
Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 13: Monday, Apr 23

Ordinary differential equations

Consider ordinary differential equations of the form

(1) y′ = f(t, y)

together with the initial condition y(0) = y0. These are equivalent to integral
equations of the form

(2) y(t) = y0 +

∫ t

0

f(s, y(s)) ds.

Only the simplest sorts of differential equations can be solved in closed form,
so our goal for the immediate future is to try to solve these ODEs numerically.

For the most part, we will focus on equations of the form (1), even though
many equations of interest are not posed in this form. We do this, in part,
because we can always convert higher-order differential to first-order form by
adding variables. For example,

my′′ + by′ + ky = f(t)

becomes [
y
v

]′
=

[
v

f(t)− b
m
v − k

m
y

]
.

Thus, while there are methods that work directly with higher-order differ-
ential equations (and these are sometimes preferable), we can always solve
high-order equations by first converting them to first-order form by introduc-
ing auxiliary variables. We can also always convert equations of the form

y′ = f(t, y)

into autonomous systems of the form

u′ = g(u)

by defining an auxiliary equation for the evolution of time:

u =

[
y
t

]
, g(u) =

[
f(t, y)

1

]
.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Basic methods

Maybe the simplest numerical method for solving ordinary differential equa-
tions is Euler’s method. Euler’s method can be written in terms of finite
difference approximation of the derivative, Hermite interpolation, Taylor se-
ries, numerical quadrature using the left-hand rule, or the method of unde-
termined coefficients. For the moment, we will start with a derivation by
Taylor series. If y(t) is known and y′ = f(t, y), then

y(t+ h) = y(t) + hf(t, y(t)) +O(h2)

Now, drop the O(h2) term to get a recurrence for yk ≈ y(tk):

yk+1 = yk + hkf(tk, yk)

where tk+1 = tk + hk.
We can derive another method based on first-order Taylor expansion

about the point t+ h rather than t:

y(t) = y(t+ h)− hf(t+ h, y(t+ h)) +O(h2).

If we drop the O(h2) term, we get the approximation y(tk) = yk where

yk+1 = yk + hf(tk+1, yk+1).

This is the backward Euler method, sometimes also called implicit Euler.
Notice that in the backward Euler step, the unknown yk+1 appears on both
sides of the equations, and in general we will need a nonlinear equation solver
to take a step.

Another basic method is the trapezoidal rule. Let’s think about this one
by quadrature. If we apply the trapezoidal rule to (2), we have

y(t+ h) = y(t) +

∫ t+h

t

f(s, y(s)) ds

= y(t) +
h

2
(f(t, y(t)) + f(t+ h, y(t+ h))) +O(h3)

If we drop the O(h3) term, we have

yk+1 = yk +
h

2
(f(tk, yk) + f(tk+1, yk+1)) .

Like the backward Euler rule, the trapezoidal rule is implicit: in order to
compute yk+1, we have to solve a nonlinear equation.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Im(hλ)

Re(hλ)

Im(hλ)

Re(hλ)

Figure 1: Regions of absolute stability for Euler (left) and backward Euler
(right). For values of hλ in the colored region, the numerical method produces
decaying solutions to the test problem y′ = λy.

Stability regions

Consider what happens when we apply Euler and backward Euler to a simple
linear test problem

y′ = λy

with a fixed step size h. Note that the solutions y(t) = y0 exp(λt) decay to
zero whenever Re(λ) < 0. This is a qualitative property we might like our
numerical methods to reproduce. Euler’s method yields

yk+1 = (1 + hλ)yk,

which gives decaying solutions only when |1 + hλ| < 1. The set of values
hλ where Euler produces a decaying solution is called the region of absolute
stability for the method. This region is shown in Figure 1.

Backward Euler produces the iterates

yk+1 = (1− hλ)−1yk

Therefore, the discrete solutions decay whenever |(1 − hλ)−1| < 1 — or,
equivalently, whenever |1 − hλ| > 1. Thus, the region of absolute stability
includes the entire left half plane Re(λ) < 0 (see Figure 1), and so backward
Euler produces a decaying solution when Re(λ) < 0, no matter how large or
small h is. This property is known as A-stability.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Euler and trapezoidal rules

So far, we have introduced three methods for solving ordinary differential
equations: forward Euler, backward Euler, and the trapezoidal rule:

yn+1 = yn + hf(tn, yn) Euler

yn+1 = yn + hf(tn+1, yn+1) Backward Euler

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1)) Trapezoidal

Each of these methods is consistent with the ordinary differential equation

y′ = f(t, y).

That is, if we plug solutions to the exact equation into the numerical method,
we get a small local error. For example, for forward Euler we have consistency
of order 1,

Nhyh(tn+1) ≡
y(tn+1)− y(tn)

hn
− f(tn, y(tn)) = O(hn),

and for the trapezoidal rule we have second-order consistency

Nhyh(tn+1) ≡
y(tn+1)− y(tn)

hn
− f(tn, y(tn)) = O(h2n).

Consistency + 0-stability = convergence

Each of the numerical methods we have described can be written in the form

Nhy
h = 0,

where yh denotes the numerical solution and Nh is a (nonlinear) difference
operator. If the method is consistent of order p, then the true solution gives
a small residual error as h goes to zero:

Nhy = O(hp).

As we have seen in the past, however, small residual error is not the same
as small forward error. In order to establish convergence, therefore, we need

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

one more property. Formally, a method is zero-stable if there are constants h0
and K so for any mesh functions xh and zh on an interval [0, T] with h ≤ h0,

‖dh‖∞ ≡ ‖xh − zh‖∞ ≤ K
{
|x0 − z0|+

∥∥Nhx
h(tj)−Nhz

h(tj)
∥∥
∞

}
.

Zero stability essentially says that the difference operators Nh can’t become
ever more singular as h→ 0: they are invertible, and the inverse is bounded
by K. If a method is consistent and zero stable, then the error at step n is

|y(tn)− yh(tn)| = |en| ≤ K max
j
|dj| = O(hp).

The proof is simply a substitution of y and yh into the definition of zero
stability. The only tricky part, in general, is to show that the method is zero
stable. Let’s at least do this for forward Euler, to see how it’s done — but
you certainly won’t be required to describe the details of this calculation on
an exam!

We assume without loss of generality that the system is autonomous
(y′ = f(y)). We also assume that f is Lipschitz continuous; that is, there is
some L so that for any x and z,

|f(x)− f(z)| ≤ L|x− y|.

It turns out that Lipschitz continuity of f plays an important rule not only in
the numerical analysis of ODEs, but in the theory of existence and uniqueness
of ODEs as well: if f is not Lipschitz, then there might not be a unique
solution to the ODE. The standard example of this is u′ = 2 sign(u)

√
|u|,

which has solutions u = ±t2 that both satisfy the ODE with initial condition
u(0) = 0.

We can rearrange our description of Nh to get

xn+1 = xn + hf(xn) + hNh[x](tn)

zn+1 = zn + hf(zn) + hNh[z](tn).

Subtract the two equations and take absolute values to get

|xn+1 − zn+1| ≤ |xn − zn|+ h|f(xn)− f(zn)|+ h|Nh[x](tn)−Nh[z](tn)|

Define dn = |xn − zn| and θ = maxj |Nh[x](tj) − Nh[z](tj)|. Note that by
Lipschitz continuity, |f(xn)− f(zn)| < Ldn; therefore,

dn+1 ≤ (1 + hL)dn + hθ.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Let’s look at the first few steps of this recurrence inequality:

d1 ≤ (1 + hL)d0 + hθ

d2 ≤ (1 + hL)2d0 + [(1 + hL) + 1]hθ

d3 ≤ (1 + hL)3d0 +
[
(1 + hL)2 + (1 + hL) + 1

]
hθ

In general, we have

dn ≤ (1 + hL)nd0 +

[
n−1∑
j=0

(1 + hL)j

]
hθ

≤ (1 + hL)nd0 +

[
(1 + hL)n − 1

(1 + hL)− 1

]
hθ

≤ (1 + hL)nd0 + L−1 [(1 + hL)n − 1] θ

Now note that

(1 + hL)n ≤ exp(Lnh) = exp(L(tn − t0)) ≤ exp(LT),

where T is the length of the time interval we consider. Therefore,

dn ≤ exp(LT)d0 +
exp(LT)− 1

L
max

j
|Nh[x](tj)−Nh[z](tj)|.

While you need not remember the entire argument, there are a few points
that you should take away from this exercise:

1. The basic analysis technique is the same one we used when talking
about iterative methods for solving nonlinear equations: take two equa-
tions of the same form, subtract them, and write a recurrence for the
size of the difference.

2. The Lipschitz continuity of f plays an important role. In particular,
if LT is large, exp(LT) may be very inconvenient, enough so that we
have to take very small time steps to get good error results according
to our theory.

As it turns out, in practice we will usually give up on global accuracy
bounds via analyzing Lipschitz constant. Instead, we will use the same sort of

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

local error estimates that we described when talking about quadrature: look
at the difference between two methods that are solving the same equation
with different accuracy, and use the difference of the numerical methods as a
proxy for the error. We will discuss this strategy — and more sophisticated
Runge-Kutta and multistep methods — next lecture.

