Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Week 12: Wednesday, Apr 18

Adaptive error control
Last time, we discussed Simpson’s rule for quadrature:

[[f]:/ f(x)dx%b;a(f(a)+4f(c)+f(b))’ CECL;—[)

Simpson’s rule has a local error of O(h®) where h is the size of one panel', and
the composite rule has an error of O(h*). Let S(a,b) denote the Simpson’s
rule estimate for the panel from a to b. Then we know that

]
]

Combining these estimates, we have that the error in the two-panel rule is
approximately

S(a,b) + Ch®> + O(h")
S(a,c) + S(c,b) +2C(h/2)° + O(h"),

~ =
- =

E(a,b) S(a,c) +S(lcéb) —S(a,b)‘

One way to take advantage of this error estimate is by using extrapolation
to increase the degree of our method. If we wanted, we could keep continually
uniformly subdivide the mesh on which we have sampled the function in order
to get ever higher-degree quadrature rules; this is sometimes called Romberg
integration. Another way to use the error estimate, though, is to adaptively
refine our mesh. That is, we keep a running tally of the estimated error
on each panel, and any panel that seems to contribute too much error gets
subdivided. There are multiple ways in which to decide the order in which
one should process the panels that need to be subdivided. The most elegant
version might be a priority queue (subdivide the panel with the highest error
estimate first), but there are also simpler recursive variants that try to keep
subdividing until a leaf panel of size h has estimated error of at most nh.
MATLAB’s quad uses an adaptive Simpson’s rule, but I’'m not sure which
refinement strategy it uses.

Note that while in principle E(a, b) is an error estimate for S(a, ¢)+5(c, b),
in practice we use this as an error estimate for the purposes of things like

IFor this lecture, h is the size of a panel, and not 2h.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

adaptive refinement... but we also return the extrapolated estimate S(a, ¢)+
S(c,b) + E(a,b), even though E(a,b) is not technically an error estimate for
the extrapolated rule. We like to try to have our cake and eat it to.

Raising the degree

An interpolatory quadrature rule through n points has degree n — 1, and
so yields (total) error that decreases at least like O(h"), assuming that the
function in question is sufficiently smooth. In some cases, though, we know
that we get lucky and do even better. For example, the midpoint rule (n = 1)
has degree 2, and Simpson’s rule (n = 3) has degree 4. Why is this the true?

For convenience, let us consider a quadrature rule on [—1,1]. A quadra-
ture rule with n points has degree n+s for s > 0, that means it computes any
polynomial of degree up to n + s exactly. In particular, if x4,...,x, are the
nodes, we can define the degree n polynomial ¢(z) = (z—x1) ... (x—1,), and
our rule should be able to integrate q(x)x’ exactly for 0 < j < s. But notice
that ¢(x)x? is exactly zero at each of the quadrature nodes, so the quadrature
rule returns exactly zero at each of these points. Therefore, the quadrature
rule can have degree n + s for s > 0 only if it satisfies the conditions

1
/ q(x)z? dr =0, 0<j<s.
—1
This says that with respect to the standard inner product for functions on
[—1, 1], the polynomial ¢ should be orthogonal to z7 for 0 < j < s. Note that
we must have s < n, since otherwise we would have that f_ll q(z)? dx was
Zero.

As it happens, the Legendre polynomials Py(x) satisfy the property that
Py(x), ..., Py(x) forms an orthogonal basis (with respect to the standard
inner product on [—1, 1]) for the degree d polynomials. The first few Legendre
polynomials are

1
Py(z) = (32* = 1)/2,

and we can compute higher-order Legendre polynomials by a recurrence:

(k+1)Pyia1(z) = (2k + D)o Py(x) — kPy—1(x).

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

Interpolatory quadrature rules based on interpolation through the zeros of
Legendre polynomials are Gauss-Legendre quadrature rules. The midpoint
rule is the lowest-order such rule; the second rule is

[1@de = H=VI) + 1),

In general, n-point Gauss-Legendre quadrature rules have degree 2n — 1; the
two-point Gauss-Legendre rule has degree 3, for example.

There are a few variants on the Gaussian integration theme. One involves
constraining the nodes for computational convenience. For example, if we
insist that the interval endpoints must be quadrature nodes, we arrive at
the Gauss-Lobatto rules (degree 2n — 3). The Gauss-Kronrod rules involve
a pair consisting of an n-point Gauss quadrature rule together with a 2n 4+ 1
point rule that re-uses the Gauss quadrature nodes; these rules are popular
for adaptive quadrature, since the Gauss rule and the Kronrod rule can be
compared in order to get an error estimate.

High order vs adaptivity

The default MATLAB quad routine does not use Gauss-Kronrod quadra-
ture rules (though quadgk does). Instead, it uses an adaptive Simpson’s
rule. There’s a good reason for this: high order convergence is only achieved
for functions with lots of deriwatives. If a function has a discontinuity, it
will be hard to get better than O(h) global error; if there is a discontin-
uous derivative, it is hard to beat O(h?) error; and so on. Methods based
on Gauss quadrature or Chebyshev interpolation (the Clenshaw-Curtis meth-
ods) converge ferociously quickly for smooth integrands. But simple adaptive
methods based on Simpson’s rule often converge fast enough for most pur-
poses, while remaining remarkably robust to nonexistent — or just very large
— higher order derivatives.

Special behaviors

Consider the integral

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

How could we compute I(7/2) numerically?
First, note that the function is even, so we can compute

I(z) = 2/ 272 cos(z) d.
0

This function is now awkward because the integrand diverges at x = 0. We
can deal with this in a few different ways:

1. Subtracting off the singularity: Write

I(z) = 2 [/0 o2 do + /0 +V2 (cos(z) — 1) dz| .

The first term can be handled analytically:

/ V2 de = 24/z.

0

The second term has a removable singularity at the origin (O(2%/2) as
x — 0), and we can treat the integrand as zero at that point.

2. Integration by parts: If we integrate by parts, we have
/ 2~ Y2 cos(z) dr = 2v/Z cos(z) + / 2\/zsin(x) dx
0 0

3. Change of variables: If we let > = x, then we can use the change of
variables formula to recast the integral with as

2 2

I(z) = 2/02 t~ cos(t?) (2t dt) = 4/: cos(t?)dt

As it happens, we could at this point declare victory, since this integral
is closely related to the Fresnel integral

C(z) = /Ox cos(7t?/2) dt,

and there are libraries that will compute Fresnel integrals for you.

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

4. Special quadrature rules: The Gauss-Jacobi family of quadrature
rules approximates integrals of the form

[t@-arao) i

If we set & = 0, and § = —1/2, then this gives us a rule for computing
something with an inverse-square-root singularity at x = —1. If we
apply the change of variables

z
-0

we have

[swna o ra= (2)" [,

so we have a quadrature rule that deals with integrals with this sort of
singularity. Let f(y) = cos(y) and we're all set.

These are most ot the tricks I know for dealing with integrals with singular-
ities or unbounded domains. Fortunately, these tricks tend to work well for
a variety of problems.

Problems to ponder

1. How would you write an n-panel composite Simpson rule in MATLAB
without any repeated function evaluations at the same point.

2. Show that running extrapolation on the trapezoidal rule results in
Simpson’s rule.

3. How might you numerically compute

/000 In(z) exp(—x) dz

to a relative error tolerance of around 107, ideally without too many
function evaluations?

Bindel, Spring 2012 Intro to Scientific Computing (CS 3220)

4. Consider the integral [z~'/? cos(z) dz from our “subtracting the sin-
gularity” example. How many derivatives does the integrand have at
zero? How does this compare to the original integral?

5. Adaptive quadrature methods can be tricked! How would you find a
polynomial such that one-panel or two-panel Simpson quadrature on
[—1, 1] both return zero, even though the true integal is positive?

6. Suppose f(z) is convex, i.e. f”(x) > 0 everywhere. Show that in this
case, the composite midpoint rule underestimates the true integral.

7. Describe a strategy for devising Simpson-like rules for integrals of the
form

/ab:co‘f(:c) dx

where a > —1 is given and f(x) is assumed to be smooth. Your rule
should sample the function at a, b, and at some point in between — how
would you choose the location of that point to get the highest possible
order of accuracy?

Note: it’s fine to express the coefficients in this rule in terms of integrals
that you know how to work out symbolically, even if you don’t want to
run through the algebra.

