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Week 12: Monday, Apr 16

Panel integration

Suppose we want to compute the integral∫ b

a

f(x) dx

In estimating a derivative, it makes sense to use a locally accurate approxima-
tion to the function around the point where the derivative is to be evaluated.
But if f is at all interesting on the interval [a, b], it probably does not make
sense to approximate the integral of f by integrating a quadratic interpolant.
On the other hand, f may be approximated quite well by a quadratic inter-
polant on small subintervals, so it may make sense to define a mesh of points

a = a0 < a1 < a2 < . . . < an = b

and to then compute ∫ b

a

f(x) dx =
n−1∑
i=0

∫ ai+1

ai

f(x) dx,

where the integrals on each panel [ai, ai+1] involves a local polynomial ap-
proximation. Let us now turn to a method to compute these panel integrals.

Simpson’s rule

Now, suppose we do exactly the same manipulations we used to find the
centered difference approximation, but aim at coming up with an integration
rule. That is, given f(−h), f(0), and f(h), how can we estimate

∫ h

−h f(x) dx?
Again, we can derive the same answer by either interpolation or by the
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method of undetermined coefficients. Let’s use interpolation first:∫ h

−h
f(x) dx ≈

∫ h

−h
p(x) dx

=

∫ h

−h
[f(−h)L−h(x) + f(0)L0(x) + f(h)Lh(x)] dx

=w−f(−h) + w0f(0) + w+f(h),

w− =

∫ h

−h
L−h(x) dx = h/3

w0 =

∫ h

−h
L0(x) dx = 4h/3

w+ =

∫ h

−h
Lh(x) dx = h/3.

What about the method of undetermined coefficients? Let’s start by
integrating a Taylor expansion of f about 0:∫ h

−h
f(x) dx = 2

[
f(0)h+ f ′′(0)h3/6 + f (4)(0)h5/120 +O(h7)

]
We want to match terms in this Taylor expansion to the terms in the Taylor
expansion of a linear combination of f(−h), f(0), and f(h):

I(h) =c−f(−h) + c0f(0) + c+f(h)

=(c− + c0 + c+)f(0) + (c+ − c−)f ′(0)h+ (c+ + c−)f ′′(0)h2/2

+ (c+ − c−)f (3)(0)h3/6 + (c+ + c−)f (4)(0)h4/24 +O(h5)

If we match the constant, linear, and quadratic terms between the two ex-
pansions, we have

c− + c0 + c+ = 2h

c+ − c− = 0

c+ + c− = 2h/3

Solving gives us c+ = c− = h/3 and c0 = 4h/3, and∫ h

−h
f(x) dx− I(h) = O(h5).
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A brief digression on changing variables

How do I get from a rule on the domain [−h, h] to a rule on the domain
[ai, ai+1]? Define h = (ai+1 − ai)/2 and ai+1/2 = (ai+1 + ai)/2. Then we can
define x = ai+1/2 + z, and since dx/dz = 1, the change of variables formula
gives ∫ ai+1

ai

f(x) dx =

∫ h

−h
f(ai+1/2 + z) dz.

For example, Simpson’s rule on the interval [ai, ai+1] is∫ ai+1

ai

f(x) dx =
b− a

6

[
f(ai) + 4f(ai+1/2) + f(ai+1)

]
.

Newton-Cotes rules

Simpson’s rule is a member of the family of Newton-Cotes rules based on
interpolation over a uniform mesh. The first three Newton-Cotes rules are

1. Midpoint:
∫ h

−h f(x) dx ≈ 2hf(0)

2. Trapezoidal:
∫ h

−h f(x) dx ≈ h [f(−h) + f(h)]

3. Simpson’s:
∫ h

−h f(x) dx ≈ h/3 [f(−h) + 4f(0) + f(h)]

The midpoint and trapezoidal rules have order O(h3) per panel, and Simp-
son’s rule has O(h5) per panel. If the panel sizes are fixed, we generally have
O(1/h) panels to cover the domain [a, b], so the absolute error in approximat-
ing an integral by composite midpoint or trapezoidal integration is O(h2),
and the error for composite Simpson’s rule is O(h4).

In general, n-point Newton-Cotes rules exactly integrate polynomials of
degree n − 1 if n is even, degree n if n is odd (the degree of polynomial we
integrate exactly is called the degree of the quadrature rule). Newton-Cotes
rules with more than three or four points are uncommon in practice; for
n ≥ 11, the Newton-Cotes rules always have at least one negative weight,
and cancellation causes problems in finite precision. Instead, Newton-Cotes
rules are usually used in panel integration schemes, often with adaptive panel
sizes based on local error estimates.
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Error estimates

We have already seen one approach to writing a formula for the error in
a quadrature rule: Taylor expand everything in sight, and get a formula
involving high-order derivatives of f . Unfortunately, we may not always have
easy access to bounds on the derivatives of f . In practice, we would therefore
usually estimate the error by comparing the results of two integration rules
with different errors over a panel.

For example, on [−h, h], let us write the integral, the midpoint rule, and
the trapezoidal rule as

I[f ] =

∫ h

−h
f(x) dx = 2hf(0) + f ′′(0)h3/3 +O(h5)

QM [f ] = 2hf(0)

QT [f ] = h [f(−h) + f(h)] = 2hf(0) + f ′′(0)h3 +O(h5).

The error in the midpoint rule and the trapezoidal rule are thus

QM [f ]− I[f ] = −f ′′(0)h3/3 +O(h5)

QT [f ]− I[f ] = 2f ′′(0)h3/3 +O(h5).

The error in the trapezoidal rule is thus about twice the size of the error in
the midpoint rule. Moreover, we can estimate QM [f ]− I[f ] even if we don’t
have direct access to the integral I[f ]:

QM [f ]− I[f ] = (QM [f ]−QT [f ])/3 +O(h5).

Note that this suggests we could get a more accurate formula by correcting
QM [f ] with our estimate of the error:

I[f ] = QM [f ]− (QM [f ]−QT [f ])/3 +O(h5).

But note that

QM [f ]− (QM [f ]−QT [f ])/3 =
h

3
[f(−h) + 4f(0) + f(h)] ,

which is just Simpson’s rule.
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Degree of an integration rule

Suppose we write

Ih[f ] =

∫ h

0

f(x) dx

Qh[f ] = h

n∑
j=1

wjf(hxj)

We have in mind that the quadrature rule Qh[f ] is supposed to approximate
Ih[f ]. What we want to show now is that we can analyze the quality of that
approximation just based on whether or not Qh[xm] = Ih[xm] for small values
of m.

Suppose Qh[f ] has degree d; that means that Qh[f ] integrates polynomials
of degree ≤ d exactly. Using Taylor’s theorem with remainder, we can write

f(x) = p(x) +
f (d+1)(ξ)

(d+ 1)!
xd+1,

where p is a degree d polynomial (the degree d Taylor approximation). Sup-
pose |f (d+1)| < M ; then we have

|Ih[f − p]| ≤ Md

(d+ 2)!
hd+2 = O(hd+2)

and

|Qh[f − p]| ≤
n∑

j=1

|wj|
Md

(d+ 1)!
hd+2 = O(hd+2).

Therefore

|Ih[f ]−Qh[f ]| = |Ih[f − p]−Qh[p− f ]|
≤ |Ih[f − p]|+ |Qh[f − p]| = O(hd+2).

This tells us that the local truncation error (the error per panel) of a degree
d integration rule is O(hd+2); in a composite rule where there are O(h−1)
panels, we have a total error of O(hd+1).


