the two are used together to form
a predictor-corrector pair: predict with Adams-Bashforth, then correct to
Adams-Moulton. Because these methods are typically used for non-stiff prob-
lems, fixed point iteration often provides an adequate corrector.

With multistep methods, we can adapt not only the time step, but also
the order. Very high-order methods may be appropriate when the solution is
smooth and we want to either minimize the number of time steps or to meet
very strict accuracy requirements. The MATLAB routine ode113 implements
a variable-order Adams-Bashforth-Moulton predictor-corrector solver.

The Adams methods interpolate the function values f; the backward dif-
ferentiation formulas (BDF) instead interpolate y. The next step y,y1 is
chosen so that the polynomial interpolating (¢, _, yn_x) through (t,41, Yni1)
has derivative at t,,41 equal to f(fn41,Yn+1). MATLAB’s solver ode15s uses
a variable-order numerical differentiation formula (a close relative of BDF).
The ode15s code would be a typical first choice for stiff problems.

Example: the van der Pol equation

The van der Pol oscillator is a model nonlinear differential equation that
shows up rather quickly in most discussions of the topic. The differential
equation is:

2" — p(l — 2?2’ +x = 0.

When g = 0, this is a simple harmonic oscillator, and solutions have the form

z(t) = x(0) cos(t) + «'(0) sin(t)

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

When p is nonzero, the picture gets slightly more complicated. You may or
may not remember from a physics, calculus, or ODE class that the ODE

2 b +x=0

has decaying oscillating solutions for b > 0 and exponentially growing so-
lutions for b < 0. The coefficient b is interpreted as damping (with b < 0
corresponding to “anti-damping” behavior where solutions gain energy over
time). In the case of the van der Pol equation, b is replaced by a nonlinear
term which is negative when |z| < 1 and positive when |z| > 1. So the
effective behavior, seen in practice, is that there is a balance between growth
behavior for small x and decay behavior for larger x. The result is that
the solution bounces back and forth between slow motions for x > 1 and
r < —1 with fast transitions in between, and the speed of those transitions
is governed by the magnitude of p.

Now let’s write code to actually solve the system. The ODE solvers
in MATLAB require that we express our problem as a first-order system in
standard form, which we do by introducing the auxiliary variable y = z':

m/ - {u(l - a?j?)y _ x] = fodp(2, Y, 1)

This is a demo system in the MATLAB documentation, so MATLAB already
has a function vanderpoldemo (x,y,mu) to evaluate the right hand side f,q4,
of this system. Based on the advice given in lecture, we should choose ode45
if the problem is non-stiff (¢ modest) and ode15s if the problem is stiff (u
large). Our script, runvdp will compute the solution using both methods
and compare both the results and the timings. For pu = 1, we find that
both solvers perform adequately; for p = 100, ode45 takes 5 seconds and
26368 steps while odel5s takes 0.45 seconds and 761 steps. For pu = 200,
ode4d5 takes 20 seconds and over 104868 steps, while ode 15s takes 0.50
seconds. and just over 1010 steps. Both solvers return results that are nearly
indistinguishable visually (see Figure 1).

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Van der Pol time history, mu = 100.000000 Van der Pol phase plane, mu = 100.000000

150
2 4

100
150 b
s 4

50

-100F

-150

Figure 1: Van der Pol solutions for y = 100, via ode45 (red) and odelbs
(blue). The left plot shows x vs ¢; right shows x(t) vs y(t) = 2/(¢).

Problems to ponder

1. Describe how to use ode45 and plot to display the solution to an initial
value problem

1, 0<t<1

ma” + bx' + kx =
07 1 S t S tﬁnal

where z(0) = 2/(0) = 0.

2. For implicit methods like backward Euler or the trapezoidal rule, we
need to solve a nonlinear equation at each update. For backward Euler,
for example, we have

Yn+1 — hf(yn+1> —Yn=0.
What is Newton’s iteration for computing v, 1 given y,,?

3. For a non-stiff problem where f’ is not too large, note that we could
also use fixed point iteration:

new old

ynJrl = Yn + hf(yn+l)

Assuming f is Lipschitz with constant L, show this fixed point iteration
converges when Lh < 1.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

% runvdp(mu)
% Demonstrate relative performance of odef5 and odelbs for
% the van der Pol oscillator as a function of mu.

%

function runvdp(mu)

tau = (3—2xlog(2))*mu + 4.676«mu”(—1/3); % Estimated period

tspan = [0, 3xtau]; % Go about 3 cycles
v0 = [2; 0]; % Initial conditions
opt = odeset(’Stats’, 'on’); % Print diagnostics

ode = Q(t,y) vanderpoldemo(t,y,mu); % MATLAB already has f-vdp

fprintf(’\n———_ODE45_solve.———\n’);
tic; [tn,yn] = ode45(ode, tspan, y0, opt); toc

fprintf(’\n———_ODE15s_solve.———\n");
tic; [ts,ys] = odelbs(ode, tspan, y0, opt); toc

figure(1);

plot(tn,yn (271)7 7I‘—7, ts,ys <:71)7 7b_’);

xlabel(’t’);

ylabel(’x’);

title (sprintf(’Van_der_Pol_time_history,.mu.=_%f", mu));

figure(2);

plot(yn(:,1), yn(:,2), 'r=", ys (:,1), vys (:,2), 'b=");
xlabel(’x’);

ylabel('y');

title (sprintf(’Van_der_Pol_phase_plane,. mu.=_%f", mu));

Figure 2: Script to compare ode45 and ode15s for the van der Pol oscillator.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

4. Suppose we have used a time-stepping algorithm to compute yx, =~ y(tx).
To get from step k to k + 1, consider using either one or two steps of
forward Euler:

Yk+1 = Y + hf(y)

h
212 = Y+ 5 (Ue)
k1 = Zpg1/2 + §f(2k+1)

Write the first term in a Taylor expansion for the local error yi ; —
u(txs1), where u is the solution to the initial value problem

u'(t) = f(u(t), ulte) =y
How could you combine z;,; and yx.1 to estimate this local error?

5. Consider the test equation

y = M.
Suppose we approximate the solution at time ¢, = kh using forward
Euler. Show that if g, is the kth step of the forward Euler method,
then g, = z(t;) where z(t) is the solution to the modified differential
equation A

7= Az
How is \ related to \? Repeat the exercise for backward Euler.

6. Based on the description in these notes, derive the backward differen-
tiation formula based on interpolation of y at points ¢, and ¢, 1.

